Skip to main content
Log in

Recent Advances in Understanding the Facets of Eco-corona on Engineered Nanomaterials

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

The global disposal of nanoparticles (NPs) in the environment and their subsequent impact on environmental organisms has been a rising concern over the years. Research studies so far have been mainly focused on evaluating the behavior and toxicity of these NPs in their pristine state. However, in a complex environmental system, NPs owing to their high surface reactivity will adsorb several ecological molecules. This leads to the formation of a biomolecular layer onto their surface often known as “eco-corona”. These interactions occurring at the interfacial region between the surface of the nanomaterial and the exposure media alters the identity of the NPs. The current review highlights how the prevalence of NPs-eco-corona complex brought a paradigm shift in the understanding of environmental science. The current review elaborates on the updated analytical techniques and characterization methods utilized for studying the nano–bio interface exclusively from an environmental point of view. Moreover, a detailed analysis of the composition of the eco-corona-rich layer has been elaborated. We present a critical interpretation of binding modes involved in the formation of the NP-eco-corona complex. Furthermore, the strategic ways of utilizing ecological molecules associated with NPs for the generation of a cleaner environment have been elaborated. Considering the detrimental effects of NPs on aquatic organisms, a dedicated section exclusively illustrates the toxicological ramifications of eco-coronated NPs in marine and freshwater ecosystems. Through the current review, we intend to provide a better sense of how NPs transform in ecological mediums and suggest possible ways to make experimental studies more environmentally sound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1:
Scheme 1:
Figure 2:
Scheme 2:
Scheme 3:
Scheme 4:
Scheme 5:

Similar content being viewed by others

References

  1. Ghosh Chaudhuri R, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112(4):2373–2433

    Article  CAS  Google Scholar 

  2. Yu S-J, Yin Y-G, Liu J-F (2013) Silver nanoparticles in the environment. Environ Sci Process Impacts 15(1):78–92

    Article  Google Scholar 

  3. Lim E-K, Kim T, Paik S, Haam S, Huh Y-M, Lee K (2015) Nanomaterials for theranostics: recent advances and future challenges. Chem Rev 115(1):327–394

    Article  CAS  Google Scholar 

  4. Gondikas AP, Kammer Fvd, Reed RB, Wagner S, Ranville JF, Hofmann T (2014) Release of TiO2 nanoparticles from sunscreens into surface waters: a one-year survey at the old Danube recreational Lake. Environ Sci Technol 48(10): 5415–5422.

  5. Gottschalk F, Sun T, Nowack B (2013) Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut 181:287–300

    Article  CAS  Google Scholar 

  6. Roy R, Parashar A, Bhuvaneshwari M, Chandrasekaran N, Mukherjee A (2016) Differential effects of P25 TiO2 nanoparticles on freshwater green microalgae: chlorella and Scenedesmus species. Aquat Toxicol 176:161–171

    Article  CAS  Google Scholar 

  7. Lekamge S, Miranda AF, Abraham A, Li V, Shukla R, Bansal V, Nugegoda D (2018) The toxicity of silver nanoparticles (AgNPs) to three freshwater invertebrates with different life strategies: hydra vulgaris, Daphnia carinata, and Paratya australiensis. Front Environ Sci 6:152

    Article  Google Scholar 

  8. Unrine JM, Shoults-Wilson WA, Zhurbich O, Bertsch PM, Tsyusko OV (2012) Trophic transfer of Au nanoparticles from soil along a simulated terrestrial food chain. Environ Sci Technol 46(17):9753–9760

    Article  CAS  Google Scholar 

  9. Sajid M, Ilyas M, Basheer C, Tariq M, Daud M, Baig N, Shehzad F (2015) Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects. Environ Sci Pollut Res 22(6):4122–4143

    Article  Google Scholar 

  10. Wilkinson KJ, Balnois E, Leppard GG, Buffle J (1999) Characteristic features of the major components of freshwater colloidal organic matter revealed by transmission electron and atomic force microscopy. Colloids Surf, A 155(2–3):287–310

    Article  CAS  Google Scholar 

  11. Cunha C, Faria M, Nogueira N, Ferreira A, Cordeiro N (2019) Marine vs freshwater microalgae exopolymers as biosolutions to microplastics pollution. Environ Pollut 249:372–380

