Skip to main content
Log in

Ultra-low-density calcium hexaaluminate foams prepared by sintering of thermo-foamed alumina-calcium carbonate powder dispersions in molten sucrose

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Porous calcium hexaaluminate (CA6) ceramics have many desirable properties, such as good chemical stability, high refractoriness, low density, low thermal conductivity and high surface area, which make them suitable for various applications. However, the porous CA6 ceramics prepared thus far have had relatively low porosities. In order to increase porosity, ultra-low-density CA6 foams were prepared by thermo-foaming followed by sintering of calcined alumina-calcium carbonate powder dispersions in molten sucrose. The percentage of height raise, sintering shrinkage, porosity, compressive strength, cell size, cell window size and cell size distribution are studied as a function of various ceramic powders to sucrose weight ratios and foaming temperatures. Calcium completely transforms to CA6 when CA6 is prepared by sintering at 1500 °C. To the best of our knowledge, the porosity of 91.7–96.4% achieved in our study is the highest reported for CA6 foams thus far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. An, L., Chan, H.M., Soni, K.K.: Control of calcium hexaluminate grain morphology in in-situ toughened ceramic. J Mater Sci. 31, 3223–3229 (1996)

    Article  CAS  Google Scholar 

  2. Doḿınguez, C., Chevalier, J., Torrecillas, R., Fantozzi, G., et al.: Microstructure development in calcium hexaluminate. J Eur Ceram Soc. 21, 381–387 (2001)

    Article  Google Scholar 

  3. Gentile, A.L., Foster, W.R.: Calcium hexaluminate and its stability relations in the system CaO–Al2O3–SiO2. J Am Ceram Soc. 46, 74–76 (1963)

    Article  CAS  Google Scholar 

  4. Doḿınguez, C., Chevalier, J., Torrecillas, R., Fantozzi, G., et al.: Thermomechanical properties and fracture mechanisms of calcium hexaluminate. J Eur Ceram Soc. 21, 907–917 (2001)

    Article  Google Scholar 

  5. De L I P G , García-Moreno, O, Torrecillas R , et al. Influence of different parameters on calcium hexaluminate reaction sintering by spark plasma. Ceram Int. 38, 5325–5332(2012)

  6. Chandradass J, Bae DS, Kim KH. Synthesis of calcium hexaaluminate (CaAl12O19) via reverse micelle process. J Non-Cryst Solids 355, 0–2432(2009)

    Article  CAS  Google Scholar 

  7. Singh, V., Chakradhar, R.P.S., Rao, J.L., et al.: Cheminform abstract: photoluminescence and EPR studies of Cr-doped hibonite (CaAl12O19) phosphors. Solid State Sci. 40, 1525–1532 (2010)

    Google Scholar 

  8. Criado, Tan LH. CA6 refractory materials. Foreign Refract. (1992)

  9. Tulliani, J.M., Pagès, G., Fantozzi, G., et al.: Dilatometry as a tool to study a new synthesis for calcium hexaluminate. J Therm Anal Calorim. 72, 1135–1140 (2003)

    Article  CAS  Google Scholar 

  10. Fuhrer, M., Hey, A., Lee, W.E.: Microstructural evolution in self-forming spinel/calcium aluminate-bonded castable refractories. J Eur Ceram Soc. 18, 813–820 (1998)

    Article  CAS  Google Scholar 

  11. Chan, C.F., Ko, Y.C.: Effect of CaO content on the hot strength of alumina-spinel castables in the temperature range of 1000°C to 1500°C. J Am Ceram Soc. 81, 2957–2960 (1998)

    Article  CAS  Google Scholar 

  12. Studart, A.R., Gonzenbach, U.T., Tervoort, E., et al.: Processing routes to macroporous ceramics: a review. J Am Ceram Soc. 89, 1771–1789 (2006)

    Article  CAS  Google Scholar 

  13. Li, X.M., Gao, M.J., Jiang, Y.: Microstructure and mechanical properties of porous alumina ceramic prepared by a combination of 3–D printing and sintering. Ceram Int. 42, 12531–12535 (2016)

    Article  CAS  Google Scholar 

  14. Li XM, Wu PT, Zhu DL. Properties of porous alumina ceramics prepared by technique combining cold-drying and sintering. Int J Refract Met H. 41, 437–441(2013)

