Skip to main content
Log in

Atmospheric Correction Algorithms Assessment for Sentinel-2A Imagery over Inland Waters of China: Case Study, Qiandao Lake

  • Original Article
  • Published:
Earth Systems and Environment Aims and scope Submit manuscript

Abstract

Around 90% of the oceanic and inland waters’ reflectance registered in satellite detectors comes from the atmospheric contribution. Hence the water-leaving radiances in the Near-InfraRed (NIR) region are above the zero value over inland waters because of sediments and dissolved organic particles, this radiance cannot be ignored. To accurately retrieve water quality parameters from water-leaving reflectance, atmospheric correction is the most important step. This study evaluated five reliable atmospheric correction algorithms (AC) known as: (ACOLITE, C2RCC, iCOR, 6SV, and Sen2Cor) against optical in-situ measurements collected above the water in Qiandao Lake, China using Sentinel-2 Multi-Spectral Imager. 60 in-situ water samples and optical measurements (range 400–900 nm) above the water were collected at different points in Qiandao Lake. The spectra measurements were used to validate the atmospheric correction processors. All ACs that were evaluated showed high levels of uncertainty. ACOLITE and ICOR performed the best statistics with root mean square differences (RMSD) (0.006 sr−1) while Sen2Cor achieved the lowest RMSD (0.023 sr−1) across the different modules. ACOLITE, had a better performance when applied to meso- and hypereutrophic waters, compared with oligotrophic, while C2RCC performs better at the wavelength of 833 nm (0.007 sr−1). Finally, 6S performs better at the wavelength of 665 nm (0.015 sr−1). This study introduces insights and addresses a significant research gap in the field of atmospheric correction for satellite imagery over inland waters. Prior studies have primarily focused on atmospheric correction algorithms for coastal and open ocean environments while few studies focused on the unique characteristics and challenges associated with inland water bodies. The findings of this study are crucial for researchers, remote sensing experts, and environmental scientists working with Sentinel-2A imagery, as it enables them to make more accurate and reliable interpretations of water quality and other environmental parameters derived from satellite data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7.
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data presented in this study are available on request from the corresponding website.

References

  • Allama M, Mhawej M, Meng Q, Faour G, Abunnasr Y, Fadel A, Xinli H (2021) Monthly 10-m evapotranspiration rates retrieved by SEBALI with Sentinel-2 and MODIS LST data. Agric Water Manag 243:106432

    Article  Google Scholar 

  • Bassani C, Manzo C, Braga F, Bresciani M, Giardino C, Alberotanza L (2015) The impact of the microphysical properties of aerosol on the atmospheric correction of hyperspectral data in coastal waters. Atmos Meas Tech 8(3):1593–1604

    Article  Google Scholar 

  • Berk A, Anderson GP, Acharya PK, Bernstein LS, Muratov L, Lee J, Fox, M, Adler-Golden SM, Chetwynd JH Jr, Hoke ML, et al (2006) MODTRAN5: 2006 update. In: Algorithms and technologies for multispectral, hyperspectral, and ultraspectral imagery XII, pp 508–515

  • Bresciani M, Cazzaniga I, Austoni M, Sforzi T, Buzzi F, Morabito G, Giardino C (2018) Mapping phytoplankton blooms in deep subalpine lakes from Sentinel-2A and Landsat-8. Hydrobiologia 824(1):197–214

    Article  CAS  Google Scholar 

  • Brockmann C, Doerffer R, Peters M, Kerstin S, Embacher S, Ruescas A (2016) Evolution of the C2RCC neural network for Sentinel 2 and 3 for the retrieval of ocean colour products in normal and extreme optically complex waters. ESASP 740:54

    ADS  Google Scholar 

  • Carlson RE (1977) A trophic state index for lakes 1. Limnol Oceanogr 22:361–369

    Article  CAS  ADS  Google Scholar 

  • De Keukelaere L, Sterckx S, Adriaensen S, Knaeps E, Reusen I, Giardino C, Bresciani M, Hunter P, Neil C, Van der Zande D, Vaiciute D (2018) Atmospheric correction of Landsat-8/OLI and Sentinel-2/MSI data using iCOR algorithm: validation for coastal and inland waters. Eur J Remote Sens 51(1):525–542

    Article  Google Scholar 

  • Dona C, Chang N-B, Caselles V, Sánchez JM, Camacho A, Delegido J, Vannah BW (2015) Integrated satellite data fusion and mining for monitoring lake water quality status of the Albufera de Valencia in Spain. J Environ Manag 151:416–426

