Skip to main content

Advertisement

Log in

Estimating Soil Heat Flux in Jordan Based on ERA5 Parameters and NCEP/NCAR Energy Outputs: Definite Radiative Forcing of Climate Change Using PCA

  • Original Article
  • Published:
Earth Systems and Environment Aims and scope Submit manuscript

Abstract

Internal variability changes in soil surface temperature and reflective radiation drove climate to change and vice versa over all time scales. This study investigates the heat flux components and the climate variables that drive the change in surface soil temperature down to 15.0 cm. We analyze the correlations of energy and radiation components to climate variables by coding principle component analysis (PCA) and finding the radiative forcing of atmosphere-energy-climate-soil continuum systems using datasets derived from ERA5 and NCEP/NCAR projections. The vectors contributing to the continuum were the shortwave, net solar radiation, and sensible flux are the main drivers. The average 72-year shortwave in the study locations was − 190.63 W/m2. Because of the upwelling radiation to the atmosphere, the longwave flux did not exceed the shortwave over the study’s location. The sensible heat flux was the lowest in the northwestern highlands (approximately 32 Watt/m2) and the highest range during summer was 150–180 Watt/m2 over the country. This variability in net radiation partitioning led to changes in surface warming and the responding climate. This study found that the average monthly soil surface temperature bound was 10–20 °C from November to March at all locations except for Amman and Ruwaished. The calculated soil heat storage is positive all year in the Dead Sea with an annual average of 76.53 W/m2. The lowest storage heat was in Amman with an annual average of − 44.42 W/m2. The anomalies of annual ERA5 reanalysis of main climate contributors extended from (− 5.46 to + 5.53 °C), (− 5.66 to + 4.36 °C), (− 1.3 to 2.87 mm/day), and around (− 25.97% to a maximum of 20.99%) for maximum and minimum near-surface air temperatures, daily precipitation, and relative humidity, respectively. The long-term mean evaporation was very low approximately − 1.85 × 10–7 mm. Mean monthly wind speed illustrates low-frequency variability by − 0.06 m/s. PCA represented the correlation coefficients of the climate variables that affected soil temperature the most: near-surface air temperature, maximum, and minimum (> 0.95). Soil–water content, precipitation, and humidity played a secondary negative role to a certain extent by regulating and slowing down the soil heat transfer − 61, − 64, and − 91%, respectively. This study enhances the understanding of energy partitioning and incorporates satellite products and climate simulations to recognize key influencing factors of energy changes and climate footprints toward soil heat flux that affect the biosphere, humans, and energy use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data are available upon request.

References

  • Abed AM, Amireh BS (1983) Petrography and geochemistry of some Jordanian Oil Shales from North Jordan. J Pet Geol 5(3):261–274

    Article  CAS  Google Scholar 

  • Aguilar C, Herrero J, Polo MJ (2010) Topographic effects on solar radiation distribution in mountainous watersheds and their influence on reference evapotranspiration estimates at watershed scale. Hydrol Earth Syst Sci 14(12):2479–2494

    Article  ADS  Google Scholar 

  • Al-bakri JT (2007) Soils of Jordan. In: The status of Mediterranean soil resources: actions needed to support their sustainable use, Mediterranean conference proceedings. MEDCOASTLAND Publication, Tunisia, Bari, Italy, 2008 (ISBN 2-85352-371-3)

  • Al-Bakri JT et al (2013) Impact of climate and land use changes on water and food security in Jordan: implications for transcending ‘the Tragedy of the Commons.’ Sustainability 5(2):724–748

    Article  Google Scholar 

  • Alchapar NL, Correa EN (2015) Comparison of the performance of different facade materials for reducing building cooling needs. In Pacheco-Torgal F et al (Eds.), Eco-efficient materials for mitigating building cooling needs. Elsevier, pp. 155–194

  • Almazroui M, Awad AM, Nazrul Islam M, Al-Khalaf AK (2015) A climatological study: wet season cyclone tracks in the East Mediterranean Region. Theoret Appl Climatol 120(1–2):351–365

    Article  ADS  Google Scholar 

  • Almazroui M et al (2021) Assessment of CMIP6 performance and projected temperature and precipitation changes over South America. Earth Syst Environ 5(2):155–183

    Article  ADS  Google Scholar 

  • Al-Qudah B (2001) Soils of Jordan. Soil resources of southern and eastern Mediterranean countries. CIHEAM-IAMB, Bari, pp 127–41

