Skip to main content

Advertisement

Log in

Projected Drought Events over West Africa Using RCA4 Regional Climate Model

  • Original Article
  • Published:
Earth Systems and Environment Aims and scope Submit manuscript

Abstract

This study presents projected drought trend by Standardized Precipitation Evapotranspiration Index (SPEI) and Standardized Precipitation Index (SPI) under RCP4.5 and RCP8.5 scenarios. The Rossby Center Atmospheric Regional Model (RCA4) datasets obtained from the Coordinated Regional Climate Downscaling Experiment over West Africa were used for the study for projected period between 2011 and 2100. The ability of the RCA4 to reproduce the past climate was evaluated using Climate Research Unit (CRU) dataset. Drought classification and trends in seasonal and annual variability using Mann–Kendall trend test at 95% confidence level were also examined. The results show that RCA4 replicates observed climate of West Africa, evident by strong correlation between the output of the model and CRU dataset. Strong correlation exists between SPI and SPEI at 95% confidence level. The RCA4 model projects a distinct humid period between 2011 and 2060 and drier period from the early 2060s till the year 2100 under RCP4.5 and 8.5 pathways. Projected drought events by the two indices show that areas north of 12°N of West Africa will be hot spot area for mildly and moderately dry events, while the southern part of West Africa will witness pronounced severe and extreme dry events under the two RCPs. Under RCP4.5, SPI trend shows an insignificant increase in almost all the seasons, while the increase is significant in SPEI. At RCP8.5 scenario, SPEI projects a significant decreasing trend in drought events over the three climatic zones and in almost all seasons. The result may be applied to a sustainable climate change adaptation plan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abatan AA, Abiodun BJ, Gutowski WJ, Rasaq-Balogun SO (2017) Trends and variability in absolute indices of temperature extremes over Nigeria: linkage with NAO. Int J Climatol. https://doi.org/10.1002/joc.5196

    Article  Google Scholar 

  • Abiodun BJ, Makhanya N, Petja B, Abatan AA, Oguntunde PG (2018) Future projection of droughts over major river basins in Southern Africa at specific global warming levels. Theor Appl Climatol. https://doi.org/10.1007/s00704-018-2693-0

    Article  Google Scholar 

  • Abiodun BJ, Salami AT, Matthew OJ, Odedokun S (2013) Potential impacts of afforestation on climate change and extreme events in Nigeria. Clim Dyn 41(2):277–293. https://doi.org/10.1007/s00382-012-1523-9

    Article  Google Scholar 

  • Adefolalu DO (2007) Climate change and economic sustainability in Nigeria. In: International conference on climate change and economic sustainability held at Nnamdi Azikiwe University, Nigeria, pp 1–12

  • Adefolalu DO (1988) Precipitation trends, evaporation and the ecological zones of Nigeria. Theoret Appl Climatol 39:81–89

    Google Scholar 

  • Afiesimama EA, Pal JS, Abiodun BJ, Gutowski WJ Jr, Adedoyin A (2006) Simulation of West African monsoon using the RegCM3. Part I: model validation and interannual variability. Theor Appl Climatol 86(1–4):23–37

    Google Scholar 

  • Akinsanola AA, Ogunjobi KO, Gbode IE, Ajayi VO (2015) Assessing the capabilities of three regional climate models over CORDEX Africa in simulating West African summer monsoon precipitation. Adv Meteorol 2015:1–13

    Google Scholar 

  • Akinsanola AA, Zhou W (2018) Projections of West African summer monsoon rainfall extremes from two CORDEX models. W Clim Dyn. https://doi.org/10.1007/s00382-018-4238-8

    Article  Google Scholar 

  • Begueria S, Vicente-Serrano SM, Reig F, Latorre B (2014) Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int J Climatol 34(10):3001–3023

    Google Scholar 

  • Bryant E (2005) Natural hazards. Cambridge University Press, Cambridge

    Google Scholar 

  • Chen ST, Kuo CC, Yu PS (2009) Historical trends and variability of meteorological droughts in Taiwan. Hydrol Sci J 54(3):430–441

    Google Scholar 

  • Clarke LE, Edmonds JA, Jacoby HD, Pitcher H, Reilly JM, Richels R (2007) Scenarios of greenhouse gas emissions and atmospheric concentrations. Sub-report 2.1a of synthesis and assessment product 2.1. Climate Change Science Program and the Subcommittee on Global Change Research, Washington, DC