    Article  CAS  Google Scholar 

  • Doxani G, Vermote E, Roger JC, Gascon F, Adriaensen S, Frantz D, Hagolle O, Hollstein A, Kirches G, Li F, Louis J, Mangin A, Pahleva N, Pflug B, Vanhellmont Q (2018) Atmospheric correction inter-comparison eXercise. Remote Sens (basel) 10(2):352

    Article  PubMed  ADS  Google Scholar 

  • Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, Hoersch B, Isola C, Laberinti P, Martimort P (2012) Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens Environ 120:25–36

    Article  ADS  Google Scholar 

  • Gao B-C, Montes MJ, Davis CO, Goetz AFH (2009) Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean. Remote Sens Environ 113:S17–S24

    Article  Google Scholar 

  • Gordon HR (1978) Removal of atmospheric effects from satellite imagery of the oceans. Appl Opt 17(10):1631–1636

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  • Gordon HR (1997) Atmospheric correction of ocean color imagery in the earth observing system era. J Geophys Res Atmos 102(D14):17081–17106

    Article  ADS  Google Scholar 

  • Gordon HR, Wang M (1994) Influence of oceanic whitecaps on atmospheric correction of ocean-color sensors. Appl Opt 33(33):7754–7763

    Article  CAS  PubMed  ADS  Google Scholar 

  • Gordon HR, Clark DK, Hovis WA, Austin RW, Yentsch CS (1985) Ocean color measurements. Adv Geophys 27:297–333

    Article  ADS  Google Scholar 

  • Groetsch PMM, Gege P, Simis SGH, Eleveld MA, Peters SWM (2017) Validation of a spectral correction procedure for sun and sky reflections in above-water reflectance measurements. Opt Express 25(16):A742–A761

    Article  CAS  PubMed  ADS  Google Scholar 

  • Gu Q, Zhang Y, Ma L, Li J, Wang K, Zheng K, Zhang X, Sheng L (2016a) Assessment of reservoir water quality using multivariate statistical techniques: a case study of Qiandao Lake, China. Sustainability 8:243

    Article  Google Scholar 

  • Gu Q, Hu H, Sheng L, Ma L, Li J, Zhang X, An J, Zheng K et al (2016b) Temporal and spatial variations evaluation in water quality of Qiandao lake reservoir, China. Fresen Environ Bull 25:3280–3289

    CAS  Google Scholar 

  • Guanter L, Del Carmen González-Sanpedro M, Moreno J (2007) A method for the atmospheric correction of ENVISAT/MERIS data over land targets. Int J Remote Sens 28:709–728

    Article  Google Scholar 

  • Harmel T, Chami M, Tormos T, Reynaud N, Danis P-A (2018) Sunglint correction of the multi-spectral instrument (MSI)-SENTINEL-2 imagery over inland and sea waters from SWIR bands. Remote Sens Environ 204:308–321

    Article  ADS  Google Scholar 

  • Kaufman YJ, Sendra C (1988) Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. Int J Remote Sens 9:1357–1381

    Article  Google Scholar 

  • Kharazmi R, Rahdari MR, Rodríguez-Seijo A, Elhag M (2023) Long-term time series analysis of land cover changes in an arid environment using landsat data: (a case study of Hamoun Biosphere Reserve, Iran). Desert 28(1):123–144

    Google Scholar 

  • Khattab MFO, Merkel BJ (2014) Application of Landsat 5 and Landsat 7 images data for water quality mapping in Mosul Dam Lake, Northern Iraq. Arab J Geosci 7(9):3557–3573

    Article  Google Scholar 

  • Kotchenova SY, Vermote EF, Matarrese R, Klemm FJ Jr (2006) Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: path radiance. Appl Opt 45:6762–6774

    Article  PubMed  ADS  Google Scholar 

  • Li T, Zhu B, Cao F, Sun H, He X, Liu M, Gong F, Bai Y (2021a) Monitoring changes in the transparency of the largest reservoir in eastern China in the past decade, 2013–2020. Remote Sens 13:2570

    Article  ADS  Google Scholar 

  • Li H, Kuang R, Song Z (2021b) Evaluation of atmospheric correction methods for sentinel-2 image—a case study of Poyang Lake. Spacecr Recov Remote Sens 42(4):108–119

    Google Scholar 

  • Liu G, Li Y, Lyu H, Wang S, Du C, Huang C (2015) An improved land target-based atmospheric correction method for Lake Taihu. IEEE J Sel Top Appl Earth Obs Remote Sens 9:793–803

    Article  ADS  Google Scholar 

  • Main-Knorn M, Pflug B, Louis J, Debaecker V, Müller-Wilm U, Gascon F (2017) Sen2Cor for sentinel-2. SPIE 3