    Article  CAS  Google Scholar 

  15. Faure, R., Rossignol, F., Chartier, T., et al.: Alumina foam catalyst supports for industrial steam reforming processes. J Eur Ceram Soc. 31, 303–312 (2011)

    Article  CAS  Google Scholar 

  16. Kennedy, W.M., Zhang, K.X., Fritzsch, R., et al.: Characterization of ceramic foam filters used for liquid metal filtration. Metall Mater Trans B Process Metall Mater Process Sci. 44, 671–690 (2013)

    Article  CAS  Google Scholar 

  17. Yoon, B.H., Choi, W.Y., Kim, H.E., et al.: Aligned porous alumina ceramics with high compressive strengths for bone tissue engineering. Scripta Mater. 58, 537–540 (2008)

    Article  CAS  Google Scholar 

  18. Liu, J.J., Li, Y.B., Li, Y.W., et al.: Effects of pore structure on thermal conductivity and strength of alumina porous ceramics using carbon black as pore-forming agent. Ceram Int. 42, 8221–8228 (2016)

    Article  CAS  Google Scholar 

  19. Pei, C.Q., Shi, G., Xu, J.F.: Properties and application of new type of insulating refractory material of calcium hexaluminate. Industrial Furnace. 29, 45–49 (2007)

    Google Scholar 

  20. Liu, X.Y., Yang, D.X., Huang, Z.H., et al.: Novel synthesis method and characterization of porous calcium hexaluminate ceramics. J Am Ceram Soc. 97, 2702–2704 (2014)

    Article  CAS  Google Scholar 

  21. Wu, M.F., Li, Y.B., Li, S.J., et al.: Preparation and properties of high-purity porous calcium hexaluminate material. Key Eng Mater. 697, 547–550 (2016)

    Article  Google Scholar 

  22. Li, T.Q., Li, N., Li, Y.S.: Preparation of porous hexaluminate material by reaction sintering method. Refract Mater. 5, 309–311 (2004)

    Google Scholar 

  23. Shi, J., Yan, Y., Hu, Z.H.: Preparation of light calcium hexaluminate by two-step method. Non-Met Mines. 39, 14–16 (2016)

    Google Scholar 

  24. Vijayan, S., Wilson, P., Prabhakaran, K.: Ultra low-density mullite foams by reaction sintering of thermo-foamed alumina-silica powder dispersions in molten sucrose. J Eur Ceram Soc. 37, 1657–1664 (2017)

    Article  CAS  Google Scholar 

  25. Huang, K.K., Li, Y.B., Li, S.J., et al.: Preparation and properties of alumina foams via thermally induced foaming of molten d-glucose monohydrate. J Porous Mater. 24, 121–128 (2017)

    Article  CAS  Google Scholar 

  26. Vijayan, S., Narasimman, R., Prudvi, C., et al.: Preparation of alumina foams by the thermo-foaming of powder dispersions in molten sucrose. J Eur Ceram Soc. 34, 425–433 (2014)

    Article  CAS  Google Scholar 

  27. Li, X.W., Li, Z.J., Wu, F., et al.: Effects of calcium sources and calcination temperature on synthesis of flaky calcium hexaluminate. J Tech Assoc Refract. (2017)

  28. Huang, K.K., Li, Y.B., Li, S.J., et al.: Effects of microsilica addition on the microstructure and properties of alumina foams. Ceram Int. 42, 16401–16404 (2016)

    Article  CAS  Google Scholar 

  29. Li, X., Li, Y.B., Xiang, R.F., et al.: Fabrication of ultra-high-porosity cordierite foams by the thermo-foaming of powder dispersions in molten D-glucose anhydrous. J Mater Res. https://doi.org/10.1557/jmr.2019.13

    Article  CAS  Google Scholar 

Download references

Funding

The authors appreciate the financial support from National Natural Science Foundation of China (No. 51772221), National Key R&D Program of China (2017YFB0310701) and Key Program of Natural Science Foundation of Hubei Province (China, 2017CFA004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanbing Li or Ruofei Xiang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Li, Y., Xiang, R. et al. Ultra-low-density calcium hexaaluminate foams prepared by sintering of thermo-foamed alumina-calcium carbonate powder dispersions in molten sucrose. J Aust Ceram Soc 56, 301–308 (2020). https://doi.org/10.1007/s41779-019-00445-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-019-00445-0

Keywords

Navigation