Skip to main content

Advertisement

Log in

Physico-chemical characterization of calcium-apatite prepared with a calcium/phosphate ratio around the stoichiometry

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Calcium phosphate materials synthesized from apatite with atomic Ca/P ratios ranging from 1.50 to 1.67 (Ca10-x(HPO4)x(PO4)6-x(OH)2-x (0 ≤ x ≤ 1)) have very interesting applications in bone regeneration and in the environment field for the removal of toxic species. The physicochemical characteristics of synthetic calcium apatite change when the Ca/P ratio varies. In this study, two batches of apatite powder were prepared by precipitation in an aqueous medium at 25 °C with Ca/P molar ratios that were close to those of tricalcium phosphate (1.48, 1.50, and 1.52) and close to those of hydroxyapatite (1.65, 1.67, and 1.72). For dried and ceramized powders, the chemical composition, morphology, surface area, compacity, durability, and crystalline phases of prepared powders were studied. The result shows that the dried powders composed of nanocrystals are poorly crystallized. The sample with the lowest Ca/P atomic ratio (1.48) shows the lowest specific surface area (75 ± 5 m2/g) with good compaction ability and acceptable mechanical properties. While stoichiometric HAP (Ca/P = 1.67) has a large specific area (110 ± 5 m2/g), however, it has poor compaction properties. Calcined apatite (Ca/P = 1.65) at 900 °C composed of HAP with traces of tricalcium phosphate (Ca3(PO4)2: βTCP) shows a higher compressive strength (78 ± 10 MPa). βTCP ceramic with Ca/P = 1.48 has the lowest optical gap (OG = 4.6 ± 0.4 eV). The result of this study shows how little changes in the Ca/P ratio had an impact on the granular properties of dried and calcined calcium phosphate materials. Apatite produced with slightly sub-stoichiometric calcium has the potential for promising future uses in the biological, catalytic, and environmental domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors certify that all data and material claims conform to field standards.

References

  1. Hilbrig, F., Freitag, R.: Isolation and purification of recombinant proteins, antibodies and plasmid DNA with hydroxyapatite chromatography. Biotechnol. J. 7(1), 90–102 (2012). https://doi.org/10.1002/biot.201100015

    Article  CAS  Google Scholar 

  2. Nijhawan, A., Butler, E.C., Sabatini, D.A.: Hydroxyapatite ceramic adsorbents: effect of pore size, regeneration, and selectivity for fluoride. J. Environ. Eng. 144(11), 1–7 (2018). https://doi.org/10.1061/(asce)ee.1943-7870.0001464

    Article  CAS  Google Scholar 

  3. Stošić, D., Bennici, S., Sirotin, S., Calais, C., Couturier, J.L., Dubois, J.L., Travert, A., Auroux, A.: Glycerol dehydration over calcium phosphate catalysts: effect of acidic-basic features on catalytic performance. Appl. Catal. A 447–448, 124–134 (2012). https://doi.org/10.1016/j.apcata.2012.09.029

    Article  CAS  Google Scholar 

  4. Tagaya, M., Ikoma, T., Hanagata, N., Chakarov, D., Kasemo, B., Tanaka, J.: Reusable hydroxyapatite nanocrystal sensors for protein adsorption. Sci. Technol. Adv. Mater. 11(4) (2010). https://doi.org/10.1088/1468-6996/11/4/045002

  5. Dorozhkin, S.V.: Dental applications of calcium orthophosphates (CaPO4). J. Dent. Res 1(2), 1007 (2019)

    Google Scholar 

  6. Ezzahmouly, M., Essakhi, A., El Ouahli, A., El Byad, H., Ed-dhahraouy, M., Hakim, S., Gourri, E., ELmoutaouakkil, A., Hatim, Z.: Automatic computation of bone defective volume from tomographic images. Heliyon 8(6), e09594 (2022). https://doi.org/10.1016/j.heliyon.2022.e09594

    Article  CAS  Google Scholar 

  7. Hench, L.L.: Bioceramics: from concept to clinic. J. Am. Ceram. Soc. 74(7), 1487–1510 (1991)

    Article  CAS  Google Scholar 

  8. Elouahli, A., Zbair, M., Anfar, Z., Ahsaine, H.A., Khallok, H., Chourak, R., Hatim, Z.: Apatitic tricalcium phosphate powder: high sorption capacity of hexavalent chromium removal. Surf. Interf. 13, 139–147 (2018). https://doi.org/10.1016/j.surfin.2018.09.006

    Article  CAS  Google Scholar 

  9. Ibrahim, M., Labaki, M., Giraudon, J.M., Lamonier, J.F.: Hydroxyapatite, a multifunctional material for air, water and soil pollution control: a review. J. Hazard. Mater. 383(May 2019), 121139 (2020). https://doi.org/10.1016/j.jhazmat.2019.121139

    Article  CAS  Google Scholar 

  10. Khairnar, R.S., Mene, R.U., Munde, S.G., Mahabole, M.P.: Nano-hydroxyapatite thick film gas sensors. AIP Conf. Proc. 1415(1), 189–192 (2011)

