Skip to main content
Log in

Machine learning refractive index model and nitrogen implantation studies of zinc arsenic tellurite glasses

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The first time machine learning-based refractive index model proposed based on the density parameter using a glass dataset of 2000 oxide glass samples to predict refractive index of the xZnF2-(20-x)ZnO-40As2O340TeO2. The study uses various machine learning techniques such as gradient decent, artificial neural network, and random forest regression to predict the refractive index and density of glasses. The random forest regression (RFR) model is found to be the most effective with a maximum R2 value of 0.950 in the case of refractive index prediction and 0.926 for density prediction. The study also investigates the effects of nitrogen ion implantation on the glasses, finding that increased nitrogen dose causes a reduction in density and an increase in refractive index. The glass transition temperature decreases with increased nitrogen dose, possibly due to implantation defects. However, the glass stability increases with increasing implantation dose for low and high fluorine content glasses, likely due to the development of band gap defect levels and an increase in carrier concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data availability on request and preview of dataset is available on website https://www.nridg.com/.

References

  1. Borsa, F., Torgeson, D.R., Martin, S., Patel, H.: Phys. Rev. B 46, 795 (1992). https://doi.org/10.1103/PhysRevB.46.795

  2. Dimitriev, Y., Wright, A.C., Mihailova, V., Gattef, E., Guy, C.A.: An X-ray diffraction study of bismuthate glasses. J Mater Sci Lett 14, 347–350 (1995). https://doi.org/10.1007/BF00592146

    Article  CAS  Google Scholar 

  3. Cheng, Y., Xiao, H.: Wenming Guo, Weiming Guo, Structure and crystallization kinetics of Bi2O3–B2O3 glasses. Thermochim. Acta 444, 173 (2006)

    Article  CAS  Google Scholar 

  4. Zheng, H., Mackenzie, J.D.: Phys. Rev. B 38, 7166 (1988). https://doi.org/10.1103/PhysRevB.38.7166

  5. Koubisy, M.S.I., Zatsepin, A.F., Yu Biryukov, D., Zatsepin, D.A., Shtang, T.V.: J. Non-Cryst. Solids 563, 120818 (2021). https://doi.org/10.1016/j.jnoncrysol.2021.120818

  6. Svecova, B., Nekvindova, P., Mackova, A., Malinsky, P., Kolitsch, A., Machovic, V., Stara, S., Mika, M., Spirkova, J.: J. Non-Cryst. Solids 356, 2468 (2010). https://doi.org/10.1016/j.jnoncrysol.2010.03.031

  7. Bogomolova, L.D., Yu Tepliakov, G., Caccavale, F.: J. Non-Cryst. Solids 194, 291 (1996). https://doi.org/10.1016/0022-3093(95)00496-3

  8. Li, H., Tomozawa, M., Lou, V.K.: J. Non-Cryst. Solids 168, 56 (1994). https://doi.org/10.1016/0022-3093(94)90120

    Article  CAS  Google Scholar 

  9. Jia, H., Muntele, C.I., Huang, L., Li, X., Li, G., Zhang, T., He, W., Liaw, P.K.: A study on the surface structures and properties of Ni-free Zr-based bulk glasses after Ar and Ca ion implantation. Intermetallics 41, 35 (2013). https://doi.org/10.1016/j.intermet.2013.04.010

    Article  CAS  Google Scholar 

  10. Trieloff, M., Falter, M., Jessberger, E.K.: The distribution of mantle and atmospheric argon in oceanic basalt glasses. Geochimica et Cosmochimica Acta 67, 1237–1253 (2003). https://doi.org/10.1016/S0016-7037(02)01286-3

    Article  CAS  Google Scholar 

  11. Husinsky, W., Ajami, A., Nekvindova, P., Svecova, B., Pesicka, J., Janecek, M.: Z-scan study of nonlinear absorption of gold nano-particles prepared by ion implantation in various types of silicate glasses. Opt. Commun. 285, 2729–2733 (2012). https://doi.org/10.1016/j.optcom.2012.01.044

    Article  CAS  Google Scholar 

  12. Tóth, Z.-R., Feraru, A., Debreczeni, D., Todea, M., Popescu, R.A., Gyulavári, T., Sesarman, A., Negrea, G., Vodnar, D.C., Hernadi, K., Pap, Z., Baia, L., Magyari, K.: Influence of different silver species on the structure of bioactive silicate glasses. J. Non-Cryst. Solids 583, 121498 (2022). https://doi.org/10.1016/j.jnoncrysol.2022.121498

    Article  CAS  Google Scholar 

  13. Liu, C.-X., Zhang, J., Lin, S.-B., Yue, Q.-Y., Zheng, R.-L., Guo, J.-H.: Two-dimensional waveguides in magneto-optical glasses fabricated by carbon ion implantation and femtosecond laser ablation. Opt. Commun. 495, 127109 (2021). https://doi.org/10.1016/j.optcom.2021.127109

    Article  CAS  Google Scholar 

  14. Ahmmad, S.K., Magudapathy, P., Edukondalu, A., et al.: Nitrogen implantation of zinc arsenic tellurite glasses. J. Aust. Ceram. Soc. 57, 185–194 (2021). https://doi.org/10.1007/s41779-020-00515-8

