Skip to main content
Log in

Induced Electroactive Response of Hydroxyapatite: A Review

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Owing to electroactive nature of living bone, the development of bone-mimicking mechano-electrically active prosthetic implants are in continuous thrust. Hydroxyapatite (HA) has long been studied for its osteoconductive behaviour due to its compositional and structural similarity with the bone apatite. Since last two decades, the understanding and development of induced electroactive response in HA have attracted the attention of scientific community. One of the promising features of HA includes the formation of electret. The present article summarizes the origin/mechanism of electroactive response of HA from its structural point of view as well as based on the studies conducted by thermally stimulated depolarization current (TSDC) and other measurements. Further, the surface charge-induced accelerated cellular growth and proliferation on HA has been elaborately discussed in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:

(reproduced with permission from American Chemical Society).

Figure 2:

(reproduced with permission from Elsevier).

Figure 3:

(reproduced with permission from AIP publishing).

Figure 4:

(reproduced with permission from John Wiley and Sons).

Figure 5:

(reproduced with permission from AIP Publishing).

Figure 6:

(reproduced with permission from AIP publishing).

Figure 7:

(reproduced with publishing from AIP publishing).

Figure 8:

(reproduced with permission from Springer Nature).

Figure 9:

(reproduced with permission from AIP publishing).

Figure 10:

(reproduced with permission from Elsevier).

Figure 11:

(reproduced with permission from John Wiley and Sons).

Figure 12:

(reproduced with permission from Springer nature)

Similar content being viewed by others

References

  1. Lavernia C, Schoenung JM (1991) Am Ceram Soc Bull 70:95

    CAS  Google Scholar 

  2. Kim HW, Knowles JC, Kim HE (2004) Hydroxyapatite/poly(ε-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials 25(7–8):1279–1287

    CAS  Google Scholar 

  3. Chiatti F, Piane MD, Ugliengo P, Corno M (2016) Water at hydroxyapatite surfaces: the effect of coverage and surface termination as investigated by all-electron B3LYP-D* simulations. Theor Chem Acc 135(3):54

    Google Scholar 

  4. Cummings LJ, Snyder MA, Brisack K (2009) Chapter 24 protein chromatography on hydroxyapatite columns. In: Burgess RR, Deutscher MP (eds) Methods in enzymology, vol 463. Academic Press, London, pp 387–404

    Google Scholar 

  5. Ezhaveni S, Yuvakkumar R, Rajkumar M, Sundaram NM, Rajendran V (2013) Preparation and characterization of nano-hydroxyapatite nanomaterials for liver cancer cell treatment. J Nanosci Nanotechnol 13(3):1631–1638

    CAS  Google Scholar 

  6. Fukada E, Yasuda I (1957) On the piezoelectric effect of bone. J Phys Soc Jpn 12(10):1158–1162

    Google Scholar 

  7. Dreyer CJ (1961) Properties of stresses bone. Nature 190:1217

    Google Scholar 

  8. Lang SB (1966) Pyroelectric effect in bone and tendon. Nature 212:704–705

    Google Scholar 

  9. Cerquiglini S, Cignitti M, Marchetti M, Salleo A (1967) On the origin of electrical effects produced by stress in the hard tissues of living organisms. Life Sci 6(24):2651–2660

    CAS  Google Scholar 

  10. Messiery MAE, Hastings GW, Rakowski S (1979) Ferro-electricity of dry cortical bone. J Biomed Eng 1(1):63–65

    Google Scholar 

  11. Frost HM (1994) Wolff’s law and bone’s structural adaptations to mechanical usage: an overview for clinicians, the angle. Orthodontist 64(3):175–188

    CAS  Google Scholar 

  12. Dubey AK, Kakimoto K, Obata A, Kasuga T (2014) Enhanced Polarization of Hydroxyapatite using design concept of functionally graded materials with sodium potassium niobate. RSC Adv 4:24601–24611

    CAS  Google Scholar 

  13. Mascarenhas S (1974) The electret effect in bone and biopolymers and the bound water problem. Ann N Y Acad Sci 238:36–52