    Article  CAS  Google Scholar 

  11. Khallok, H., Elouahli, A., Ojala, S., Keiski, R.L., Kheribech, A., Hatim, Z.: Preparation of biphasic hydroxyapatite/ β-tricalcium phosphate foam using the replication technique. Ceram. Int. 46(14), 22581–22591 (2020). https://doi.org/10.1016/j.ceramint.2020.06.019

    Article  CAS  Google Scholar 

  12. Sánchez-Paniagua López, M., Redondo-Gómez, E., López-Ruiz, B.: Electrochemical enzyme biosensors based on calcium phosphate materials for tyramine detection in food samples. Talanta 175(July), 209–216 (2017). https://doi.org/10.1016/j.talanta.2017.07.033

    Article  CAS  Google Scholar 

  13. Liguo, M., Yanrong, S., Donglai, L., W, L.: Structure and effect of hydroxyapatite support as well as application in catalyst preparation. J. Chin. Ceram. Soc. 47(12), 1808–1817 (2019)

    Google Scholar 

  14. Pang, S., An, H., Zhao, X., Wang, Y.: Influence of Ca/P ratio on the catalytic performance of hydroxyapatite for decarboxylation of itaconic acid to methacrylic acid. Chin. J. Chem. Eng. 53, 402–408 (2023). https://doi.org/10.1016/j.cjche.2022.01.012

    Article  CAS  Google Scholar 

  15. Tsuchida, T., Kubo, J., Yoshioka, T., Sakuma, S., Takeguchi, T., Ueda, W.: Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst. J. Catal. 259(2), 183–189 (2008). https://doi.org/10.1016/j.jcat.2008.08.005

    Article  CAS  Google Scholar 

  16. Bohner, M.: Resorbable biomaterials as bone graft substitutes. Mater. Today 13(1–2), 24–30 (2010). https://doi.org/10.1016/S1369-7021(10)70014-6

    Article  CAS  Google Scholar 

  17. Eggli, P.S., Moller, W., Schenk, R.K.: Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits: a comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clin. Orthop. Relat. Res.® 232, 127–138 (1988)

    CAS  Google Scholar 

  18. Bohner, M., Santoni, B.L.G., Döbelin, N.: β-tricalcium phosphate for bone substitution: synthesis and properties. Acta Biomater. 113, 23–41 (2020). https://doi.org/10.1016/j.actbio.2020.06.022

    Article  CAS  Google Scholar 

  19. LeGeros, R.Z., Lin, S., Rohanizadeh, R., Mijares, D., LeGeros, J.P.: Biphasic calcium phosphate bioceramics: preparation, properties and applications. J. Mater. Sci. Mater. Med. 14(3), 201–209 (2003)

    Article  CAS  Google Scholar 

  20. Zou, C., Cheng, K., Weng, W., Song, C., Du, P., Shen, G., Han, G.: Characterization and dissolution–reprecipitation behavior of biphasic tricalcium phosphate powders. J. Alloy. Compd. 509(24), 6852–6858 (2011)

    Article  CAS  Google Scholar 

  21. Daculsi, G., Baroth, S., LeGeros, R.: 20 years of biphasic calcium phosphate bioceramics development and applications. 45–58 (2010). https://doi.org/10.1002/9780470584354.ch5

  22. Dorozhkin, S. V.: Calcium orthophosphate (CaPO4)-based bioceramics: preparation, properties, and applications. Coatings 12(10) (2022). https://doi.org/10.3390/coatings12101380

  23. Layrolle, P., Ito, A., Tateishi, T.: Sol-gel synthesis of amorphous calcium phosphate and sintering into microporous hydroxyapatite bioceramics. J. Am. Ceram. Soc. 81(6), 1421–1428 (1998)

    Article  CAS  Google Scholar 

  24. Miramond, T., Borget, P., Baroth, S., Daculsi, G.: Comparative critical study of commercial calcium phosphate bone substitutes in terms of physic-chemical properties. Key Eng. Mater. 587, 63–68 (2014). https://doi.org/10.4028/www.scientific.net/KEM.587.63

    Article  CAS  Google Scholar 

  25. Santoni, B.L.G., Niggli, L., Dolder, S., Loeffel, O., Sblendorio, G.A., Heuberger, R., Maazouz, Y., Stähli, C., Döbelin, N., Bowen, P., et al.: Effect of minor amounts of $β$-calcium pyrophosphate and hydroxyapatite on the physico-chemical properties and osteoclastic resorption of $β$-tricalcium phosphate cylinders. Bioactive Mater. 10, 222–235 (2022)

    Article  Google Scholar 

  26. Descamps, M., Hornez, J.C., Leriche, A.: Effects of powder stoichiometry on the sintering of β-tricalcium phosphate. J. Eur. Ceram. Soc. 27(6), 2401–2406 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.09.005

    Article  CAS  Google Scholar 

  27. Ryu, H.S., Youn, H.J., Sun Hong, K., Chang, B.S., Lee, C.K., Chung, S.S.: An improvement in sintering property of β-tricalcium phosphate by addition of calcium pyrophosphate. Biomaterials 23(3), 909–914 (2002). https://doi.org/10.1016/S0142-9612(01)00201-0