  • Alrwashdeh SS, Falah MA, Mohammad AS (2018) Solar radiation map of Jordan Governorates. Int J Eng Technol 7(3):1664–1667

    Article  Google Scholar 

  • Al-shibli FM, William AM, Ross MT (2017) The need for a quantitative analysis of risk and reliability for formulation of water budget in Jordan. Jordan J Earth Environ Sci 8(2):77–89

    Google Scholar 

  • Al-Shibli FM, Ottom MA, Saoub H, Al-Weshah R (2021) Comparative analysis of potential evapotranspiration calculation methods with era-reanalysis climate models’ projections in Western Asia, Jordan. Appl Ecol Environ Res 19(6):4849–4879

    Article  Google Scholar 

  • An Ni, Hemmati S, Cui Y-J (2017) Assessment of the methods for determining net radiation at different time-scales of meteorological variables. J Rock Mech Geotech Eng 9(2):239–246

    Article  Google Scholar 

  • Arnold NS, Gareth Rees W, Andrew JH, Jack K (2006) Topographic controls on the surface energy balance of a high arctic valley glacier. J Geophys Res Earth Surf 111(F2):1–15

    Article  Google Scholar 

  • Bell B et al (2021) The ERA5 global reanalysis: preliminary extension to 1950. Q J R Meteorol Soc 147(741):4186–4227

    Article  ADS  Google Scholar 

  • Bellouin N et al (2020) Bounding global aerosol radiative forcing of climate change. Rev Geophys 58(1):e2019RG000660

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett WB, Wang J, Bras RL (2008) Estimation of global ground heat flux. J Hydrometeorol 9(4):744–759

    Article  ADS  Google Scholar 

  • Berger A, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quatern Sci Rev 10(4):297–317

    Article  ADS  Google Scholar 

  • Bi K et al (2023) Accurate medium-range global weather forecasting with 3D neural networks. Nature 619:1–6

    Article  Google Scholar 

  • Bishop C (1998) Bayesian pca. Adv Neural Inform Pro Sys 11:382–88

    Google Scholar 

  • Braun H et al (2005) Possible solar origin of the 1470-year glacial climate cycle demonstrated in a coupled model. Nature 438(7065):208–211

    Article  ADS  CAS  PubMed  Google Scholar 

  • Bro R, Smilde AK (2014) Principal component analysis. Anal Methods 6(9):2812–2831

    Article  CAS  Google Scholar 

  • Budyko MI (1969) The effect of solar radiation variations on the climate of the earth. Tellus 21(5):611–619

    Article  ADS  Google Scholar 

  • Council National Research, Climate Research Committee and others (2006) 43 Choice Reviews Online Radiative Forcing of Climate Change: Expanding the Concept and Addressing Uncertainties. National Academies Press, Washington

    Google Scholar 

  • Dee DP et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Article  ADS  Google Scholar 

  • Douville H, Saïd Q, Aurélien R, Olivier B (2022) Global warming at near-constant tropospheric relative humidity is supported by observations. Commun Earth Environ 3(1):237

    Article  ADS  Google Scholar 

  • Echevin V et al (2020) Physical and biogeochemical impacts of RCP8.5 scenario in the Peru upwelling system. Biogeosciences 17(12):3317–3341

    Article  ADS  CAS  Google Scholar 

  • Ehsan MA et al (2021) Seasonal predictability of Ethiopian Kiremt rainfall and forecast skill of ECMWF’s SEAS5 model. Clim Dyn 57(11–12):3075–3091

    Article  Google Scholar 

  • Farhan IA, Al-Bakri J (2019) Detection of a real time remote sensing indices and soil moisture for drought monitoring and assessment in Jordan. Open J Geol 9(13):1048–1068

    Article  Google Scholar 

  • Garratt JR, Prata AJ (1996) Downwelling longwave fluxes at continental surfaces-a comparison of observations with GCM simulations and implications for the global land-surface radiation budget. J Clim 9(3):646–655

    Article  ADS  Google Scholar 

  • Gupta G, Venkat Ratnam M, Madhavan BL, Narayanamurthy CS (2022) Long-term trends in aerosol optical depth obtained across the globe using multi-satellite measurements. Atmos Environ 273:118953