  • Martins VS, Barbosa CCF, De Carvalho LAS, Jorge DSF, Lobo FDL, Novo EMLDM (2017) Assessment of atmospheric correction methods for Sentinel-2 MSI images applied to Amazon Floodplain Lakes. Remote Sens 9(4):322. https://doi.org/10.3390/rs9040322

    Article  ADS  Google Scholar 

  • Matthews MW (2011) A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. Int J Remote Sens 32(21):6855–6899

    Article  Google Scholar 

  • Mobley CD (1999) Estimation of the remote-sensing reflectance from above-surface measurements. Appl Opt 38:7442–7455

    Article  CAS  PubMed  ADS  Google Scholar 

  • Mograne MA, Jamet C, Loisel H, Vantrepotte V, Mériaux X, Cauvin A (2019) Evaluation of five atmospheric correction algorithms over french optically-complex waters for the Sentinel-3A OLCI ocean color sensor. Remote Sens 11(6):668

    Article  ADS  Google Scholar 

  • Moses WJ, Sterckx S, Montes MJ, De Keukelaere L, Knaeps E (2017) Chapter 3—Atmospheric correction for inland waters. In: Mishra DR, Ogashawara I, Gitelson AA (eds) Bio-optical modeling and remote sensing of inland waters. Elsevier, Amsterdam, pp 69–100

    Chapter  Google Scholar 

  • Naz S, Iqbal MF, Mahmood I, Allam M (2021) Marine oil spill detection using synthetic aperture radar over Indian Ocean. Mar Pollut Bull 162:111921

    Article  CAS  PubMed  Google Scholar 

  • Pahlevan N, Schott JR, Franz BA, Zibordi G, Markham B, Bailey S, Schaaf CB, Ondrusek M, Greb S, Strait CM (2017a) Landsat 8 remote sensing reflectance (Rrs) products: evaluations, intercomparisons, and enhancements. Remote Sens Environ 190:289–301

    Article  ADS  Google Scholar 

  • Pahlevan N, Sarkar S, Franz BA, Balasubramanian SV, He J (2017b) Sentinel-2 MultiSpectral Instrument (MSI) data processing for aquatic science applications, demonstrations and validations. Remote Sens Environ 201:47–56

    Article  ADS  Google Scholar 

  • Park Y-J, Ruddick K (2005) Model of remote-sensing reflectance including bidirectional effects for case 1 and case 2 waters. Appl Opt 44(7):1236–1249

    Article  PubMed  ADS  Google Scholar 

  • Pereira-Sandoval M, Ruescas A, Urrego P, Ruiz-Verdú A, Delegido J, Tenjo C, Soria-Perpinyà X, Vicente E, Soria J, Moreno J (2019) Evaluation of atmospheric correction algorithms over Spanish inland waters for sentinel-2 multi spectral imagery data. Remote Sens 11:1469

    Article  ADS  Google Scholar 

  • Pisanti A, Magri S, Ferrando I, Federici B (2022) Sea water turbidity analysis from Sentinel-2 images: atmospheric correction and bands correlation. Int Arch Photogramm Remote Sens Spatial Inf Sci XLVIII-4/W1-2022:371–378

    Article  Google Scholar 

  • Pyo J, Hong SM, Jang J, Park S, Park J, Noh JH, Cho KH (2022) Drone-borne sensing of major and accessory pigments in algae using deep learning modeling. GISci Remote Sens 59(1):310–332

    Article  Google Scholar 

  • Reinersman PN, Carder KL (1995) Monte Carlo simulation of the atmospheric point-spread function with an application to correction for the adjacency effect. Appl Opt 34(21):4453–4471

    Article  CAS  PubMed  ADS  Google Scholar 

  • Richter R (1990) A fast atmospheric correction algorithm applied to Landsat TM images. Int J Remote Sens 11(1):159–166

    Article  Google Scholar 

  • Santer R, Schmechtig C (2000) Adjacency effects on water surfaces: primary scattering approximation and sensitivity study. Appl Opt 39(3):361–375

    Article  CAS  PubMed  ADS  Google Scholar 

  • Sentas A, Psilovikos A, Karamoutsou L, Charizopoulos N (2018) Monitoring, modeling and assessment of water quality and quantity in River Pinios, using ARIMA models. Desalin Water Treat 133:336–347

    Article  CAS  Google Scholar 

  • Shahbandeh M, Elhag M (2023) Microclimate changes and trend analysis of remotely sensed environmental parameters in West Asia semi-arid region. Environ Dev Sustain 1–15