    Article  CAS  Google Scholar 

  12. Hadjidemetriou M, Kostarelos K (2017) Evolution of the nanoparticle corona. Nat Nanotechnol 12(4):288–290

    Article  CAS  Google Scholar 

  13. Docter D, Westmeier D, Markiewicz M, Stolte S, Knauer S, Stauber R (2015) The nanoparticle biomolecule corona: lessons learned–challenge accepted? Chem Soc Rev 44(17):6094–6121

    Article  CAS  Google Scholar 

  14. Wolfram J, Yang Y, Shen J, Moten A, Chen C, Shen H, Ferrari M, Zhao Y (2014) The nano-plasma interface: implications of the protein corona. Colloids Surf, B 124:17–24

    Article  CAS  Google Scholar 

  15. Ke PC, Lin S, Parak WJ, Davis TP, Caruso F (2017) A decade of the protein corona. ACS Nano 11(12):11773–11776

    Article  CAS  Google Scholar 

  16. Barrena R, Casals E, Colón J, Font X, Sánchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75(7):850–857

    Article  CAS  Google Scholar 

  17. Abramenko NB, Demidova TB, Abkhalimov EV, Ershov BG, Krysanov EY, Kustov LM (2018) Ecotoxicity of different-shaped silver nanoparticles: case of zebrafish embryos. J Hazard Mater 347:89–94

    Article  CAS  Google Scholar 

  18. Silva T, Pokhrel LR, Dubey B, Tolaymat TM, Maier KJ, Liu X (2014) Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: comparison between general linear model-predicted and observed toxicity. Sci Total Environ 468:968–976

    Article  CAS  Google Scholar 

  19. Nasser F, Lynch I (2016) Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna. J Proteomics 137:45–51

    Article  CAS  Google Scholar 

  20. Saavedra J, Stoll S, Slaveykova VI (2019) Influence of nanoplastic surface charge on eco-corona formation, aggregation and toxicity to freshwater zooplankton. Environ Pollut 252:715–722

    Article  CAS  Google Scholar 

  21. Cheng X, Tian X, Wu A, Li J, Tian J, Chong Y, Chai Z, Zhao Y, Chen C, Ge C (2015) Protein corona influences cellular uptake of gold nanoparticles by phagocytic and nonphagocytic cells in a size-dependent manner. ACS Appl Mater Interfaces 7(37):20568–20575

    Article  CAS  Google Scholar 

  22. Hirsh SL, McKenzie DR, Nosworthy NJ, Denman JA, Sezerman OU, Bilek MM (2013) The Vroman effect: competitive protein exchange with dynamic multilayer protein aggregates. Colloids Surf B 103:395–404

    Article  CAS  Google Scholar 

  23. Zhang X, Pandiakumar AK, Hamers RJ, Murphy CJ (2018) Quantification of lipid corona formation on colloidal nanoparticles from lipid vesicles. Anal Chem 90(24):14387–14394

    Article  CAS  Google Scholar 

  24. Song Y, Wang H, Zhang L, Lai B, Liu K, Tan M (2020) Protein corona formation of human serum albumin with carbon quantum dots from roast salmon. Food Funct 11(3):2358–2367

    Article  CAS  Google Scholar 

  25. Nasser F, Constantinou J, Lynch I (2020) Nanomaterials in the environment acquire an “eco-corona” impacting their toxicity to daphnia magna—a call for updating toxicity testing policies. Proteomics 20(9):1800412

    Article  CAS  Google Scholar 

  26. Ramsperger A, Narayana VKB, Groß W, Mohanraj J, Thelakkat M, Greiner A, Schmalz H, Kress H, Laforsch C (2020) Environmental exposure enhances the internalization of microplastic particles into cells. Science advances, 6 (50): eabd1211.

  27. Briffa S, Nasser F, Valsami-Jones E, Lynch I (2018) Uptake and impacts of polyvinylpyrrolidone (PVP) capped metal oxide nanoparticles on Daphnia magna: role of core composition and acquired corona. Environ Sci Nano 5(7):1745–1756

    Article  CAS  Google Scholar 

  28. Levak M, Burić P, Dutour Sikirić M, Domazet Jurašin D, Mikac N, Bačić N, Drexel R, Meier F, Jakšić Z. e, Lyons DM, Effect of protein corona on silver nanoparticle stabilization and ion release kinetics in artificial seawater. Environ Sci Technol 2017, 51(3): 1259–1266.

