Skip to main content

Advertisement

Log in

Brucite structure doped with different amounts of Er(III) and their infrared emissions

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

A series of brucite structure-doped samples with different amounts of Er(III) have been synthesized by hydrothermal method. Various characterizations have been employed to study the composition, structure, and photoluminescence. Results suggested that the Er3+-doped samples with Mg(II)/Er(III) molar ratio of 0.99/0.01~0.8/0.2 exhibited typical brucite structure, and the sample with Mg(II)/Er(III) molar ratio of 0.7/0.3 represented layered double hydroxide (LDH) structure. Moreover, the crystallinity of the Er3+-doped samples tended to be poorer with the increasing amount of Er(III). Various strong emissions ranging from red to infrared emissions appear in the down-conversion photoluminescent spectra of the Er3+-doped samples excited by different wavelengths, and the energy of emission peaks has linear dependence on the energy of the excitation wavelength at 450~565 nm. Photoluminescent decay spectra show that the decaying behavior of the red and infrared emissions for the Er3+-doped samples are different from that of the previous Er3+-doped materials, and the lifetimes of the red and infrared emissions are less than that of the other Er3+-doped materials. Based on the present results as well as relevant references, the energy transition diagrams of the Er(III) incorporated in the samples were described, and the transition mechanisms of the red and infrared emissions have been proposed. The new Er3+-doped materials may be a latent fluorescent material applied in NIR detector or biomedical imaging in view of its strong red and infrared emissions as well as less toxicity for organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Piperopoulos, E., Mastronardo, E., Fazio, M., Lanza, M., Galvagno, S., Milone, C.: Synthetic strategies for the enhancement of Mg(OH)2 thermochemical performances as heat storage material. Energy Procedia. 155, 269–279 (2018)

    CAS  Google Scholar 

  2. Haruki, M., Saito, K., Takai, K., Fujita, M., Onishi, H., Tada, Y.: Thermal conductivity and reactivity of Mg(OH)2 and MgO/expanded graphite composites with high packing density for chemical heat storage. Thermochim. Acta. 680, 178338 (2019)

    CAS  Google Scholar 

  3. Shkatulov, A., Takasu, H., Kato, Y., Aristov, Y.: Thermochemical energy storage by LiNO3- doped Mg(OH)2: rehydration study. J Energy Storage. 22, 302–310 (2019)

    Google Scholar 

  4. Piperopoulos, E., Mastronardo, E., Fazio, M., Lanza, M., Galvagno, S., Milone, C.: Enhancing the volumetric heat storage capacity of Mg(OH)2 by the addition of a cationic surfactant during its synthesis. Appl. Energy. 215, 512–522 (2018)

    CAS  Google Scholar 

  5. Dai, H.Y., Yang, H.M., Liu, X., Jian, X., Liang, Z.H.: Electrochemical evaluation of nano- Mg(OH)2/graphene as a catalyst for hydrogen evolution in microbial electrolysis cell. Fuel. 174, 251–256 (2016)

    CAS  Google Scholar 

  6. Flores-Flores, M., Luévano-Hipólito, E., Torres-Martínez, L.M., Do, T.O.: CO2 adsorption and photocatalytic reduction over Mg(OH)2/CuO/Cu2O under UV-Visible light to solar fuels. Mater. Chem. Phys. 227, 90–97 (2019)

    CAS  Google Scholar 

  7. Ren, K., Yu, J., Tang, W.C.: First-principles study of two-dimensional van der Waals heterostructure based on ZnO and Mg(OH)2: a potential photocatalyst for water splitting. Phys. Lett. A. 383, 125916 (2019)

    CAS  Google Scholar 

  8. Zhang, T., Wei, Y.W., Chen, J.F., Li, N.: Effect of Mg(OH)2 and sintering temperature on the hydration resistance of CaO aggregate by thermal decomposition. J. Aust. Ceram. Soc. (2019). https://doi.org/10.1007/s41779-019-00399-3

  9. Liu, Z.Y., Ma, S., Li, X., Yang, H., Xu, Z.L.: Porous carbonaceous composite derived from Mg(OH)2 pre-filled PAN based membrane for supercapacitor and dye adsorption application. J. Solid State Chem. 277, 493–501 (2019)

