Skip to main content

Advertisement

Log in

Behavioural responses of bone-like cells on dense and porous dicalcium phosphate dihydrate-coated β-tricalcium phosphate granules

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

The present study investigated the behavioural response of bone-like cells towards dense and porous dicalcium phosphate dihydrate (DCPD)-coated β-tricalcium phosphate (β-TCP) granules. The surfaces of the dense and porous β-TCP granules were coated with a layer of DCPD through the dissolution-precipitation process by exposing them to an acidic calcium phosphate solution for 30 min at 25 °C. Subsequently, the specimens were characterised with X-ray diffraction (XRD), scanning electron microscope (SEM), dissolution and pH tests, and evaluation of initial cell attachment. The results demonstrated that the porous β-TCP granule surfaces coated with a DCPD layer contributed to the high concentration of calcium ions released and decreased pH values. Furthermore, the DCPD-coated porous β-TCP granules produced good initial cell attachment and enhanced cell viability for up to three days. The results would provide new insights to bioceramic researchers regarding the impacts of pore presence in accelerating DCPD-coated β-TCP granule cell responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dong, Y., Chen, A., Yang, T., Gao, S., Liu, S., Jiang, H., et al.: Ultra-lightweight ceramic scaffolds with simultaneous improvement of pore interconnectivity and mechanical strength. J. Mater. Sci. Technol. 137, 247–258 (2023). https://doi.org/10.1016/j.jmst.2022.07.052

    Article  CAS  Google Scholar 

  2. Su, J., Hua, S., Chen, A., Chen, P., Yang, L., Yuan, X., Qi, D., Zhu, H., Yan, C., Xiao, J., Shi, Y.: Three-dimensional printing of gyroid-structured composite bioceramic scaffolds with tuneable degradability. Biomater. Advances. 133, 112595 (2022). https://doi.org/10.1016/J.MSEC.2021.112595

    Article  Google Scholar 

  3. Mohammed Mohammed, A.H., Shariff, K.A., Wahjuningrum, D.A., et al.: A comprehensive review of the effects of porosity and macro- and micropore formations in porous β-TCP scaffolds on cell responses. J. Aust. Ceram. Soc. (2023). https://doi.org/10.1007/s41779-023-00880

  4. Kang, H.J., Makkar, P., Padalhin, A.R., Lee, G.H., Im, S.B., Lee, B.T.: Comparative study on biodegradation and biocompatibility of multichannel calcium phosphate-based bone substitutes. Mater. Sci. Eng. C Mater. Biol. Appl. 110, 110694 (2020). https://doi.org/10.1016/j.msec.2020.110694

    Article  CAS  Google Scholar 

  5. Bouler, J.M., Pilet, P., Gauthier, O., Verron, E.: Biphasic calcium phosphate ceramics for bone reconstruction: a review of biological response. Acta Biomater. 53, 1–12 (2017). https://doi.org/10.1016/j.actbio.2017.01.076

    Article  CAS  Google Scholar 

  6. Ghayor, C., Bhattacharya, I., Weber, F.E.: The optimal microarchitecture of 3D-printed β-TCP bone substitutes for vertical bone augmentation differs from that for osteoconduction. Mater. Des. (2021). https://doi.org/10.1016/J.MATDES.2021.109650

  7. Ho Van, H., Tripathi, G., Gwon, J., Lee, S., Lee, B.: Novel TOCNF reinforced injectable alginate / β-tricalcium phosphate microspheres for bone regeneration. Mater. Des. 194, 0264–1275 (2020). https://doi.org/10.1016/j.matdes.2020.108892

    Article  CAS  Google Scholar 

  8. Shariff, K.A., Tsuru, K., Ishikawa, K.: Fabrication of dicalcium phosphate dihydrate-coated β-TCP granules and evaluation of their osteoconductivity using experimental rats. Mater. Sci. Eng. C Mater. Biol. Appl. 75, 1411–1419 (2017)

    Article  CAS  Google Scholar 

  9. Turan, Y., Kalkandelen, C., Palaci, Y., et al.: Synthesis and cytotoxicity analysis of porous β-TCP/starch bioceramics. J. Aust. Ceram. Soc. 58, 487–494 (2022). https://doi.org/10.1007/s41779-022-00702-9

    Article  CAS  Google Scholar 

  10. Miyagi, S., Tensho, K., Wakitani, S., Takagi, M.: Construction of an osteochondral-like tissue graft combining β-tricalcium phosphate block and scaffold-free mesenchymal stem cell sheet. J. Orthop. Sci. 18(3), 471–477 (2013). https://doi.org/10.1007/s00776-013-0368-3