  • Collins M, Knutti R, Arblaster JM, Dufresne JL, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Longterm climate change: projections, comments and irreversibility. In: Stocker TF, Qin D, Plattner GK (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1029–1136

    Google Scholar 

  • Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim 19:4605–4630

    Google Scholar 

  • Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev Clim Change 2:45–65

    Google Scholar 

  • Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Change 3:52–58

    Google Scholar 

  • Déqué M, Rowell DP, Luthi D, Giorgi F, Christensen JH, Rockel B, Jacob D, Kjellström E, de Castro M, van den Hurk B (2017) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Clim Change 81(S1):53–70

    Google Scholar 

  • Diallo I, Sylla M, Giorgi F, Gaye A, Camara M (2012) Multimodel GCM-RCM ensemble-based projections of temperature and precipitation over west Africa for the early 21st century. Int J Geogr. https://doi.org/10.1155/2012/972896

    Article  Google Scholar 

  • Donohue RJ, McVicar TR, Roderick ML (2010) Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. J Hydrol 386(1–4):186–197

    Google Scholar 

  • Druyan LM (2011) Studies of 21st-century precipitation trends over West Africa. Int J Climatol 31:1415–1424. https://doi.org/10.1002/joc.2180

    Article  Google Scholar 

  • Du J, Fang J, Xu W, Shi P (2012) Analysis of dry/wet conditions using the standardized precipitation index and its potential usefulness for drought/flood monitoring in Hunan Province. China Stoch Environ Res Risk Assess 27(2):377–387. https://doi.org/10.1007/s00477-012-0589-6

    Article  Google Scholar 

  • EM-DAT (2014) https://www.emdat.be/disaster-list

  • Fujino J, Nair R, Kainuma M, Masui T, Matsuoka Y (2006) Multigas mitigation analysis on stabilization scenarios using aim global model. Energy J Spec Issue 3:343–354

    Google Scholar 

  • Gbode IE, Adeyeri OE, Menang KP, Intsiful JDK, Ajayi VO, Omotosho JA, Akinsanola AA (2019) Observed changes in climate extremes in Nigeria. Meteorol Appl. https://doi.org/10.1002/met.1791

    Article  Google Scholar 

  • Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Bader J, Böttinger M, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J Adv Model Earth Syst 5(3):572–597

    Google Scholar 

  • Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. World Meteorol Org WMO Bull 58(3):175

    Google Scholar 

  • Grist JP, Nicholson SE (2001) A study of the dynamic factors influencing the rainfall variability in the West African Sahel. J Clim 14:1337–1359

    Google Scholar 

  • Hagos SM, Cook KH (2008) Ocean warming and late-twentieth-century Sahel drought and recovery. J Clim 21(15):3797–3814. https://doi.org/10.1175/2008JCLI2055.1

    Article  Google Scholar 

  • Hargreaves GL, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1:96–99

    Google Scholar 

  • Harris I, Jone PD, Osborn TJ, Lister DH (2014a) Updated high-resolution grids of monthly climatic observations—the CRUTS3.10 Dataset. Int J Climatol 34:623–642. https://doi.org/10.1002/joc.3711

    Article  Google Scholar 

  • Harris IPDJ, Jones PD, Osborn TJ, Lister DH (2014b) Updated high resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int J Climatol 34(3):623–642

    Google Scholar 

  • Hartmann DL, Klein-Tank AMG, Rusticucci M, Alexander LV, Bronnimann S, Charabi Y, Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A, Soden BJ, Thorne PW, Wild W, Zhai PM (2013) Observations: atmosphere and surface. In: Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 159–254

  • Hijioka Y, Matsuoka Y, Nishimoto H, Masui T, Kainuma M (2008) Global GHG emission scenarios under GHG concentration stabilization targets. J Glob Environ Eng 13:97–108

    Google Scholar 

  • Hourdin F et al (2010) AMMA model intercomparison project. Bull Am Meteorol Soc 91(1):95–104

    Google Scholar 

  • Hulme M, Doherty R, Ngara T, New M, Lister D (2001) African climate change: 1900–2100. Clim Res 17:145–168. https://doi.org/10.3354/cr017145

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (2013) The physical science basis, summary for policymakers. In: Stocker TF, Qin D, Plattner GK, Tignor MMB, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Working group contribution to the IPCC fifth assessment report, climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • James HS, Tallaksen LM, Xu CY, Van Lanen HAJ (2014) Standardized precipitation evapotranspiration index (SPEI): Sensitivity to potential evapotranspiration model and parameters. Hydrology in a Changing World: Environmental and Human Dimensions Proceedings of FRIEND. IAHS Publ. 363