    Article  CAS  Google Scholar 

  15. Hosono, H.: Structural defects and the state of implanted ions in silica glasses implanted with silicon and/or nitrogen ions. Nucl. Instrum. Methods Phys. Res., Sect. B 65, 375–379 (1992). https://doi.org/10.1016/0168-583X(92)95069-4

    Article  Google Scholar 

  16. Chengyu, W.: TaoYing, WangShuchu, Effect of nitrogen ion-implantation on silicate glasses. J. Non-Cryst. Solids 52, 589–603 (1982). https://doi.org/10.1016/0022-3093(82)90336-2

    Article  Google Scholar 

  17. Pei-HungKuo, S.-Y., Duh, J.-G.: Bio-compatible zirconium-based thin film metallic glasses with nitrogen reinforced by micro-alloying technique. Materials 272, 124965 (2021)

    Google Scholar 

  18. Bogomolova, L.D., Jachkin, V.A., Prushinsky, S.A., Stefanovsky, S.V., Yu Teplyakov, G., Caccavale, F.: EPR study of paramagnetic species in oxide glasses implanted with nitrogen. J. Non-Cryst. Solids 220, 109–126 (1997). https://doi.org/10.1016/S0022-3093(97)00259-7

    Article  CAS  Google Scholar 

  19. Alzahrani, J.S., Eke, C., Alrowaili, Z.A., Boukhris, I., Mutuwong, C., Bourham, M.A., Al-Buriahi, M.S.: A theoretical study on the radiation shielding performance of borate and tellurite glasses. Solid State Sci. 129, 106902 (2022). https://doi.org/10.1016/j.solidstatesciences.2022.106902

    Article  CAS  Google Scholar 

  20. Çağlar, İ, Cengiz, G.B., Bilir, G.: Gamma radiation shielding properties of some binary tellurite glasses. J. Non-Cryst. Solids 574, 121139 (2021). https://doi.org/10.1016/j.jnoncrysol.2021.121139

    Article  CAS  Google Scholar 

  21. Tagiara, N.S., Palles, D., Simandiras, E.D., Psycharis, V., Kyritsis, A., Kamitsos, E.I.: J. Non. Solids 457, 116–125 (2017). https://doi.org/10.1016/j.jnoncrysol.2016.11.033

    Article  CAS  Google Scholar 

  22. Gaikwad, D.K., Sayyed, M.I., Obaid, S.S., Issa, S.A.M., Pawar, P.P.: J. Alloys Compd. 765, 451–458 (2018). https://doi.org/10.1016/j.jallcom.2018.06.240

    Article  CAS  Google Scholar 

  23. Desirena, H., Schulzgen, A., Sabet, S., Ramos-Ortiz, G., de la Rosa, E., Peyghambarian, N.: Opt. Mater. (2008). https://doi.org/10.1016/j.optmat.2008.08.005

    Article  Google Scholar 

  24. Sharaf El-Deen, L.M., Al Salhi, M.S., Elkholy, M.M.: J. Alloy. Comp. 465, 333–339 (2008). https://doi.org/10.1016/j.jallcom.2007.10.104

    Article  CAS  Google Scholar 

  25. Lakshminarayana, G., Yang, H., Qiu, J.: J. Alloy. Comp. 475, 569–576 (2009). https://doi.org/10.1016/j.jssc.2008.11.020

    Article  CAS  Google Scholar 

  26. Yousef, E., Hotzel, M., Russel, C., Non-Cryst, J.: Solids 353, 333–338 (2007). https://doi.org/10.1016/j.jnoncrysol.2006.12.009

    Article  CAS  Google Scholar 

  27. Edukondalu, A., Rahman, S., Ahmmad, S.K., Gupta, A., Siva-Kumar, K.: J. Taibah Univ. Sci. 10, 363–368 (2016). https://doi.org/10.1016/j.jtusci.2015.03.012

    Article  Google Scholar 

  28. Berneschi, S., Brenci, M., Nunzi Conti, G., Pelli, S., Righini, G.C., Bettinelli, M., Speghini, A., Bányász, I., Fried, M., Khanh, N.Q., Pászti, F., Watterich, A., Leto, A., Pezzotti, G., Porporati, A.A.: Adv. SciTechnol. V55, 68–73 (2008). https://doi.org/10.4028/www.scientific.net/AST.55.68

  29. Sun, K.-H.: calculation of refractive index of a glass as a direct function of its composition. J. Am. Ceram. Soc. 30, 282–287 (1974). https://doi.org/10.1111/j.1151-2916.1947.tb19655.x

    Article  Google Scholar 

  30. Huang, Y.Y., Sarkar, A.: J. Non-Cryst. Solids 27, 29–37 (1978). https://doi.org/10.1016/0022-3093(78)90033-9

    Article  CAS  Google Scholar 

  31. Ritland, H.N.: Relation between refractive index and density of a glass at constant temperature. J. Am. Ceram. Soc. 38, 86–88 (1955). https://doi.org/10.1111/j.1151-2916.1955.tb14581.x