    Article  CAS  Google Scholar 

  11. Dong, Y., Chen, X., Hong, Y.: Tissue-engineered bone formation in vivo for artificial laminae of the vertebral arch using β-tricalcium phosphate bioceramics seeded with mesenchymal stem cells. Spine. 38(21), E1300–E1306 (2013). https://doi.org/10.1097/BRS.0b013e3182a3cbb3

    Article  Google Scholar 

  12. Stipniece, L., Skadins, I., Mosina, M.: Silver- and/or titanium-doped β-tricalcium phosphate bioceramic with antibacterial activity against Staphylococcus aureus. Ceram. Inter. 48(7), 10195–10201 (2022). https://doi.org/10.1016/j.ceramint.2021.12.232

    Article  CAS  Google Scholar 

  13. Su, C.C., Kao, C.T., Hung, C.J., Chen, Y.J., Huang, T.H., Shie, M.Y.: Regulation of physicochemical properties, osteogenesis activity, and fibroblast growth factor-2 release ability of β-tricalcium phosphate for bone cement by calcium silicate. Mater. Sci. Eng. C Mater. Biol. Appl. 37, 156–163 (2014). https://doi.org/10.1016/j.msec.2014.01.010

    Article  CAS  Google Scholar 

  14. Shariff, K.A., Abu Bakar, M.H., Cahyanto, A.: behavior of osteoclast cells response on dicalcium phosphate dihydrate layer-coated β-tricalcium phosphate granular. Mater. Sci. Forum. 1010, 549–554 (2020)

    Article  Google Scholar 

  15. Indra, A., Hadi, F., Mulyadi, I.H., Affi, J., Gunawarman.: A novel fabrication procedure for producing high strength hydroxyapatite ceramic scaffolds with high porosity. Ceram. Inter. 47(19), 26991–27001 (2021). https://doi.org/10.1016/j.ceramint.2021.06.112

    Article  CAS  Google Scholar 

  16. De Rooij, J.F., Heughebaert, J.C., Nancollas, G.H.: A pH study of calcium phosphate seeded precipitation. J. Colloid Interface Sci. 100(2), 350–358 (1984). https://doi.org/10.1016/0021-9797(84)90440-5

    Article  Google Scholar 

  17. Shariff, K.A., Tsuru, K., Ishikawa, K.: Regulation of DCPD formation on β-TCP granular surface by exposing different concentration of acidic calcium phosphate solution. Key Eng. Mater. 696, 27–31 (2016). https://doi.org/10.4028/www.scientific.net/KEM.696.27

    Article  Google Scholar 

  18. Mohammad Zaki, H.A., Shariff, K.A., Abu Bakar, M.H., Azmi, M.N.: Effect of different granular size on the properties of porous β-tricalcium phosphate foam granular cements. Key Eng. Mater. 829, 23–27 (2020). https://doi.org/10.4028/www.scientific.net/KEM.829.23

    Article  Google Scholar 

  19. Fukuda, N., Tsuru, K., Mori, Y., Ishikawa, K.: Fabrication of self-setting β-tricalcium phosphate granular cement. J. Biomed. Mater. Res. B Appl. Biomater. 106(2), 800–807 (2018). https://doi.org/10.1002/jbm.b.33891

    Article  CAS  Google Scholar 

  20. Wu, Y., Tahmasebi, P., Lin, C., Zahid, M.A., Dong, C., Golab, A.N., Ren, L.: A comprehensive study on geometric, topological and fractal characterizations of pore systems in low-permeability reservoirs based on SEM, MICP, NMR, and X-ray CT experiments. Mar. Pet. Geol. 103, 12–28 (2019). https://doi.org/10.1016/j.marpetgeo.2019.02.003

    Article  Google Scholar 

  21. Hunt, A.M.W.: Fabric description of archaeological ceramics, The Oxford Handbook of Archaeological Ceramic Analysis. The Oxford Handbook of Archaeological Ceramic Analysis. 200-2016, (2017). https://doi.org/10.1093/oxfordhb/9780199681532.001.0001

  22. Fortoul, S., Giomar, C.: Maya ceramic technology and ceramic socio-economy: a multifaceted analysis of late postclassic ceramic production and distribution in Northern Yucatán, vol. 2899, p. 10.30861/9781407316406, México, BAR International Series, (2018)

