Skip to main content
Log in

Investigation of photocatalytic activity of TiO2 nanoparticles synthesized by sol–gel technique

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Anatase phase TiO2 nanoparticles were synthesized by sol–gel method using titanium(IV) butoxide as a starting material. The pH of solution was maintained by adding HNO3 and NaOH. The obtained powder was heat-treated at 350 °C for 2 h. The XRD study shows that the crystalline size and crystallinity of samples increase with pH of solution. Raman spectra confirm the dominance of anatase phase of TiO2. Morphology study of samples was done by scanning electron microscope (SEM). The size of prepared samples was calculated by XRD and confirmed by TEM analysis. The energy bandgap was calculated by optical absorption spectra and it was found to decrease by increasing pH of the solution. The photodegradation activity of Indigo Carmine (IC) dye under visible light irradiation was carried out by synthesized TiO2 nanoparticles. The removal of Indigo Carmine dye and degree of mineralization after photodegradation were studied using HPLC and TOC analysis respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Castro-Beltrán, A., Luque, P.A., Garrafa-Gálvez, H.E., et al.: Titanium butoxide molar ratio effect in the TiO2 nanoparticles size and methylene blue degradation. Optik (Stuttg) 157, 890–894 (2018). https://doi.org/10.1016/j.ijleo.2017.11.185

    Article  CAS  Google Scholar 

  2. Munishwar, S.R., Pawar, P.P., Janbandhu, S.Y., Gedam, R.S.: Highly stable CdS quantum dots embedded in glasses and its application for inhibition of bacterial colonies. Opt Mater (Amst) 99, 109590 (2020). https://doi.org/10.1016/j.optmat.2019.109590

    Article  CAS  Google Scholar 

  3. Nidheesh, P.V., Gandhimathi, R., Ramesh, S.T.: Degradation of dyes from aqueous solution by Fenton processes: a review. Environ Sci Pollut Res 20, 2099–2132 (2013). https://doi.org/10.1007/s11356-012-1385-z

    Article  CAS  Google Scholar 

  4. Gaya, U.I., Abdullah, A.H.: Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C Photochem Rev 9, 1–12 (2008). https://doi.org/10.1016/j.jphotochemrev.2007.12.003

    Article  CAS  Google Scholar 

  5. Sorbiun, M., Shayegan Mehr, E., Ramazani, A., Taghavi Fardood, S.: Green synthesis of zinc oxide and copper oxide nanoparticles using aqueous extract of oak fruit hull (Jaft) and comparing their photocatalytic degradation of Basic Violet 3. Int J Environ Res 12, 29–37 (2018). https://doi.org/10.1007/s41742-018-0064-4

    Article  CAS  Google Scholar 

  6. Munishwar, S.R., Pawar, P.P., Janbandhu, S.Y., Gedam, R.S.: Growth of CdSSe quantum dots in borosilicate glass by controlled heat treatment for band gap engineering. Opt Mater (Amst) 86, 424–432 (2018). https://doi.org/10.1016/j.optmat.2018.10.040

    Article  CAS  Google Scholar 

  7. Buraso, W., Lachom, V., Siriya, P., Laokul, P.: Synthesis of TiO2 nanoparticles via a simple precipitation method and photocatalytic performance. Mater. Res. Express. 5, 1–10 (2018). https://doi.org/10.1088/2053-1591/aadbf0

  8. Dubey, R.S.: Temperature-dependent phase transformation of TiO2 nanoparticles synthesized by sol-gel method. Mater Lett 215, 312–317 (2018). https://doi.org/10.1016/j.matlet.2017.12.120

    Article  CAS  Google Scholar 

  9. Sanitnon, P., Chiarakorn, S., Chawengkijwanich, C., et al.: Synergistic effects of zirconium and silver co-dopants in TiO2 nanoparticles for photocatalytic degradation of an organic dye and antibacterial activity. J Aust Ceram Soc 56, 579–590 (2020). https://doi.org/10.1007/s41779-019-00368-w