    CAS  Google Scholar 

  10. Lin, J.W., He, S.Q., Wang, X.X., Zhang, H.H., Zhan, Y.H.: Removal of phosphate from aqueous solution by a novel Mg(OH)2/ZrO2 composite: adsorption behavior and mechanism. Collo Surf A: Physicochem Eng Aspec. 561, 301–314 (2019)

    CAS  Google Scholar 

  11. Song, Y., Li, J., Li, Y.N., Xu, Y.Y., Tian, C., Weng, C.Z.: Enrichment and recovery of low-concentration REEs from water using synthesized eco-friendly sodium alginate/nano-Mg(OH)2 composite beads. Surf Interf. 15, 232–238 (2019)

    CAS  Google Scholar 

  12. Govindaraju, K., VijaiAnand, K., Anbarasu, S., Theerthagiri, J., Revathy, S., Krupakar, P., Durai, G., Kannan, M., Subramanian, K.S.: Seaweed (Turbinaria ornata)-assisted green synthesis of magnesium hydroxide [Mg(OH)2] nanomaterials and their anti-mycobacterial activity. Mater. Chem. Phys. 239, 122007 (2020)

    CAS  Google Scholar 

  13. Lu, J., Sun, Q., Wu, J., Zhu, G.C.: Enhanced ozonation of antibiotics using magnetic Mg(OH)2 nanoparticles made through magnesium recovery from discarded bischofite. Chemosphere. 238, 124694 (2020)

    CAS  Google Scholar 

  14. Chen, H., Wang, T., Wen, Y.L., Wen, X., Gao, D.D., Yu, R.H., Chen, X.C., Mijowska, E., Tang, T.: Expanded graphite assistant construction of gradient-structured char layer in PBS/Mg(OH)2 composites for improving flame retardancy, thermal stability and mechanical properties. Composites Part B: Eng. 177, 107402 (2019)

    CAS  Google Scholar 

  15. Hu, Y., Liu, H.Q., Zong, R.W., Lo, S.M.: Study of a new type of fire suppressant powder of Mg(OH)2 modified by DOPO-VTS. Process. Eng. 211, 1102–1110 (2018)

    CAS  Google Scholar 

  16. Naguib, H.M.: Environmental-friendly recycled polyester/Mg(OH)2 nanocomposite: fire-retardancy and thermal stability. Polym. Test. 72, 308–314 (2018)

    CAS  Google Scholar 

  17. Chen, Y.B., Zhou, T., Fang, H.X., Li, S.M., Yao, Y.T., Fan, B.L., Wang, J.: A novel preparation of nanosized hexagonal Mg(OH)2 as a flame retardant. Particuology. 24, 177–182 (2016)

    CAS  Google Scholar 

  18. Sheikhhosseini, E., Ranjbar, M.: Microwave synthesis and characterization Mg(OH)2/Gr nanocomposites in the presence of sodium dodecyl sulfate (SDS) as a stabilizer agent. Open Nano. 4, 100028 (2019)

    Google Scholar 

  19. Li, B.W., Wen, C.Y., Dong, J.: Study on the stability, transport behavior and OH− release properties of colloidal Mg(OH)2. Collo Surf A: Physicochem Eng Aspects. 549, 105–111 (2018)

    CAS  Google Scholar 

  20. Bhargava, R., Khan, S., Ahmad, N., Mohsin, M., Ansari, N.: Mg(OH)2/rGO nanocomposites for high performance electrodes. Mater Today: Proce. 18, 5012–5018 (2019)

    CAS  Google Scholar 

  21. Salehi, E., Eidi, B., Soleimani, Z.: An integrated process consisting of Mg(OH)2 –impregnated ceramic foam filters as adsorbent and Mg(OH)2 as scrubbing solution for intensified desulfurization of flue gas. Sep. Purif. Technol. 216, 34–42 (2019)

    CAS  Google Scholar 

  22. Pilarska, A.A., Klapiszewski, Ł., Jesionowski, T.: Recent development in the synthesis, modification and application of Mg(OH)2 and MgO: a review. Powder Technol. 319, 373–407 (2017)

    CAS  Google Scholar 

  23. Maiti, P., Das, P.S., Ghosh, J., Mukhopadhyay, A.K.: Novel layered GO/Mg(OH)2 nano-composites for detection of Cd and Pb ions. Sensors Actuators A Phys. 302, 111803 (2020)