  23. Wei, L.J., Shariff, K.A., Momin, S.A., et al.: Self-setting β-tricalcium phosphate granular cement at physiological body condition: effect of citric acid concentration as an inhibitor. J. Aust. Ceram. Soc. 57, 687–696 (2021). https://doi.org/10.1007/s41779-021-00575-4

    Article  CAS  Google Scholar 

  24. Fukuda, N., Tsuru, K., Mori, Y., Ishikawa, K.: Fabrication of self-setting b-tricalcium phosphate granular cement, Journal of Biomedical Materials Research Part B: Applied. Biomaterials. 106(2), 800–807 (2017). https://doi.org/10.1002/jbm.b.33891

    Article  CAS  Google Scholar 

  25. Fukuda, N., Tsuru, K., Mori, Y., Ishikawa, K.: Effect of citric acid on setting reaction and tissue response to β-TCP granular cement. Biomed. Mater. 12(1), 015027 (2017). https://doi.org/10.1088/1748-605X/aa5aea

    Article  Google Scholar 

  26. Eddy., Tsuchiya, A., Tsuru, K., and Ishikawa, K. Fabrication of self-setting β-TCP granular cement using β-TCP granules and sodium hydrogen sulfate solution, J. Biomater. Appl., 33(5), 630-636, (2018). https://doi.org/10.1177/0885328218808015

  27. Qi, D., Su, J., Li, S., Zhu, H., Cheng, L., Hua, S., et al.: 3D printed magnesium-doped β-TCP gyroid scaffold with osteogenesis, angiogenesis, immunomodulation properties and bone regeneration capability in vivo. Biomater Advances. 212759, (2022). https://doi.org/10.1016/j.bioadv.2022.212759

  28. Zaidi, N.Z., Ridzwan, N.R., Mohammed, A.H.M., Shariff, K.A.: Effect of soaking time on the compositional and morphological changes of DCPD-coated β-TCP bioceramic. Key Eng. Mater. 908, 135–140 (2022). https://doi.org/10.4028/p-i0p5c7

    Article  Google Scholar 

  29. Izumiya, M., Haniu, M., Ueda, K., Ishida, H., Ma, C., Ideta, H., Sobajima, A., Ueshiba, K., Uemura, T., Saito, N., Haniu, H.: Evaluation of MC3T3-E1 cell osteogenesis in different cell culture media. Int J Mol Sci. 22(14), 7752 (2021). https://doi.org/10.3390/ijms22147752 PMID: 34299372; PMCID: PMC8304275

    Article  CAS  Google Scholar 

  30. Owen, R., Reily, G.C.: In vitro models of bone remodelling and associated disorders. Front. Bioeng. Biotechnol. 6, 134 (2018). https://doi.org/10.3389/fbioe.2018.00134

    Article  Google Scholar 

  31. Mohammed Mohammed, A.H., Shariff, K.A., Bakar, M.H.A., et al.: A review on the behavioral responses of osteoclast and osteoblast cells on the near-surface of the bioceramic coating: roles of ions released, solubility, and pH. J. Aust. Ceram Soc. 58, 1715–1727 (2022). https://doi.org/10.1007/s41779-022-00806-2

    Article  CAS  Google Scholar 

  32. Arnett, T.R.: Extracellular pH regulates bone cell function. J. Nutr. 138(2), 415S–418S (2008). https://doi.org/10.1093/jn/138.2.415S

    Article  CAS  Google Scholar 

  33. Ghanaati, S., Barbeak, M., Orth, C., Willershausen, I., Thimm, B.W., Hoffmann, C., et al.: Influence of β-tricalcium phosphate granule size and morphology on tissue reaction in vivo. Acta Biomater. 6(12), 4476–4487 (2010). https://doi.org/10.1016/j.actbio.2010.07.006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The corresponding author would like to thank the Malaysian Ministry of Higher Education for funding the study via Fundamental Research Grant Scheme (Project Code: FRGS/1/2020/TK0/USM/03/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khairul Anuar Shariff.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamad Zaidi, N.Z., Mohammed, A.H.M., Sujon, M.K. et al. Behavioural responses of bone-like cells on dense and porous dicalcium phosphate dihydrate-coated β-tricalcium phosphate granules. J Aust Ceram Soc 59, 1423–1431 (2023). https://doi.org/10.1007/s41779-023-00925-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-023-00925-4

Keywords

Navigation