    CAS  Google Scholar 

  14. Bassett CAL, Becker RO (1962) Generation of electric potentials by bone in response to mechanical stress. Science 137(3535):1063–1064

    CAS  Google Scholar 

  15. Bassett CAL, Pawluk RJ, Becker RO (1964) Electrical currents on bone in vivo. Nature 204:652–654

    CAS  Google Scholar 

  16. Hu S, Jia F, Marinescu C, Cimpoesu F, Qi Y, Tao Y, Stroppaand A, Ren W (2017) Ferroelectric polarization of hydroxyapatite from density functional theory. RSC Adv 7(35):21375–21379

    CAS  Google Scholar 

  17. Tofail S, Gandhi A, Gregor M et al (2015) Electrical properties of hydroxyapatite. Pure Appl Chem 87(3):221–229

    CAS  Google Scholar 

  18. Maeda H, Fukada E (1982) Effect of water on piezoelectric, dielectric, and elastic properties of bone. Biopolymers 21:2055–2068

    CAS  Google Scholar 

  19. Nakamura M, Nagai A, Hentunen T, Salonen J, Sekijima Y, Okura T, Hashimoto K, Toda Y, Monma H, Yamashita K (2009) Surface electric fields increase osteoblast adhesion through improved wettability on hydroxyapatite electret. ACS Appl Mater Interfaces 1(10):2181–2189

    CAS  Google Scholar 

  20. Bodhak S, Bose S, Bandyopadhyay A (2009) Role of surface charge and wettability on early stage mineralization and bone cell–materials interactions of polarized hydroxyapatite. Acta Biomater 5(6):2178–2188

    CAS  Google Scholar 

  21. Kumar D, Gittings JP, Turner IG, Bowen CR, Bastida-Hidalgo A, Cartmell SH (2010) Polarization of hydroxyapatite: influence on osteoblast cell proliferation. Acta Biomater 6(4):1549–1554

    CAS  Google Scholar 

  22. Bodhak S, Bose S, Bandyopadhyay A (2010) Electrically polarized HAp-coated Ti: In vitro bone cell–material interactions. Acta Biomater 6(2):641–651

    CAS  Google Scholar 

  23. Bodhak S, Bose S, Bandyopadhyay A (2011) Bone cell–material interactions on metal-ion doped polarized hydroxyapatite. Mater Sci Eng, C 31(4):755–761

    CAS  Google Scholar 

  24. Yamashita K, Oikawa N, Umegaki T (1996) Acceleration and deceleration of bone-like crystal growth on ceramic hydroxyapatite by electric poling. Chem Mater 8(12):2697–2700

    CAS  Google Scholar 

  25. Nakamura S, Kobayashi T, Yamashita K (2002) Extended bioactivity in the proximity of hydroxyapatite ceramic surfaces induced by polarization charges. J Biomed Mater Res 61:593–599

    CAS  Google Scholar 

  26. Ohgaki M, Kizuki T, Katsuraand M, Yamashita K (2001) Manipulation of selective cell adhesion and growth by surface charges of electrically polarized hydroxyapatite. J Biomed Mater Res 57:366–373

    CAS  Google Scholar 

  27. Itoh S, Nakamura S, Nakamura M, Shinomiya K, Yamashita K (2006) Enhanced bone ingrowth into hydroxyapatite with interconnected pores by electrical polarization. Biomaterials 27(32):5572–5579

    CAS  Google Scholar 

  28. Kobayashi T, Nakamura S, Yamashita K (2001) Enhanced osteobonding by negative surface charges of electrically polarized hydroxyapatite. J Biomed Mater Res 57:477–484

    CAS  Google Scholar 

  29. Nagai A, Yamashita K, Imamura M, Azuma H (2008) Hydroxyapatite electret accelerates reendothelialization and attenuates intimal hyperplasia occurring after endothelial removal of the rabbit carotid artery. Life Sci 82(23–24):1162–1168