    Article  CAS  Google Scholar 

  • Harmay M, Syahira N, Kim D, Choi M (2021) Urban heat island associated with land use/land cover and climate variations in Melbourne, Australia. Sustain Cities Soc 69:102861

    Article  Google Scholar 

  • Hasan NA, Yang D, Al-Shibli F (2023a) A historical-projected analysis in land use/land cover in developing arid region using spatial differences and its relation to the climate. Sustainability (switzerland) 15(3):2821

    Article  Google Scholar 

  • Hasan NA, Dongkai Y, Al-Shibli F (2023b) SPI and SPEI drought assessment and prediction using TBATS and ARIMA models, Jordan. Water 15(20):3598

    Article  Google Scholar 

  • Hersbach H et al (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146(730):1999–2049

    Article  ADS  Google Scholar 

  • Higgins RW et al (1997) Influence of the great plains low-level jet on summertime precipitation and moisture transport over the Central United States. J Clim 10(3):481–507

    Article  ADS  Google Scholar 

  • Hogan R (2015) Radiation Quantities in the ECMWF Model and MARS. ECMWF

  • Holton JR, Judith AC, John AP (2003) Encyclopedia of atmospheric sciences. Academic Press, Cambridge

    Google Scholar 

  • Hoyt DV, Schatten KH (1993) A discussion of plausible solar irradiance variations, 1700–1992. J Geophys Res Space Phys 98(A11):18895–18906

    Article  ADS  Google Scholar 

  • Hu G, Jia Li (2015) Monitoring of evapotranspiration in a semi-arid inland river basin by combining microwave and optical remote sensing observations. Remote Sens 7(3):3056–3087

    Article  ADS  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-Year reanalysis project. Bull Am Meteorol Soc 77(3):437–472

    Article  ADS  Google Scholar 

  • Kassambara A (2017a) 1 practical guide to cluster analysis in R: unsupervised machine learning. Sthda

  • Kassambara A (2017b) 2 Practical guide to principal component methods in R: PCA, M (CA), FAMD, MFA, HCPC, Factoextra. Sthda

  • Kidder SQ, Haar THV (1995) Satellite meteorology: an introduction. Gulf Professional Publishing, New York

    Google Scholar 

  • Lean JL (2010) Cycles and trends in solar irradiance and climate. Wires Clim Change 1(1):111–122

    Article  Google Scholar 

  • Lean J, Rind D (1998) Climate forcing by changing solar radiation. J Clim 11(12):3069–3094

    Article  ADS  Google Scholar 

  • Lee M-I et al (2007) An analysis of the warm-season diurnal cycle over the continental United States and Northern Mexico in general circulation models. J Hydrometeorol 8(3):344–366

    Article  ADS  Google Scholar 

  • Lembrechts JJ et al (2022) Global maps of soil temperature. Glob Change Biol 28(9):3110–3144

    Article  CAS  Google Scholar 

  • Li Na, Zhao P, Wang J, Deng Yi (2020) The long-term change of latent heat flux over the Western Tibetan Plateau. Atmosphere 11(3):262

    Article  ADS  Google Scholar 

  • Li Z, Zhang J, Wei Y, Dan Hu (2023) 3D urban landscape optimization: from the perspective of heat flux-microclimate relations. Sustain Cities Soc 97:104759

    Article  Google Scholar 

  • Liu X et al (2020) Similarities and differences in the mechanisms causing the European summer heatwaves in 2003, 2010, and 2018. Earths Future. https://doi.org/10.1029/2019EF001386

    Article  PubMed  PubMed Central  Google Scholar 

  • Lucke B, Kemnitz H, Bäumler R, Schmidt M (2014) Red Mediterranean soils in Jordan: new insights in their origin, genesis, and role as environmental archives. CATENA 112:4–24

    Article  CAS  Google Scholar 

  • Martens B et al (2020) Evaluating the land-surface energy partitioning in ERA5. Geosci Model Dev 13(9):4159–4181

    Article  ADS  Google Scholar 

  • Masseroni D, Corbari C, Mancini M (2014) Limitations and improvements of the energy balance closure with reference to experimental data measured over a maize field. Atmósfera 27(4):335–352

    Article  Google Scholar 

  • Mauder M, Foken T, Cuxart J (2020) Surface-energy-balance closure over land: a review. Bound Layer Meteorol 177(2–3):395–426

    Article  ADS  Google Scholar 

  • Miralles DG et al (2011) Global land-surface evaporation estimated from satellite-based observations. Hydrol Earth Syst Sci 15(2):453–469