    Article  CAS  Google Scholar 

  28. Sun, J.S., Huang, Y.C., Lin, F.H., Chen, L.T.: The effect of sintered dicalcium pyrophosphate on osteoclast metabolism: an ultrastructural study. J. Biomed. Mater. Res. Part A 64(4), 616–621 (2003). https://doi.org/10.1002/jbm.a.10439

    Article  CAS  Google Scholar 

  29. Abida, F.: Valorisation de l’acide orthophosphorique produit au Maroc par la préparation de poudre d’hydroxyapatite et de pièces céramiques à usage médical. PhD Thesis , University Chouaib Doukkali Morocco. (2010)

  30. El Ouahli, A., Khallok, H., Hatim, Z.: Neutralization method for tricalcium phosphate production: optimization using response surface methodology. Surf. Interf. 15(February), 100–109 (2019). https://doi.org/10.1016/j.surfin.2019.02.007

    Article  CAS  Google Scholar 

  31. Patrycja, M., Michał, P., Wojciech, M.: How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–vis spectra. J. Phys. Chem. Lett. 9(23), 6814–6817 (2018). https://doi.org/10.1021/acs.jpclett.8b02892

    Article  CAS  Google Scholar 

  32. Tauc, J., Grigorovici, R., Vancu, A.: Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi B 15, 627–637 (1966)

    Article  CAS  Google Scholar 

  33. Raynaud, S., Champion, E., Bernache-Assollant, D.: Calcium phosphate apatites with variable Ca/P atomic ratio II. Calcination and sintering. Biomaterials 23(4), 1073–1080 (2002). https://doi.org/10.1016/S0142-9612(01)00219-8

    Article  CAS  Google Scholar 

  34. Tampieri, A., Celotti, G., Szontagh, F., Landi, E.: Sintering and characterization of HA and TCP bioceramics with control of their strength and phase purity. J. Mater. Sci. Mater. Med. 8(1), 29–37 (1997). https://doi.org/10.1023/A:1018538212328

    Article  CAS  Google Scholar 

  35. Destainville, A., Champion, E., Bernache-Assollant, D., Laborde, E.: Synthesis, characterization and thermal behavior of apatitic tricalcium phosphate. Mater. Chem. Phys. 80(1), 269–277 (2003). https://doi.org/10.1016/S0254-0584(02)00466-2

    Article  CAS  Google Scholar 

  36. Ślósarczyk, A., Piekarczyk, J.: Ceramic materials on the basis of hydroxyapatite and tricalcium phosphate. Ceram. Int. 25(6), 561–565 (1999). https://doi.org/10.1016/S0272-8842(98)00019-4

    Article  Google Scholar 

  37. Bensaoud, A., Bouhaouss, A., Ferhat, M.: Electrical properties in compressed poorly crystalline apatite. J. Solid State Electrochem. 5(5), 362–365 (2001). https://doi.org/10.1007/s100080000154

    Article  CAS  Google Scholar 

  38. Fanovich, M.A., Castro, M.S., Lopez, J.M.P.: Analysis of the microstructural evolution in hydroxyapatite ceramics by electrical characterisation. Ceram. Int. 25(6), 517–522 (1999)

    Article  CAS  Google Scholar 

  39. Mahabole, M.P., Aiyer, R.C., Ramakrishna, C.V., Sreedhar, B., Khairnar, R.S.: Synthesis, characterization and gas sensing property of hydroxyapatite ceramic. Bull. Mater. Sci. 28(6), 535–545 (2005). https://doi.org/10.1007/BF02706339

    Article  CAS  Google Scholar 

  40. Valdes, J.J.P., Rodriguez, A.V., Carrio, J.G.: Dielectric properties and structure of hydroxyapatite ceramics sintered by different conditions. 10(9) (1995).

  41. Tanaka, Y., Takata, S., Shimoe, K., Nakamura, M., Nagai, A., Toyama, T., Yamashita, K.: Conduction properties of non-stoichiometric hydroxyapatite whiskers for biomedical use. J. Ceram. Soc. Jpn. 116(1355).  https://doi.org/10.2109/jcersj2.116.815

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Anas Hatim, Fatima Abida, Abdelaziz Elouahli, Abdelkrim Abourriche, Abdelaziz Benhammou, Youssef El Hafiane, Bouchaib Gourich, Zineb Hatim, Agnès Smith, and Younes Abouliatim. The first draft of the manuscript was written by Anas Hatim and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Younes Abouliatim.

Ethics declarations

Ethical approval

The authors approve the journal’s ethics policy.

Consent to participate

The authors consent to the participation of this work.

Consent for publication

The authors consent to publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatim, A., Abida, F., Elouahli, A. et al. Physico-chemical characterization of calcium-apatite prepared with a calcium/phosphate ratio around the stoichiometry. J Aust Ceram Soc 60, 221–230 (2024). https://doi.org/10.1007/s41779-023-00935-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-023-00935-2

Keywords

Navigation