  • Jenkins G (2003) Challenges and limitations of regional climate model simulations in West Africa for present and future climate conditions. Talk presented at ICTP workshop on regional climate modelling, 26 May–3 June 2003, Trieste, Italy. https://www.ictp.trieste.it/~pubregcm/RegCM3/workshop.htm#s7

  • Jenkins GS (1997) The 1988 and 1990 summer season simulations for West Africa using a regional climate model. J Clim 10(6):1255–1272

    Google Scholar 

  • Joetzjer E, Douville H, Delire C, Ciais P, Decharme B, Tyteca S (2012) Evaluation of drought indices at interannual to climate change timescales: a case study over the Amazon and Mississippi river basins. Hydrol Earth Syst Sci Discuss 9:13231–13249

    Google Scholar 

  • Jones C, Giorgi F, Asrar G (2011) The coordinated regional downscaling experiment: CORDEX: an international downscaling link to CMIP5. CLIVAR exchanges, no. 56, International CLIVAR Project Office, Southampton, United Kingdom, pp 34–40

  • Kendall MG (1975) Rank correlation methods; Charles Griffin book series. E. Arnold, London

    Google Scholar 

  • Klutse NAB, Ajayi VO, Gbobaniyi EO, Egbebiyi TS, Kouadio K, Nkrumah F, Quagraine KA, Olusegun C, Diasso U, Abiodun BJ, Lawal K (2018) Potential impact of 1.5 °C and 2 °C global warming on consecutive dry and wet days over West Africa. Environ Res Lett 13(5):055013

    Google Scholar 

  • Lebel T, Ali A (2009) Recent trends in the Central and Western Sahel rainfall regime (1990–2007). J Hydrol 375(1–2):52–64. https://doi.org/10.1016/j.jhydrol.2008.11.030

    Article  Google Scholar 

  • Mahe G, L'Hote Y, Olivry JC, Wotling G (2001a) Trends and discontinuities in regional rainfall of West and Central Africa: 1951–1989. Hydrol Sci 42(2):211–226. https://doi.org/10.1080/02626660109492817

    Article  Google Scholar 

  • Mahe GY, L'Hote JC, Olivry WG (2001b) Trends and discontinuities in regional rainfall of West and Central Africa: 1951–1989. Hydrol Sci J 46(2):211–226. https://doi.org/10.1080/02626660109492817

    Article  Google Scholar 

  • Malhi Y, Wright J (2004) Spatial patterns and recent trends in the climate of tropical rainforest regions. Philos Trans R Soc Lond B 359:311–329. https://doi.org/10.1098/rstb.2003.1433

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Google Scholar 

  • Masih I, Maskey S, Mussá FEF, Trambauer P (2014) A review of droughts on the African continent: a geospatial and long-term perspective. Hydrol Earth Syst Sci 18:3635–3649. https://doi.org/10.5194/hess-18-3635-2014

    Article  Google Scholar 

  • McKee TB, Doesken NJ, Kleist J (1993a) The relationship of drought frequency and duration to time scales. In: Preprints, eighth conference on applied climatology, Anaheim, CA, American Meteor Society, pp 179–184

  • McKee TB, Doesken NJ, Kleist J (1993b) The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th conference on applied climatology, vol 17, no 22. American Meteorological Society, Boston, pp 179–183

  • McMahon TA, Peel MC, Karoly DJ (2015) Assessment of precipitation and temperature data from CMIP3 global climate models for hydrologic simulation. Hydrol Earth Syst Sci 19:361–377

    Google Scholar 

  • Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391:202–216

    Google Scholar 

  • Monteith JL (1965) Evaporation and environment. In: Symposia of the society for experimental biology, vol 19. Cambridge University Press, Cambridge, pp 205–234

  • Nicholson S (2005) On the question of the “recovery” of the rains in the West African Sahel. J Arid Environ 63(3):615–641

    Google Scholar 

  • Nicholson SE (2013) The West African Sahel: a review of recent studies on the rainfall regime and its interannual variability. ISRN Meteorol, Article ID 453521. https://doi.org/10.1155/2013/453521

  • Nikulin G, Lennard C, Dosio A, Kjellström E, Chen Y, Hänsler A, Kupiainen M, Laprise R, Mariotti L, Maule CF, van Meijgaard E, Panitz HJ, Scinocca JF, Somot S (2018) The effects of 1.5 and 2 degrees of global warming on Africa in the CORDEX ensemble. Environ Res Lett 13(6):065003