  29. Saleh NB, Pfefferle LD, Elimelech M (2010) Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes. Environ Sci Technol 44(7):2412–2418

    Article  CAS  Google Scholar 

  30. Geisler-Lee J, Brooks M, Gerfen JR, Wang Q, Fotis C, Sparer A, Ma X, Berg RH, Geisler M (2014) Reproductive toxicity and life history study of silver nanoparticle effect, uptake and transport in Arabidopsis thaliana. Nanomaterials 4(2):301–318

    Article  CAS  Google Scholar 

  31. Noori A, Ngo A, Gutierrez P, Theberge S, White JC (2020) Silver nanoparticle detection and accumulation in tomato (Lycopersicon esculentum). J Nanopart Res 22:1–16

    Article  CAS  Google Scholar 

  32. Anjum NA, Gill SS, Duarte AC, Pereira E, Ahmad I (2013) Silver nanoparticles in soil–plant systems. J Nanopart Res 15(9):1–26

    Article  Google Scholar 

  33. Kallenbach CM, Frey SD, Grandy AS (2016) Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat Commun 7(1):1–10

    Article  CAS  Google Scholar 

  34. Waalewijn-Kool PL, Rupp S, Lofts S, Svendsen C, van Gestel CA (2014) Effect of soil organic matter content and pH on the toxicity of ZnO nanoparticles to Folsomia candida. Ecotoxicol Environ Saf 108:9–15

    Article  CAS  Google Scholar 

  35. Weber C, Morsbach S, Landfester K (2019) Possibilities and limitations of different separation techniques for the analysis of the protein corona. Angew Chem Int Ed 58(37):12787–12794

    Article  CAS  Google Scholar 

  36. Grassi G, Gabellieri E, Cioni P, Paccagnini E, Faleri C, Lupetti P, Corsi I, Morelli E (2020) Interplay between extracellular polymeric substances (EPS) from a marine diatom and model nanoplastic through eco-corona formation. Sci Total Environ 725: 138457.

  37. Zhou X-X, Liu R, Liu J-F (2014) Rapid chromatographic separation of dissoluble Ag (I) and silver-containing nanoparticles of 1–100 nanometer in antibacterial products and environmental waters. Environ Sci Technol 48(24):14516–14524

    Article  CAS  Google Scholar 

  38. Proulx K, Wilkinson KJ (2014) Separation, detection and characterisation of engineered nanoparticles in natural waters using hydrodynamic chromatography and multi-method detection (light scattering, analytical ultracentrifugation and single particle ICP-MS). Environ Chem 11(4):392–401

    Article  CAS  Google Scholar 

  39. Poda AR, Bednar AJ, Kennedy AJ, Harmon A, Hull M, Mitrano D, Ranville JF, Steevens J (2011) Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry. J Chromatogr A 1218(27):4219–4225

    Article  CAS  Google Scholar 

  40. Beckett R, Ranville J (2006) Natural organic matter. Interface Sci Drinking Water Treatment Theory Appl 10:299–315

    Article  CAS  Google Scholar 

  41. Chakraborty D, Ethiraj K, Chandrasekaran N, Mukherjee A (2021) Mitigating the toxic effects of CdSe quantum dots towards freshwater alga Scenedesmus obliquus: role of eco-corona. Environ Pollution 270: 116049.

  42. Natarajan L, Omer S, Jetly N, Jenifer MA, Chandrasekaran N, Suraishkumar G, Mukherjee A Eco-corona formation lessens the toxic effects of polystyrene nanoplastics towards marine microalgae Chlorella sp. Environ Res 2020, 188: 109842.

  43. Baalousha M, Afshinnia K, Guo L (2018) Natural organic matter composition determines the molecular nature of silver nanomaterial-NOM corona. Environ Sci Nano 5(4):868–881

    Article  CAS  Google Scholar 

  44. Lau BL, Hockaday WC, Ikuma K, Furman O, Decho AW (2013) A preliminary assessment of the interactions between the capping agents of silver nanoparticles and environmental organics. Colloids Surf, A 435:22–27

    Article  CAS  Google Scholar 

  45. Gu B, Schmitt J, Chen Z, Liang L, McCarthy JF (1994) Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environ Sci Technol 28(1):38–46

    Article  CAS  Google Scholar 

  46. Mudunkotuwa IA, Grassian VH (2015) Biological and environmental media control oxide nanoparticle surface composition: the roles of biological components (proteins and amino acids), inorganic oxyanions and humic acid. Environ Sci Nano 2(5):429–439

    Article  CAS  Google Scholar 

  47. Priya T, Mishra BK, Prasad MNV, Physico-chemical techniques for the removal of disinfection by-products precursors from water. In Disinfection By-products in Drinking Water, Elsevier: 2020; pp 23–58.