    Article  ADS  Google Scholar 

  • Moeng C-H, Sullivan PP (2015) Large eddy simulation. Encycl Atmos Sci 2:232–240

    Google Scholar 

  • MoEnv (2006) National strategy and action plan to combat desertification 2006

  • Nassar YF, Hafez AA, Alsadi SY (2020) Multi-factorial comparison for 24 distinct transposition models for inclined surface solar irradiance computation in the state of Palestine: a case study. Front Energy Res 7:163

    Article  Google Scholar 

  • North GR, John AP, Fuqing Z (2014) 1 encyclopedia of atmospheric sciences. Elsevier, New York

    Google Scholar 

  • Núñez CM, Varas EA, Meza FJ (2010) Modelling soil heat flux. Theoret Appl Climatol 100:251–260

    Article  ADS  Google Scholar 

  • Ochsner TE, Sauer TJ, Horton R (2007) Soil heat storage measurements in energy balance studies. Agron J 99(1):311–319

    Article  Google Scholar 

  • Ogurtsov MG (2007) Secular variation in aerosol transparency of the atmosphere as the possible link between long-term variations in solar activity and climate. Geomag Aeron 47(1):118–128

    Article  Google Scholar 

  • Ogurtsov MG, Nagovitsyn YuA, Kocharov GE, Jungner H (2002) Long-period cycles of the sun’s activity recorded in direct solar data and proxies. Sol Phys 211(1/2):371–394

    Article  ADS  Google Scholar 

  • Ojo OS, Adeyemi B, Ogolo EO (2021) Geostatistical distribution of net radiation at different sky conditions over West Africa. Earth Syst Environ 5(1):43–57

    Article  ADS  Google Scholar 

  • Olson M, Rupper S (2019) Impacts of topographic shading on direct solar radiation for valley glaciers in complex topography. Cryosphere 13(1):29–40

    Article  ADS  Google Scholar 

  • Olukemi Soneye O (2021) Evaluation of clearness index and cloudiness index using measured global solar radiation data: a case study for a tropical climatic region of Nigeria. Atmósfera 34(1):25–39

    Google Scholar 

  • Pardo H, Lianet HM, Lauritzen PH, Pöhlker M (2022) Impact of advection schemes on tracer interrelationships in large-eddy simulations of deep convection. Mon Weather Rev 150(10):2765–2785

    Article  ADS  Google Scholar 

  • Pareja-Quispe D, Franchito SH, Fernandez JPR (2021) Assessment of the RegCM4 performance in simulating the surface radiation budget and hydrologic balance variables in South America. Earth Syst Environ 5(3):499–518

    Article  Google Scholar 

  • Po-Chedley S et al (2022) Internal variability and forcing influence model-satellite differences in the rate of tropical tropospheric warming. Proc Natl Acad Sci 119(47):e2209431119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purdy AJ, Fisher JB, Goulden ML, Famiglietti JS (2016) Ground heat flux: an analytical review of 6 models evaluated at 88 sites and globally. J Geophys Res Biogeosci 121(12):3045–3059

    Article  Google Scholar 

  • Ramanswamy V et al (1991) Radiative forcing of climate. NASA, Washington, Scientific Assessment of Ozone Depletion

  • Rawls WJ, Brakensiek DL, Saxtonn KE (1982) Estimation of soil water properties. Trans ASAE 25(5):1316–1320

    Article  Google Scholar 

  • Roweis S (1997) EM algorithms for PCA and SPCA. Adv Neural Inform Proc Syst 10:626–32

    Google Scholar 

  • Saeed S, Almazroui M (2019) Impacts of mid-latitude circulation on winter precipitation over the Arabian Peninsula. Clim Dyn 53(9–10):5253–5264

    Article  Google Scholar 

  • Saxton KE, Rawls WJ, Sv Romberger J, Papendick RI (1986) Estimating generalized soil-water characteristics from texture. Soil Sci Soc Am J 50(4):1031–1036

    Article  Google Scholar 

  • Seo M et al (2020) Characteristics of the reanalysis and satellite-based surface net radiation data in the Arctic. J Sens 2020:1–13

    Article  Google Scholar 

  • Shao C et al (2017) Grazing effects on surface energy fluxes in a desert steppe on the Mongolian Plateau. Ecol Appl 27(2):485–502