    CAS  Google Scholar 

  30. Okabayashi R, Nakamura M, Okabayashi T, Tanaka Y, Nagai A, Yamashita K (2009) Efficacy of polarized hydroxyapatite and silk fibroin composite dressing gel on epidermal recovery from full-thickness skin wounds. J Biomed Mater Res 90:641–646

    Google Scholar 

  31. Lang SB, Tofail SAM, Gandhi AA, Gregor M, Wolf-Brandstetter C, Kost J, Bauer S, Krause M (2011) Pyroelectric, piezoelectric, and photoeffects in hydroxyapatite thin films on silicon. Appl Phys Lett 98(12):123703

    Google Scholar 

  32. Lang SB, Tofail SAM, Kholkin AL, Wojtas M, Gregor M, Gandhi AA, Wang Y, Bauer S, Krause M, Placenik A (2013) ferroelectric polarization in nanocrystalline hydroxyapatite thin films on silicon. Sci Rep 3:2215

    CAS  Google Scholar 

  33. Yamashita K, Kitagaki K, Umegaki T (1995) Thermal instability and proton conductivity of ceramic hydroxyapatite at high temperatures. J Am Ceram Soc 78:1191–1197

    CAS  Google Scholar 

  34. Hitmi N, Chatain D, Lacabanne C, Dugas J, Trombe JC, Rey C, Montel G (1980) TSC study of dipolar reorientations in hydroxyapatites. Solid State Commun 33(9):1003–1004

    CAS  Google Scholar 

  35. Hitmi N, Plaino EL, Lamure A, LaCabanne C, Young RA (1986) Reorientable electric dipoles and cooperative phenomena in human tooth enamel. Calcif Tissue Int 38(5):252–261

    CAS  Google Scholar 

  36. Young RA, Brown WE (1982) In biological mineralization and demineralization. In: Nancollas GH (ed) DahlemKonferenzen, Berlin, pp 101–141

  37. Haverty D, Tofail SAM, Stanton KT, McMonagle JB (2005) Structure and stability of hydroxyapatite: density functional calculation and Rietveld analysis. Phys Rev B 71(9):094103

    Google Scholar 

  38. Corno M, Chiatti F, Pedone A, Ugliengo P (2011) In: Rosario P (ed) Biomaterial/book 1. InTech: Rijeka, Croatia

  39. Lu HB, Campbell CT, Graham DJ, Ratner BD (2000) Surface characterization of hydroxyapatite and related calcium phosphates by XPS and TOF–SIMS. Anal Chem 72(13):2886–2894

    CAS  Google Scholar 

  40. de Jong WF (1926) The mineral components of bones. Recueil des TravauxChimiques des Pays-Bas et de la Belgique 45:445–448

    Google Scholar 

  41. LeGeros RZ (1981) Apatites in biological systems. Prog Cryst Growth Char 4(1–2):1–45

    CAS  Google Scholar 

  42. Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510

    CAS  Google Scholar 

  43. Drummond JL (1983) In: Rubin LR (eds) Biomaterials in reconstructive surgery. The C. V. Mosby Co, St. Louis, pp 103–108

  44. Kay MI, Young RA, Posner AS (1964) Crystal structure of hydroxyapatite. Nature 204:1050–1052

    CAS  Google Scholar 

  45. Elliott JC, Mackie PE, Young RA (1973) Monoclinic hydroxyapatite. Science 180(4090):1055–1057

    CAS  Google Scholar 

  46. Ma G, Liu XY (2009) Hydroxyapatite: hexagonal or monoclinic? Cryst Growth Des 9(7):2991–2994

    CAS  Google Scholar 

  47. Elliott JC, Young RA (1967) Conversion of single crystals of chlorapatite into single crystals of hydroxyapatite. Nature 214:904–906

    CAS  Google Scholar 

  48. Ikoma T, Yamazaki A, Nakamura S, Akao M (1999) Preparation and structure refinement of monoclinic hydroxyapatite. J Solid State Chem 144(2):272–276

    CAS  Google Scholar 

  49. Suetsugu Y, Tanaka J (2002) Crystal growth and structure analysis of twin-free monoclinic hydroxyapatite. J Mater Sci Mater Med 13(8):767–772