    Google Scholar 

  • Oguntunde PG, Abiodun BJ, Lischeid G (2011) Rainfall trends in Nigeria, 1901–2000. J Hydrol 411:207–218. https://doi.org/10.1016/jhydrol.2011.09.037

    Article  Google Scholar 

  • Oguntunde PG, Lischeid G, Abiodun BJ, Dietricha O (2016) Analysis of long-term dry and wet conditions over Nigeria. Int J Climatol 10:10. https://doi.org/10.1002/joc.4938

    Article  Google Scholar 

  • Ogunjo ST, Ife-Adediran OO, Owoola EO, Fuwape IA (2018) Quantification of historical drought conditions over different climatic zones of Nigeria. Acta Geophysica 1–11. https://doi.org/10.1007/s11600-019000279-1

  • Oguntunde PG, Lischeid G, Abiodun BJ, Dietrich O (2014) Analysis of spatial and temporal patterns in onset, cessation and length of growing season in Nigeria. Agric For Meteorol 194:77–87

    Google Scholar 

  • Oguntunde PG, Lischeid G, Abiodun BJ (2017) Dietrich O (2017) Analysis of long-term dry and wet conditions over Nigeria. Int J Climatol 37(9):3577–3586. https://doi.org/10.1002/joc.4938

    Article  Google Scholar 

  • Omotosho JB, Abiodun BJ (2007) A numerical study of moisture build-up and rainfall over West Africa. Meteorol Appl 14(3):209–225. https://doi.org/10.1002/met11

    Article  Google Scholar 

  • Oyebande L, Balogun I (1992) Water resources management in the semi-arid regions of Nigeria. Can J Dev Stud Spec Issue 13:209–226

    Google Scholar 

  • Padgham J, Jabbour J, Dietrich K (2015) Managing change and building resilience: a multi-stressor analysis of urban and peri-urban agriculture in Africa and Asia. Urban Clim 12:183–204. https://doi.org/10.1016/j.uclim.2015.04.003

    Article  Google Scholar 

  • Panu US, Sharma TC (2002) Challenges in drought research: some perspectives and future directions. Hydrolog Sci J 47(S1):S19–S30

    Google Scholar 

  • Popke D, Stevens B, Voigt A (2013) Climate and climate change in a radiative-convective equilibrium version of ECHAM6. J Adv Model Earth Syst 5(1):1–14. https://doi.org/10.1029/2012MS000191

    Article  Google Scholar 

  • Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla A, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Cilmate models and their evaluation. In: Solomon S, Qin D, Manning N, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds.) Climate change: the physical science basis. contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Reifen C, Toumi R (2009) Climate projections: past performance on guarantee of future skill? Geophys Res Lett 36:L13704

    Google Scholar 

  • Riahi K, Rao S, Krey V, Cheolhung CC, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5-a scenario of comparatively high greenhouse gas emissions. Clim Change 109:33–57. https://doi.org/10.1007/s10584-011-0149-y

    Article  Google Scholar 

  • Samuelsson P, Gollvik S, Kupiainen M, Kourzeneva E, van de Berg WJ (2015) The surface processes of the Rossby Centre regional atmospheric climate model (RCA4). Technical report 157, Climate Research-Rossby Centre

  • Segele ZT, Leslie LM, PJ Lamba (2009) Evaluation and adaptation of a regional climate model for the Horn of Africa: rainfall climatology and interannual variability. Int J Climatol 29(1):47–65

    Google Scholar 

  • Seneviratne SI, Nicholls N, Easterling D, Goodess CM, Kanae S, Kossin J, Luo Y, Marengo J, McInnes K, Rahimi M, Reichstein M, Sorteberg A, Vera C, Zhang X (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge University Press, Cambridge, pp 109–230

  • Smith SJ, Wigley TML (2006) Multigas forcing stabilization with minicam. Energy J Spec Issue 3:373–392

    Google Scholar 

  • Sordo-Ward A, Bejarano MD, Iglesias A, Asenjo V, Garrote L (2017) Analysis of current and future SPEI droughts in the La Plata basin based on results from the regional eta climate model. Water 9(11):857

    Google Scholar 

  • Spinoni J, Antofie T, Barbosa P, Bihari Z, Lakatos M, Szalai S, Szentimrey T, Vogt J (2013) An overview of drought events in the Carpathian Region in 19612010. Adv. Sci. Res 10:21–32

    Google Scholar 

  • Spinoni J, Naumann G, Carrao H, Barbosa P, Vogt J (2014) World drought frequency, duration, and severity for 1951–2010. Int J Climatol 34:2792–2804. https://doi.org/10.1002/joc3875