    Article  CAS  Google Scholar 

  10. Valencia, S., Marín, J.M., Restrepo, G.: Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and a hydrothermal treatment. Open Mater Sci J 4, 9–14 (2010). https://doi.org/10.2174/1874088X01004020009

    Article  CAS  Google Scholar 

  11. Hou, J., Yang, X., Lv, X., et al.: Controlled synthesis of TiO2 mesoporous microspheres via chemical vapor deposition. J Alloys Compd 511, 202–208 (2012). https://doi.org/10.1016/j.jallcom.2011.09.032

    Article  CAS  Google Scholar 

  12. Gayathri, S., Kottaisamy, M., Ramakrishnan, V.:Facile microwave-assisted synthesis of titanium dioxide decorated graphene nanocomposite for photodegradation of organic dyes. AIP Adv. 5, 127219 (2015). https://doi.org/10.1063/1.4938544

  13. Guimarães, J.L., Abbate, M., Betim, S.B., Alves, M.C.M.: Preparation and characterization of TiO2 and V2O5 nanoparticles produced by ball-milling. J Alloys Compd 352, 16–20 (2003). https://doi.org/10.1016/S0925-8388(02)01112-X

    Article  Google Scholar 

  14. Haque, F.Z., Nandanwar, R., Singh, P.: Evaluating photodegradation properties of anatase and rutile TiO2 nanoparticles for organic compounds. Optik (Stuttg) 128, 191–200 (2017). https://doi.org/10.1016/j.ijleo.2016.10.025

    Article  CAS  Google Scholar 

  15. Tho, N.T., Thi, C.M., Van Hieu, L., Van Viet, P.: Visible-light-driven photocatalysis for methylene blue degradation and hydrogen evolution reaction: a case of black TiO2 nanotube arrays. J Aust Ceram Soc 56, 849–857 (2020). https://doi.org/10.1007/s41779-019-00405-8

    Article  CAS  Google Scholar 

  16. Thapa, R., Maiti, S., Rana, T.H., et al.: Anatase TiO 2 nanoparticles synthesis via simple hydrothermal route: degradation of Orange II, Methyl Orange and Rhodamine B. J Mol Catal A Chem 363–364, 223–229 (2012). https://doi.org/10.1016/j.molcata.2012.06.013

    Article  CAS  Google Scholar 

  17. Sathiyan, K., Bar-Ziv, R., Mendelson, O., Zidki, T.: Controllable synthesis of TiO2 nanoparticles and their photocatalytic activity in dye degradation. Mater Res Bull 126, 110842 (2020). https://doi.org/10.1016/j.materresbull.2020.110842

    Article  CAS  Google Scholar 

  18. Ranjbar, P.Z., Ayati, B., Ganjidoust, H.: Kinetic study on photocatalytic degradation of Acid Orange 52 in a baffled reactor using TiO 2 nanoparticles. J Environ Sci (China) 79, 213–224 (2019). https://doi.org/10.1016/j.jes.2018.06.012

    Article  Google Scholar 

  19. Tayeb, A.M., Hussein, D.S.: Synthesis of TiO2 nanoparticles and their photocatalytic activity for Methylene Blue. Am J Nanomater 3, 57–6 (2015). https://doi.org/10.12691/ajn-3-2-2

    Article  CAS  Google Scholar 

  20. Subha, P.P., Jayaraj, M.K.: Solar photocatalytic degradation of methyl orange dye using TiO2 nanoparticles synthesised by sol–gel method in neutral medium. J Exp Nanosci 10, 1106–1115 (2015). https://doi.org/10.1080/17458080.2014.969338

    Article  CAS  Google Scholar 

  21. Sood, S., Kumar, S., Umar, A., et al.: TiO2 quantum dots for the photocatalytic degradation of indigo carmine dye. J Alloys Compd 650, 193–198 (2015). https://doi.org/10.1016/j.jallcom.2015.07.164

    Article  CAS  Google Scholar 

  22. Gautam, A., Kshirsagar, A., Biswas, R., et al.: Photodegradation of organic dyes based on anatase and rutile TiO2 nanoparticles. RSC Adv 6, 2746–2759 (2016). https://doi.org/10.1039/c5ra20861k