    Article  PubMed  Google Scholar 

  • Sherwood SC et al (2020) An assessment of earth’s climate sensitivity using multiple lines of evidence. Rev Geophys. https://doi.org/10.1029/2019RG000678

    Article  PubMed  PubMed Central  Google Scholar 

  • Shine KP, Derwent RG, Wuebbles D. Morcrette JJ, Apling AJ (1990) Radiative forcing of climate. In Jenkins G, Houghton J, and Ephraums J (Eds), Climate change: The IPCC scientific assessment, Cambridge University Press, pp. 41–68

  • Taimeh A, Lucke B, Ziadat F, Myriam A (Eds) Atlas of Jordan: history, territories and society, Chapter: The Soils of Jordan. Institut Fraincais de Proche Orient

  • Trenberth KE, Fasullo JT (2009) Global warming due to increasing absorbed solar radiation. Geophys Res Lett 36(7):1–5

    Article  Google Scholar 

  • van den Hoogen J, Lembrechts J, SoilTemp, Nijs I, Lenoir J (2022) Global Soil Bioclimatic variables at 30 arc second resolution (Version 2) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7134169

  • van den Hoogen J, Lembrechts J, Aalto J, Ashcroft M, De Frenne P, Kemppinen J, Kopecký M, Luoto M, Maclean I, Crowther T, Bailey J, Haesen S, Klinges D, Niittynen P, Scheffers B, Van Meerbeek K, SoilTemp Consortium, Nijs I, & Lenoir J. (2021). Global Soil Temperature code and data (Version 2) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7970893

  • Voigt A, Shaw TA (2015) Circulation response to warming shaped by radiative changes of clouds and water vapour. Nat Geosci 8(2):102–106

    Article  ADS  CAS  Google Scholar 

  • Wang Y et al (2022) Spatiotemporal evolution of urban development and surface urban heat island in Guangdong-Hong Kong-Macau Greater Bay Area of China from 2013 to 2019. Resour Conserv Recycl 179:106063

    Article  Google Scholar 

  • Weare BC (1997) Comparison of NCEP–NCAR cloud radiative forcing reanalyses with observations. J Clim 10(9):2200–2209

    Article  ADS  Google Scholar 

  • Wei Y et al (2014) The North American carbon program multi-scale synthesis and terrestrial model intercomparison project-part 2: environmental driver data. Geosci Model Dev 7(6):2875–2893

    Article  ADS  Google Scholar 

  • Wexler H (1956) Variations in insolation, general circulation and climate. Tellus 8(4):480–494

    Article  ADS  Google Scholar 

  • Wigley TML, Raper SCB (1990) Climatic change due to solar irradiance changes. Geophys Res Lett 17(12):2169–2172

    Article  ADS  Google Scholar 

  • Zeng Z et al (2017) Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nat Clim Change 7(6):432–436

    Article  ADS  Google Scholar 

  • Zheng C, Li J (2022) Evaluation of different methods for soil heat flux estimation at large scales using remote sensing observations. In: IGARSS - 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022, pp. 6081–6084. https://doi.org/10.1109/IGARSS46834.2022.9883851

  • Zhou Y et al (2021) A review on global solar radiation prediction with machine learning models in a comprehensive perspective. Energy Convers Manag 235:113960

    Article  Google Scholar 

Download references

Acknowledgements

We would like to extend our deepest appreciation to Michael Ewers, Jack Scheff, and Wenwu Tang from the Department of Geography and Earth Sciences, University of North Carolina at Charlotte, for their contribution. Our gratitude to Journal’s editors and reviewers for valuable comments towards improving this manuscript. Our sincere thanks towards all models institutions; ERA5, NCEP/NCAR, (van den Hoogen et al., 2023) and NASA for making their models outputs available.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fayha Al-Shibli.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Appendix

Appendix

See Figs. 10 and 11.

Fig. 10
figure 10

Contributions of variables to dimensions of Dim1 and Dim2, each contribution is conveyed in percentage

Fig. 11
figure 11

PCA biplot of merging contributors, and correlations

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Shibli, F., Maher, W., Ottom, M.A. et al. Estimating Soil Heat Flux in Jordan Based on ERA5 Parameters and NCEP/NCAR Energy Outputs: Definite Radiative Forcing of Climate Change Using PCA. Earth Syst Environ (2024). https://doi.org/10.1007/s41748-024-00374-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41748-024-00374-4

Keywords

Navigation