  • Simis SGH, Olsson J (2013) Unattended processing of shipborne hyperspectral reflectance measurements. Remote Sens Environ 135:202–221

    Article  ADS  Google Scholar 

  • Simis SGH, Peters SWM, Gons HJ (2005) Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water. Limnol Oceanogr 50:237–245

    Article  CAS  ADS  Google Scholar 

  • Steinmetz F, Deschamps P-Y, Ramon D (2011) Atmospheric correction in presence of sun glint: application to MERIS. Opt Express 19(10):9783–9800

    Article  PubMed  ADS  Google Scholar 

  • Sterckx S, Knaeps S, Kratzer S, Ruddick K (2015) SIMilarity Environment Correction (SIMEC) applied to MERIS data over inland and coastal waters. Remote Sens Environ 157:96–110

    Article  ADS  Google Scholar 

  • Vanhellemont Q (2019) Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives. Remote Sens Environ 225:175–192

    Article  ADS  Google Scholar 

  • Vanhellemont Q, Ruddick K (2015) Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8. Remote Sens Environ 161:89–106

    Article  ADS  Google Scholar 

  • Vanhellemont Q, Ruddick K (2018) Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications. Remote Sens Environ 216:586–597

    Article  ADS  Google Scholar 

  • Vermote EF, Tanré D, Deuze JL, Herman M, Morcette J-J (1997) Second simulation of the satellite signal in the solar spectrum, 6S: an overview. IEEE Trans Geosci Electron 35:675–686

    ADS  Google Scholar 

  • Wang M, Bailey SW (2001) Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products. Appl Opt 40(27):4790–4798

    Article  CAS  PubMed  ADS  Google Scholar 

  • Wang X, Gong Z, Pu R (2018) Estimation of chlorophyll a content in inland turbidity waters using WorldView-2 imagery: a case study of the Guanting Reservoir, Beijing, China. Environ Monit Assess 190(10):1–16

    Article  Google Scholar 

  • Warren MA, Simis SG, Martinez-Vicente V, Poser K, Bresciani M, Alikas K, Spyrakos E, Giardino C, Ansper A (2019) Assessment of atmospheric correction algorithms for the Sentinel-2A MultiSpectral Imager over coastal and inland waters. Remote Sens Environ 225:267–289

    Article  ADS  Google Scholar 

  • Wu Z, Zhang Y, Zhou Y, Liu M, Shi K, Yu Z (2015) Seasonal-spatial distribution and long-term variation of transparency in N’anjiang Reservoir: Implications for reservoir management. Int J Environ Res Public Health 12:9492–9507

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu J, Lei S, Bi S, Li Y, Lyu H, Xu J, Xu X, Mu M, Miao S, Zeng S (2020) Tracking spatio-temporal dynamics of POC sources in eutrophic lakes by remote sensing. Water Res 168:115162

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Hu Z, Liu Q, Ren L, Chen L, Li P et al (2013) Evaluation of water quality by two trophic state indices in Lake Qiandaohu during 2007–2011. J Shanghai Ocean Univ 22:240–245

    Article  Google Scholar 

  • Zeng S, Li Y, Lyu H, Xu J, Dong X, Wang R, Yang Z, Li J (2020) Mapping spatio-temporal dynamics of main water parameters and understanding their relationships with driving factors using GF-1 images in a clear reservoir. Environ Sci Pollut Res 27:33929–33950

    Article  CAS  Google Scholar 

  • Zhou Y, He B, Fu C, Xiao F, Feng Q, Liu H, Zhou X, Yang X, Du Y (2021) An improved Forel-Ule index method for trophic state assessments of inland waters using Landsat 8 and sentinel archives. GISci Remote Sens 58(8):1316–1334

    Article  Google Scholar 

Download references

Funding

This research was funded by FY-3 Lot 03 Meteorological Satellite Engineering Ground Application System Ecological Monitoring and Assessment Application Project (Phase I): ZQC-R22227, National Natural Science Foundation of China (42201384), and National Natural Science Foundation of China (42171357).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyan Meng.

Ethics declarations

Conflict of interest

All the authors declare that there is no conflict of interest.

Appendix 1

Appendix 1

See Table 3.

Table 3 Statistics for the match-ups in the Qiandao Lake

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allam, M., Meng, Q., Elhag, M. et al. Atmospheric Correction Algorithms Assessment for Sentinel-2A Imagery over Inland Waters of China: Case Study, Qiandao Lake. Earth Syst Environ 8, 105–119 (2024). https://doi.org/10.1007/s41748-023-00366-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41748-023-00366-w

Keywords

Navigation