    Article  CAS  Google Scholar 

  23. Vinu, R., Akki, S.U., Madras, G.: Investigation of dye functional group on the photocatalytic degradation of dyes by nano-TiO2. J Hazard Mater 176, 765–773 (2010). https://doi.org/10.1016/j.jhazmat.2009.11.101

    Article  CAS  Google Scholar 

  24. Neto, J.S.G., Satyro, S., Saggioro, E.M., Dezotti, M.: Investigation of mechanism and kinetics in the TiO2 photocatalytic degradation of Indigo Carmine dye using radical scavengers. Int J Environ Sci Technol 18, 163–172 (2021). https://doi.org/10.1007/s13762-020-02842-6

    Article  CAS  Google Scholar 

  25. Karami, A.: Synthesis of TiO2 nano powder by the sol-gel method and its use as a photocatalyst. J Iran Chem Soc 7, 154–160 (2010). https://doi.org/10.1007/bf03246194

    Article  Google Scholar 

  26. Jose, S.K.M.: Dielectric functionalities of anatase phase titanium dioxide nanocrystals synthesized using water-soluble complexes. Appl. Phys. A. 123(8), 1–10 (2017). https://doi.org/10.1007/s00339-017-1121-0

  27. Janbandhu, S.Y., Joshi, A., Munishwar, S.R., Gedam, R.S.: CdS/TiO2 heterojunction in glass matrix: synthesis, characterization, and application as an improved photocatalyst. Appl. Surf. Sci. 497, (2019). https://doi.org/10.1016/j.apsusc.2019.143758

  28. Mahshid, S., Askari, M., Ghamsari, M.S.: Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. J Mater Process Technol 189, 296–300 (2007). https://doi.org/10.1016/j.jmatprotec.2007.01.040

    Article  CAS  Google Scholar 

  29. Tang, H., Berger, H., Schmid, P.E., et al.: Photoluminescence in TiO2 anatase single crystals. Solid State Commun 87, 847–850 (1993). https://doi.org/10.1016/0038-1098(93)90427-O

    Article  CAS  Google Scholar 

  30. Ohsaka, T., Izumi, F., Fujiki, Y.: Raman spectrum of anatase. TiO 7, 321–324 (1978)

    Google Scholar 

  31. Munishwar, S.R., Pawar, P.P., Gedam, R.S.: Influence of electron-hole recombination on optical properties of boro-silicate glasses containing CdS quantum dots. J Lumin 181, 367–373 (2017). https://doi.org/10.1016/j.jlumin.2016.09.045

    Article  CAS  Google Scholar 

  32. Janbandhu, S.Y., Munishwar, S.R., Gedam, R.S.: Synthesis, characterization and photocatalytic degradation efficiency of CdS quantum dots embedded in sodium borosilicate glasses. Appl Surf Sci 449, 221–227 (2018). https://doi.org/10.1016/j.apsusc.2018.02.065

    Article  CAS  Google Scholar 

  33. Tsega, M., Dejene, F.B.: Influence of acidic pH on the formulation of TiO2 nanocrystalline powders with enhanced photoluminescence property. Heliyon 3, e00246 (2017). https://doi.org/10.1016/j.heliyon.2017.e00246

    Article  Google Scholar 

  34. Zhang, J., Yang, Y., Liu, W.: Preparation, characterization, and activity evaluation of CuO/F-TiO 2 photocatalyst. Int. J. Photoenergy. 2012, 1–9 (2012). https://doi.org/10.1155/2012/139739

  35. Saraf, L.V., Patil, S.I., Ogale, S.B., et al.: Synthesis of nanophase TiO2 by ion beam sputtering and cold condensation technique. Int J Mod Phys B 12, 2635–2647 (1998). https://doi.org/10.1142/S0217979298001538