    CAS  Google Scholar 

  24. Chen, Y.F., Li, F., Zhou, S.H., Wei, J.C., Dai, Y.F., Chen, Y.W.: Structure and photoluminescence of Mg–Al–Eu ternary hydrotalcite-like layered double hydroxides. J. Solid State Chem. 183, 2222–2226 (2010)

    CAS  Google Scholar 

  25. Zhang, W.J., Li, Y.L., Fan, H.X.: Layer-by-layer assembly of luminescent ultrathin films by Mg–Al–Eu LDHs nanosheets and organic ligand with high transparency. Opt. Mater. 51, 78–83 (2016)

    CAS  Google Scholar 

  26. Correcher, V., Garcia-Guinea, J.: Cathodo- and photoluminescence emission of a natural Mg-Cr carbonate layered double hydroxide. Appl. Clay Sci. 161, 127–131 (2018)

    CAS  Google Scholar 

  27. Zhang, C., Liu, T., Su, Y., Luo, S., Zhu, Y., Tan, X., Fan, S., Zhang, L., Zhou, Y., Cheng, T.C., Shi, A.: Near-infrared fluorescent heptamethine indocyanine dye with preferential tumor accumulation for in vivo imaging. Biomater. 31, 6612–6617 (2010)

    CAS  Google Scholar 

  28. Jiang, C., Cheng, H., Yuan, A., Tang, X., Wu, J., Hu, Y.: Hydrophobic IR780 encapsulated in biodegradable human serum albumin nanoparticles for photothermal and photodynamic therapy. Acta Biomater. 14, 61–69 (2015)

    CAS  Google Scholar 

  29. Yuan, W.Q., Kuang, J.Z., Liu, P.F.: Effect of Er(NO3)3 content on the thermal decomposition kinetics of kaolinite. Appl. Clay Sci. 182, 105271 (2019)

    CAS  Google Scholar 

  30. Carnall, W.T., Fields, P.R., Rajnak, K.: Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. J. Chem. Phys. 49, 4424–4442 (1968)

    CAS  Google Scholar 

  31. Eldridge, J.I.: Luminescence decay-based Y2O3: Er phosphor thermometry: temperature sensitivity governed by multiphonon emission with an effective phonon energy transition. J. Lumin. 214, 116535 (2019)

    CAS  Google Scholar 

  32. Kindrat, I.I., Padlyak, B.V., Lisiecki, R., Adamiv, V.T., Teslyuk, I.M.: Enhancement of the Er3+ luminescence in Er–Ag co-doped Li2B4O7 glasses. Opt. Mater. 85, 238–245 (2018)

    CAS  Google Scholar 

  33. Kataria, V., Mehta, D.S.: Investigation of concurrent emissions in visible, UV and NIR region in Gd2O2S: Er, Yb nanophosphor by diverse excitation wavelengths as a function of firing temperature. Opt. Mater. 95, 109204 (2019)

    CAS  Google Scholar 

  34. Shi, J., Sun, J.J., Fang, B.J., Du, Q.B., Zhang, S., Ding, J.N.: Photoluminescence performance of Er/Yb co-doped NBT ceramics prepared via hydrothermal method. J. Phys. Chem. Solids. 121, 228–235 (2018)

    CAS  Google Scholar 

  35. Khrushchalina, S.A., Ryabochkina, P.A., Zharkov, M.N., Kyashkin, V.M., Tabachkova, N.Y., Yurlov, I.A.: Broadband emission from Er-contained yttrium orthophosphate and orthovana- date nanopowders excited by near infrared radiation. J. Lumin. 205, 560–567 (2019)

    CAS  Google Scholar 

  36. Ballem, E., Azeem, A., Rayavarapu, P.R., Divi, H.: Structural and luminescent studies of erbium-doped CaZrO3 green-emitting nanophosphors. Luminescence. 32, 1246–1251 (2017)

    CAS  Google Scholar 

  37. Liu, F., Lian, J.B., He, J., Zhang, X., Wu, N.C., Liu, F.: Hydrothermal synthesis combined with calcination of NaGd(SO4)2 nanoparticles and their luminescent properties from single doped Eu3+ and co-doped Yb3+,Er3+. J. Aust. Ceram. Soc. 53, 847–854 (2017)

    CAS  Google Scholar 

  38. Xia, J.N., Lei, L., Dai, X.R., Ling, J., Li, Y.Y., Xu, S.Q.: Excitation-dependent multi-color emissions in Yb/Er/Eu: Gd2Ti2O7 pyrochlore for anti-counterfeiting. Mater. Res. Bull. 107, 213–217 (2018)