    Article  CAS  Google Scholar 

  32. Wen, Z., Curran, J.M., Harbison, S.-A., Wevers, G.: Bayesian mixture modelling for glass refractive index measurement. Sci. Justice 61, 345–355 (2021). https://doi.org/10.1016/j.scijus.2021.05.002

    Article  Google Scholar 

  33. Deng, B.: J. Non-Cryst. Solids 529, 119768 (2020). https://doi.org/10.1016/j.jnoncrysol.2019.119768

    Article  CAS  Google Scholar 

  34. Zhang, Y., Li, A., Deng, B., Hughes, K.K.: Npj Mater. Degrad. 4, 1–11 (2020). https://doi.org/10.1038/s41529-020-0118-x

    Article  CAS  Google Scholar 

  35. Ahmmad, S.K., Jabeen, N., Uddin Ahmed, S.T., Ahmed, S.A., Rahman, S.: Ceram. Int. 47, 7946–7956 (2021). https://doi.org/10.1016/j.ceramint.2020.11.144

    Article  CAS  Google Scholar 

  36. Shi, Y., Tandia, A., Deng, B., Elliott, S.R., Bauchy, M.: Acta Mater. 195, 252–262 (2020). https://doi.org/10.1016/j.actamat.2020.05.047

    Article  CAS  Google Scholar 

  37. Cassar, D.R., Santos, G.G., Zanotto, E.D.: Designing optical glasses by machine learning coupled with a genetic algorithm. Ceram. Int. 47, 10555–10564 (2021). https://doi.org/10.1016/j.ceramint.2020.12.167

    Article  CAS  Google Scholar 

  38. Ahmmad, S.K., Jabeen, N., Ahmed, S.T.U., Hussainy, S.F., Ahmed, B.: Ceram. Int. 47, 30172–30177 (2021). https://doi.org/10.1016/j.ceramint.2021.07.196

    Article  CAS  Google Scholar 

  39. Ahmed, S.A., Rajiya, S., Samee, M.A., et al.: Density of bismuth boro zinc glasses using machine learning techniques. J Inorg Organomet Polym 32, 941–953 (2022). https://doi.org/10.1007/s10904-021-02183-y

    Article  CAS  Google Scholar 

  40. Ahmmad, S.K., Alsaif, N.A.M., Shams, M.S., El Refaey, A.M., Elsad, R.A., Rammah, Y.S., Sadeq, M.S.: Opt. Mater. 134, 113145 (2022). https://doi.org/10.1016/j.optmat.2022.113145

    Article  CAS  Google Scholar 

  41. Alsaif, N., Ahmmad, S.K., Khattari, Z.Y., Abdelghany, A.M., El-Refaey, A.M., Rammah, Y.S., Shams, M.S., Elsad, R.A.: Opt. Mater. 137, 113599 (2023). https://doi.org/10.1016/j.optmat.2023.113599

  42. McCloy, J.S.: Methods for prediction of refractive index in glasses for the infrared, Proc. SPIE 8016, Window and Dome Technologies and Materials XII, 80160G (2011). https://doi.org/10.1117/12.882536

  43. Bhattacharya, P.K., Sarma, N., Wagh, A.G.: Effect of ion implantation on the refractive index of glass. Pramana – J. Phys. 6, 102–108 (1976). https://doi.org/10.1007/BF02848640

    Article  CAS  Google Scholar 

  44. Weeks, R.A., Hosono, H., Zuhr, R., et al.: Correlation between optical absorption and refractive index of silica and silicate glasses implanted with copper. MRS Online Proc. Libr. 152, 115–120 (1989). https://doi.org/10.1557/PROC-152-115

    Article  CAS  Google Scholar 

  45. Shen, X.-l, Wang, Y., Zhu, Q.-f, et al.: Optical waveguides in fluoride lead silicate glasses fabricated by carbon ion implantation. Optoelectron. Lett. 14, 104–108 (2018). https://doi.org/10.1007/s11801-018-7215-x

    Article  Google Scholar 

  46. Ahmmad, S.K., Taqiullah, S.M., Same, M.A., Balakrishnan, S., Rahman, S.: Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 56(6), 267–270 (2015). https://doi.org/10.13036/17533562.56.5.267

    Article  Google Scholar 

  47. Effendy, N., Aziz, S.H.A., Kamari, H.M., Zaid, M.H.M., Budak, C.E.A., Shabdin, M.K., Khiri, M.Z.A., Wahab, S.A.A.: J. Market. Res. 9, 14082–14092 (2020). https://doi.org/10.1016/j.jmrt.2020.09.107

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the author (Shaik Kareem Ahmmad) wishes to thank Prof. M.G. Krishna, University of Hyderabad for providing DSC facility and IGCAR Kalpakkam for providing implantation facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaik Kareem Ahmmad.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmmad, S.K., Nataraju, G., Siddiqui, N. et al. Machine learning refractive index model and nitrogen implantation studies of zinc arsenic tellurite glasses. J Aust Ceram Soc 59, 1443–1452 (2023). https://doi.org/10.1007/s41779-023-00928-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-023-00928-1

Keywords

Navigation