    Article  CAS  Google Scholar 

  36. Serpone, N., Lawless, D., Khairutdinov, R.: Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization or direct transitions in this indirect semiconductor? J Phys Chem 99, 16646–16654 (1995). https://doi.org/10.1021/j100045a026

    Article  CAS  Google Scholar 

  37. Forss, L., Schubnell, M.: Temperature dependence of the luminescence of TiO2 powder. Appl Phys B Photophysics Laser Chem 56, 363–366 (1993). https://doi.org/10.1007/BF00324533

    Article  Google Scholar 

  38. Munishwar, S.R., Pawar, P.P., Ughade, S., Gedam, R.S.: Size dependent effect of electron-hole recombination of CdS quantum dots on emission of Dy3+ ions in boro-silicate glasses through energy transfer. J Alloys Compd 725, 115–122 (2017). https://doi.org/10.1016/j.jallcom.2017.07.146

    Article  CAS  Google Scholar 

  39. Maurya, A., Chauhan, P., Mishra, S.K., Srivastava, R.K.: Structural, optical and charge transport study of rutile TiO2 nanocrystals at two calcination temperatures. J Alloys Compd 509, 8433–8440 (2011). https://doi.org/10.1016/j.jallcom.2011.05.108

    Article  CAS  Google Scholar 

  40. Komaraiah, D., Radha, E., Kalarikkal, N., et al.: Structural, optical and photoluminescence studies of sol-gel synthesized pure and iron doped TiO2 photocatalysts. Ceram Int 45, 25060–25068 (2019). https://doi.org/10.1016/j.ceramint.2019.03.170

    Article  CAS  Google Scholar 

  41. Mathpal, M.C., Tripathi, A.K., Singh, M.K., et al.: Effect of annealing temperature on Raman spectra of TiO2 nanoparticles. Chem Phys Lett 555, 182–186 (2013). https://doi.org/10.1016/j.cplett.2012.10.082

    Article  CAS  Google Scholar 

  42. Saha, A., Moya, A., Kahnt, A., et al.: Interfacial charge transfer in functionalized multi-walled carbon nanotube@TiO2 nanofibres. Nanoscale 9, 7911–7921 (2017). https://doi.org/10.1039/c7nr00759k

    Article  CAS  Google Scholar 

  43. Janbandhu, S.Y., Munishwar, S.R., Sukhadeve, G.K., Gedam, R.S.: Effect of annealing time on optical properties of CdS QDs containing glasses and their application for degradation of methyl orange dye. Mater Charact 152, 230–238 (2019). https://doi.org/10.1016/j.matchar.2019.04.027

    Article  CAS  Google Scholar 

  44. Rani, S., Aggarwal, M., Kumar, M., et al.: Removal of methylene blue and rhodamine B from water by zirconium oxide/graphene. Water Sci 30, 51–60 (2016). https://doi.org/10.1016/j.wsj.2016.04.001

    Article  Google Scholar 

  45. Oppong, S.O.B., Anku, W.W., Shukla, S.K., et al.: Photocatalytic degradation of indigo carmine using Nd-doped TiO2-decorated graphene oxide nanocomposites. J Sol-Gel Sci Technol 80, 38–49 (2016). https://doi.org/10.1007/s10971-016-4062-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G. K. Sukhadeve is thankful to VNIT, Nagpur (India) for financial help. The authors are thankful to the Department of Physics, VNIT, Nagpur for providing Raman facility procured under DST-FIST, New Delhi (GOI). The authors express their sincere thanks to the Department of Chemistry, VNIT, Napgur and Department of Physics RTMN University Nagpur for providing XRD and SEM characterization respectively. The authors acknowledge the TEM facility, funded by a TPF Nanomission, GOI project at Centre for Nano and Soft Matter Sciences, Bengaluru.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Gedam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhadeve, G.K., Janbandhu, S.Y., Upadhyay, S. et al. Investigation of photocatalytic activity of TiO2 nanoparticles synthesized by sol–gel technique. J Aust Ceram Soc 58, 39–48 (2022). https://doi.org/10.1007/s41779-021-00658-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-021-00658-2

Keywords

Navigation