  48. Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633

    Article  CAS  Google Scholar 

  49. Markiewicz M, Kumirska J, Lynch I, Matzke M, Köser J, Bemowsky S, Docter D, Stauber R, Westmeier D, Stolte S (2018) Changing environments and biomolecule coronas: consequences and challenges for the design of environmentally acceptable engineered nanoparticles. Green Chem 20(18):4133–4168

    Article  CAS  Google Scholar 

  50. Galloway TS, Lewis CN (2016) Marine microplastics spell big problems for future generations. Proc Natl Acad Sci 113(9):2331–2333

    Article  CAS  Google Scholar 

  51. Wang H-C, Chou C-Y, Chiou C-R, Tian G, Chiu C-Y (2016 Humic acid composition and characteristics of soil organic matter in relation to the elevation gradient of moso bamboo plantations. Plos one, 11(9): e0162193.

  52. Faz Cano A, Mermut A, Ortiz R, Benke M, Chatson B (2002) 13C CP/MAS-NMR spectra of organic matter as influenced by vegetation, climate, and soil characteristics in soils from Murcia. Spain Can J Soil Sci 82(4):403–411

    Article  Google Scholar 

  53. Pelley AJ, Tufenkji N (2008) Effect of particle size and natural organic matter on the migration of nano-and microscale latex particles in saturated porous media. J Colloid Interface Sci 321(1):74–83

    Article  CAS  Google Scholar 

  54. Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156(3):609–643

    Article  CAS  Google Scholar 

  55. Hassler CS, Alasonati E, Nichols CM, Slaveykova V (2011) Exopolysaccharides produced by bacteria isolated from the pelagic Southern Ocean—Role in Fe binding, chemical reactivity, and bioavailability. Mar Chem 123(1–4):88–98

    Article  CAS  Google Scholar 

  56. Ellis L-JA, Lynch I (2020) Mechanistic insights into toxicity pathways induced by nanomaterials in Daphnia magna from analysis of the composition of the acquired protein corona. Environ Sci Nano 7(11):3343–3359

    Article  CAS  Google Scholar 

  57. Ekvall MT, Hedberg J, Wallinder IO, Malmendal A, Hansson L-A, Cedervall T (2021) Adsorption of bio-organic eco-corona molecules reduces the toxic response to metallic nanoparticles in Daphnia magna. Sci Rep 11(1):1–11

    Article  CAS  Google Scholar 

  58. Jayalath S, Wu H, Larsen SC, Grassian VH (2018) Surface adsorption of Suwannee River humic acid on TiO2 nanoparticles: a study of pH and particle size. Langmuir 34(9):3136–3145

    Article  CAS  Google Scholar 

  59. Oney DM, Nason JA (2021) Natural organic matter surface coverage as a predictor of heteroaggregation between nanoparticles and colloids. Environ Sci Nano 8(3):687–697

    Article  CAS  Google Scholar 

  60. Mensch AC, Hernandez RT, Kuether JE, Torelli MD, Feng ZV, Hamers RJ, Pedersen JA (2017) Natural organic matter concentration impacts the interaction of functionalized diamond nanoparticles with model and actual bacterial membranes. Environ Sci Technol 51(19):11075–11084

    Article  CAS  Google Scholar 

  61. Darko B, Jiang J-Q, Kim H, Machala L, Zboril R, Sharma VK (2014) Advances made in understanding the interaction of ferrate (VI) with natural organic matter in water. Elsevier, In Water reclamation and sustainability, pp 183–197

    Google Scholar 

  62. Tang Z, Zhao X, Zhao T, Wang H, Wang P, Wu F, Giesy JP (2016) Magnetic nanoparticles interaction with humic acid: in the presence of surfactants. Environ Sci Technol 50(16):8640–8648