    CAS  Google Scholar 

  39. Xin, M.: High luminescent TiO2-Yb2O3: Er, Li complex nano spherical upconversion phosphor prepared by a hydrothermally treatment. J. Lumin. 213, 415–420 (2019)

    CAS  Google Scholar 

  40. Bunton, J., Calvez, L., Kadan, V., Blonskyi, I., Shpotyukf, O., Golovchak, R.: Near-IR emission of Er3+ ions in CsCl-Ga-Ge-S glasses excited by visible light. Opt. Mater. 72, 195–200 (2017)

    CAS  Google Scholar 

  41. Liu, S.B., Liu, S.F., Ming, H., Du, F., Peng, J.Q., You, W.X., Ye, X.Y.: Tunable multicolor and bright white upconversion luminescence in Er3+/Tm3+/Yb3+ tri-doped SrLu2O4 phosphors. J. Mater. Sci. 53, 14469–14484 (2018)

    CAS  Google Scholar 

  42. Xu, B.X., Liu, J.C., Zou, K.S.: The photo-switch effect and the energy-level population change of Li+doping in Yb3+/Er3+ co-doped Y2O3upconversion films. App Phys A. 125, 100 (2019)

    Google Scholar 

  43. Mikalauskaite, I., Pleckaityte, G., Skapas, M., Zarkov, A., Katelnikovas, A., Beganskiene, A.: Emission spectra tuning of upconverting NaGdF4:20% Yb, 2% Er nanoparticles by Cr3+ co-doping for optical temperature sensing. J. Lumin. 213, 210–217 (2019)

    CAS  Google Scholar 

  44. Xia, H., Lei, L., Xia, J.P., Hua, Y.J., Deng, D.G., Xu, S.Q.: Yb/Er/tm tri-doped Na3ZrF7 upconversion nanocrystals for high performance temperature sensing. J. Lumin. 209, 8–13 (2019)

    CAS  Google Scholar 

  45. Bhiri, N.M., Dammak, M., Aguiló, M., Díaz, F., Pujol, M.C.: Stokes and anti-Stokes operating conditions dependent luminescence thermometric performance of Er3+-doped and Er3+, Yb3+ co-doped GdVO4 microparticles in the non-saturation regime. J. Alloys Compd. 814, 152197 (2020)

    CAS  Google Scholar 

  46. Prasad, V.R., Haritha, B., Damodaraiah, S., Ratnakaram, Y.C.: Influence of Nd3+ and Er3+ concentration on NIR luminescence properties in calcium borophosphate (CBP) phosphors. Infrared Phys. Technol. 94, 184–190 (2018)

    Google Scholar 

  47. Liu, Y., Chen, W., Zhong, J.S., Chen, D.Q.: Upconversion luminescence in Yb/Ln (Ln=Er, Tm) doped oxyhalide glasses containing CsPbBr3 perovskite nanocrystals. J. Eur. Ceram. Soc. 39, 4275–4282 (2019)

    CAS  Google Scholar 

  48. Porosnicu, I., Avram, D., Cojocaru, B., Florea, M., Tiseanu, C.: Up-conversion luminescence of Er(Yb)-CeO2: status and new results. J. Alloys Compd. 711, 627–636 (2017)

    CAS  Google Scholar 

  49. Chen, Y.F., Zhang, J.W., Zhang, Y.J., Wang, L.: Synthesis of Er3+-doped hydrocalumite and its strong infrared emissions. J. Iran. Chem. Soc. 17, 1933–1944 (2020)

    CAS  Google Scholar 

  50. Chen, Y.F., Zhang, Y.J., Zhang, J.W., Wang, L.: New near-infrared emissions and energy transfer in Er3+-doped MgAl layered double hydroxides. Luminescence. (2020). https://doi.org/10.1002/bio.3825

Download references

Funding

This study was funded by the National Natural Science Foundation of China (No. 61564007) and Natural Science Foundation of Jiangxi Province (Nos.20165BCB18004 and 20171BCB23005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhang, Y., Zhang, J. et al. Brucite structure doped with different amounts of Er(III) and their infrared emissions. J Aust Ceram Soc 57, 67–79 (2021). https://doi.org/10.1007/s41779-020-00512-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-020-00512-x

Keywords

Navigation