    Article  Google Scholar 

  • Sun Y, Solomon S, Dai A, Portmann RW (2006) How often does it rain? J Clim 19(6):916–934

    Google Scholar 

  • Sylla MB, Gaye AT, Jenkins GS, Pal JS, Giorgi F (2010) Consistency of projected drought over the Sahel with changes in the monsoon circulation and extremes in a regional climate model projections. J Geophys Res Atmos 115:D16108. https://doi.org/10.1029/2009JD012983

    Article  Google Scholar 

  • Sylla MB, Nikiema PM, Gibba P, Kebe I, Klutse NAB (2016) Climate change over West Africa: recent trends and future projections. Springer, New York. https://doi.org/10.1007/978-3-319-31499-03

    Article  Google Scholar 

  • Tall M, Sylla MB, Diallo I, Pal JS, Faye A, Mbaye ML, Gaye AT (2016) Projected impact of climate change in the hydroclimatology of Senegal with a focus over the Lake of Guiers for the twenty-first century. Theor Appl Climatol. https://doi.org/10.1007/s00704-016-1805-y

    Article  Google Scholar 

  • Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, Delgado-Arias S, Bond-Lamberty B, Wise MA, Clarke LE, Edmonds JA (2011) RCP4.5: a pathway for stabilization of radiative forcing by 2100. Clim Change 109(1):77. https://doi.org/10.1007/s10584-011-0151-4

    Article  Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94

    Google Scholar 

  • Van der Schrier G, Barichivich J, Briffa KR, Jones PD (2013) A scPDSI-based global dataset of dry and wet spells for 1901–2009. J Geophys Res 118:4025–4048

    Google Scholar 

  • Van Vuuren DP, Lucas PL, Hilderink H (2007) Downscaling drivers of global environmental change: enabling use of global SRES scenarios at the national and grid levels. Glob Environ Change 17:114–130

    Google Scholar 

  • Vicente-Serrano SM, Beguería S, Gimeno L, Eklundh L, Giuliani G, Weston D, El Kenawy A, López-Moreno JI, Nieto R, Ayenew T, Konte D, Ardö J, Pegram GGS (2012) Challenges for drought mitigation in Africa: the potential use of geospatial data and drought information systems. Appl Geogr 34:471–486. https://doi.org/10.1016/j.apgeog.2012.02.001

    Article  Google Scholar 

  • Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index. J Clim 23:1696–1718

    Google Scholar 

  • Vicente-Serrano SM, Beguería S, López-Moreno JI, Angulo M, El Kenawy A (2010) A new global 0.5 gridded dataset (1901–2006) of a multiscalar drought index: comparison with current drought index datasets based on the Palmer Drought Severity Index. J Hydrometeorol 11:1033–1043

    Google Scholar 

  • Wang W, Van Gelder PHAJM, Vrijling JK (2005) Trend and stationarity analysis for streamflow processes of rivers in Western Europe in the 20th century. In: Proceedings of the IWA international conference on water economics, statistics, and finance, Rethymno, Greece, 8–10, p 810

  • Wang Y, Sen OL, Wang B (2003) A highly resolved regional climate model (IPRC-RegCM) and its simulation of the 1998 severe precipitation event over China. Part I. Model description and verification of simulation. J Clim 16(11):1721–1738

    Google Scholar 

  • Wise M, Calvin K, Thomson A, Clarke L, Bond-Lamberty B, Sands R, Smith SJ, Janetos A, Edmonds J (2009) Implications of limiting CO2 concentrations for land use and energy. Science 324:1183–1186

    Google Scholar 

  • World Meteorological Organization (2012) Standardized precipitation index user guide (Svoboda M, Hayes M, Wood D). WMO-no. 1090, Geneva

Download references

Acknowledgements

The authors acknowledged the Coordinated Regional Climate Downscaling Experiment (CORDEX) for providing simulation data used in this study. They also thanked the Climate Research Unit, University of East Anglia, for CRU observational dataset used in the performance evaluation of the model simulation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent O. Ajayi.

Ethics declarations

Conflict of interest

The two authors declare that there is no conflict of interest in any form or so associated with the publication of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajayi, V.O., Ilori, O.W. Projected Drought Events over West Africa Using RCA4 Regional Climate Model. Earth Syst Environ 4, 329–348 (2020). https://doi.org/10.1007/s41748-020-00153-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41748-020-00153-x

Keywords

Navigation