    Article  CAS  Google Scholar 

  63. Manciulea A, Baker A, Lead JR (2009) A fluorescence quenching study of the interaction of Suwannee River fulvic acid with iron oxide nanoparticles. Chemosphere 76(8):1023–1027

    Article  CAS  Google Scholar 

  64. Wu H, Gonzalez-Pech NI, Grassian VH (2019) Displacement reactions between environmentally and biologically relevant ligands on TiO 2 nanoparticles: insights into the aging of nanoparticles in the environment. Environ Sci Nano 6(2):489–504

    Article  CAS  Google Scholar 

  65. Shakiba S, Hakimian A, Barco LR, Louie SM (2018) Dynamic intermolecular interactions control adsorption from mixtures of natural organic matter and protein onto titanium dioxide nanoparticles. Environ Sci Technol 52(24):14158–14168

    Article  CAS  Google Scholar 

  66. Yang K, Zhu L, Xing B (2006) Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ Sci Technol 40(6):1855–1861

    Article  CAS  Google Scholar 

  67. Zhang S, Shao T, Bekaroglu SSK, Karanfil T (2009) The impacts of aggregation and surface chemistry of carbon nanotubes on the adsorption of synthetic organic compounds. Environ Sci Technol 43(15):5719–5725

    Article  CAS  Google Scholar 

  68. Xie, X.; Guo, H.; Yan, M.; Korshin, G., Interactions between natural organic matter (NOM) and the cationic dye toluidine blue at varying pHs and ionic strengths: Effects of NOM charges and Donnan gel potentials. Chemosphere 2019, 236, 124272.

  69. Bollag J-M, Loll M (1983) Incorporation of xenobiotics into soil humus. Experientia 39(11):1221–1231

    Article  CAS  Google Scholar 

  70. Senesi N, Testini C (1984) Theoretical aspects and experimental evidence of the capacity of humic substances to bind herbicides by charge-transfer mechanisms (electron donor-acceptor processes). Chemosphere 13(3):461–468

    Article  CAS  Google Scholar 

  71. Chianese S, Fenti A, Iovino P, Musmarra D, Salvestrini S (2020) Sorption of organic pollutants by humic acids: a review. Molecules 25(4):918

    Article  CAS  Google Scholar 

  72. Xu B, Lian Z, Liu F, Yu Y, He Y, Brookes PC, Xu J (2019) Sorption of pentachlorophenol and phenanthrene by humic acid-coated hematite nanoparticles. Environ Pollut 248:929–937

    Article  CAS  Google Scholar 

  73. Paul S, Bhardwaj SK, Kaur R, Bhaumik J, Lignin-derived hybrid materials as promising adsorbents for the separation of pollutants. In Multidisciplinary Advances in Efficient Separation Processes, ACS Publications: 2020; pp 225–261.

  74. Ma Y-Z, Zheng D-F, Mo Z-Y, Dong R-J, Qiu X-Q (2018) Magnetic lignin-based carbon nanoparticles and the adsorption for removal of methyl orange. Colloids Surf, A 559:226–234

    Article  CAS  Google Scholar 

  75. Li X, He Y, Sui H, He L (2018) One-step fabrication of dual responsive lignin coated Fe3O4 nanoparticles for efficient removal of cationic and anionic dyes. Nanomaterials 8(3):162

    Article  CAS  Google Scholar 

  76. Chakraborty D, Tripathi S, Ethiraj K, Chandrasekaran N, Mukherjee A (2018) Human serum albumin corona on functionalized gold nanorods modulates doxorubicin loading and release. New J Chem 42(20):16555–16563

    Article  CAS  Google Scholar 

  77. Govarthanan M, Jeon C-H, Jeon Y-H, Kwon J-H, Bae H, Kim W (2020) Non-toxic nano approach for wastewater treatment using Chlorella vulgaris exopolysaccharides immobilized in iron-magnetic nanoparticles. Int J Biol Macromol 162:1241–1249

    Article  CAS  Google Scholar 

  78. Dumont E, Johnson AC, Keller VD, Williams RJ (2015) Nano silver and nano zinc-oxide in surface waters–exposure estimation for Europe at high spatial and temporal resolution. Environ Pollut 196:341–349

    Article  CAS  Google Scholar 

  79. Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Baldelli Bombelli F, Dawson KA (2011) Physical− chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133(8):2525–2534

    Article  CAS  Google Scholar 

  80. Bellingeri A, Bergami E, Grassi G, Faleri C, Redondo-Hasselerharm P, Koelmans A, Corsi I (2019) Combined effects of nanoplastics and copper on the freshwater alga Raphidocelis subcapitata. Aquat Toxicol 210:179–187

    Article  CAS  Google Scholar 

  81. Fadare OO, Wan B, Liu K, Yang Y, Zhao L, Guo L-H (2020) Eco-Corona vs protein Corona: effects of humic substances on Corona formation and Nanoplastic particle toxicity in daphnia magna. Environ Sci Technol 54(13):8001–8009

    Article  CAS  Google Scholar 

  82. Ray PC, Yu H, Fu PP (2009) Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health C 27(1):1–35

    Article  CAS  Google Scholar 

  83. Wang Y, Zhu X, Lao Y, Lv X, Tao Y, Huang B, Wang J, Zhou J, Cai Z (2016) TiO2 nanoparticles in the marine environment: physical effects responsible for the toxicity on algae Phaeodactylum tricornutum. Sci Total Environ 565:818–826

    Article  CAS  Google Scholar 

  84. Li M, Pokhrel S, Jin X, Mädler L, Damoiseaux R, Hoek EM (2011) Stability, bioavailability, and bacterial toxicity of ZnO and iron-doped ZnO nanoparticles in aquatic media. Environ Sci Technol 45(2):755–761

    Article  CAS  Google Scholar 

  85. Lin D, Ji J, Long Z, Yang K, Wu F (2012) The influence of dissolved and surface-bound humic acid on the toxicity of TiO2 nanoparticles to Chlorella sp. Water Res 46(14):4477–4487

    Article  CAS  Google Scholar 

  86. Dasari TP, Hwang H-M (2010) The effect of humic acids on the cytotoxicity of silver nanoparticles to a natural aquatic bacterial assemblage. Sci Total Environ 408(23):5817–5823

    Article  CAS  Google Scholar 

  87. Kim JY, Kim K-T, Lee BG, Lim BJ, Kim SD (2013) Developmental toxicity of Japanese medaka embryos by silver nanoparticles and released ions in the presence of humic acid. Ecotoxicol Environ Saf 92:57–63

    Article  CAS  Google Scholar 

  88. Lee WS, Cho H-J, Kim E, Huh YH, Kim H-J, Kim B, Kang T, Lee J-S, Jeong J (2019) Bioaccumulation of polystyrene nanoplastics and their effect on the toxicity of Au ions in zebrafish embryos. Nanoscale 11(7):3173–3185

    Article  CAS  Google Scholar 

  89. Zhu M, Wang H, Keller AA, Wang T, Li F (2014) The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths. Sci Total Environ 487:375–380

    Article  CAS  Google Scholar 

  90. Lee S, Kim K, Shon H, Kim SD, Cho J (2011) Biotoxicity of nanoparticles: effect of natural organic matter. J Nanopart Res 13(7):3051–3061

    Article  CAS  Google Scholar 

  91. Shang E, Li Y, Niu J, Zhou Y, Wang T, Crittenden JC (2017) Relative importance of humic and fulvic acid on ROS generation, dissolution, and toxicity of sulfide nanoparticles. Water Res 124:595–604

    Article  CAS  Google Scholar 

  92. Li Z, Greden K, Alvarez PJ, Gregory KB, Lowry GV, Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Environ Sci Technol 2010 44 (9): 3462–3467.

  93. Alijagic A, Benada O, Kofroňová O, Cigna D, Pinsino A (2019) Sea urchin extracellular proteins design a complex protein corona on titanium dioxide nanoparticle surface influencing immune cell behavior. Front Immunol 10:2261

    Article  CAS  Google Scholar 

  94. Noventa S, Rowe D, Galloway T (2018) Mitigating effect of organic matter on the in vivo toxicity of metal oxide nanoparticles in the marine environment. Environ Sci Nano 5(7):1764–1777

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitava Mukherjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, D., Giri, S., Natarajan, L. et al. Recent Advances in Understanding the Facets of Eco-corona on Engineered Nanomaterials. J Indian Inst Sci 102, 621–637 (2022). https://doi.org/10.1007/s41745-021-00266-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-021-00266-w

Keywords

Navigation