    CAS  Google Scholar 

  50. Horiuchi N, Nakamura M, Nagai A, Katayama K, Yamashita K (2012) Proton conduction related electrical dipole and space charge polarization in hydroxyapatite. J Appl Phys 112:074901

    Google Scholar 

  51. Rees HBV, Mengeot M, Kostiner E (1973) Monoclinic-hexagonal transition in hydroxyapatite and deuterohydroxyapatite single crystals. Mater Res Bull 8(11):1307–1309

    Google Scholar 

  52. Suda H, Yashima M, Kakihana M, Yoshimura M (1995) Hexagonal phase transition in hydroxyapatite studied by X-ray powder diffraction and differential scanning calorimeter techniques. J Phys Chem 99(17):6752–6754

    CAS  Google Scholar 

  53. Takahashi H, Yashima M, Kakihana M, Yoshimura M (2001) A differential scanning calorimeter study of the monoclinic (P2 1 /b)↔hexagonal (P6 3 /m) reversible phase transition in hydroxyapatite. Thermochim Acta 371(1–2):53–56

    CAS  Google Scholar 

  54. Nakamura S, Takeda H, Yamashita K (2001) Proton transport polarization and depolarization of Hydroxyapatite ceramics. J Appl Phys 89:5386–5392

    CAS  Google Scholar 

  55. Hitmi N, LaCabanne C, Young RA (1986) OH dipole reorientability in hydroxyapatites: effect of tunnel size. J Phys Chem Solids 47(6):533–546

    CAS  Google Scholar 

  56. Maiti GC, Friedemann F (1981) Influence of fluorine substitution on the proton conductivity of hydroxyapatite. J Chem Soc, Dalton Trans 1:949–955

    Google Scholar 

  57. Yashima M, Yonehara Y, Fujimori H (2011) Experimental visualization of chemical bonding and structural disorder in hydroxyapatite through charge and nuclear-density analysis. J Phys Chem C 115(50):25077–25087

    CAS  Google Scholar 

  58. Horiuchi N, Wada N, Nozaki K, Nakamura M, Nagai A, Yamashita K (2016) Dielectric relaxation in monoclinic hydroxyapatite: Observation of hydroxide ion dipoles. J Appl Phys 119(8):084903

    Google Scholar 

  59. Horiuchi N, Madokoro K, Nozaki K, Nakamura M, Katayama K, Nagai A, Yamashita K (2018) Electrical conductivity of polycrystalline hydroxyapatite and its application to electret formation. Solid State Ionics 315:19–25

    CAS  Google Scholar 

  60. Bucci C, FieschiandG R (1966) Guidi, ionic thermocurrents in dielectrics. Phys Rev Lett 148:816

    CAS  Google Scholar 

  61. Davies M, Hains PJ, Williams G (1973) Molecular motion in the supercooled liquid state: ion pairs in slow motion. J Chem Soc, Faraday Trans 2(69):1785–1792

    Google Scholar 

  62. Hino T (1975) Measurement of dipolar relaxation times and dielectric constants using thermally stimulated current. J Appl Phys 46(5):1956–1960

    CAS  Google Scholar 

  63. Zielińskiand M, Kryszewski M (1977) Thermal sampling technique for the thermally stimulated discharge in polymers model calculations. Phys Stat Sol 42:305–314

    Google Scholar 

  64. Diaconu I, Dumitrescu S (1978) Investigations on electric properties of polymers. II. Dielectric relaxation in atactic polystyrene determined by thermally stimulated depolarization currents. Eur Polym Jo 14(11):971–975

    CAS  Google Scholar 

  65. Lacabanne C, Goyaud P, Boyer RF (1980) Thermally stimulated current (TSC) study of the T g and T ll transitions in anionic polystyrenes. J Polym Sci Polym Phys Ed 18:277–284

    CAS  Google Scholar 

  66. Shrivastava SK, Ranade JD, Srivastava AP (1980) Thermally stimulated discharge currents in polystyrene films. Thin Solid Films 67(2):201–206

    CAS  Google Scholar 

  67. Gourari A, Bendaoud M, Lacabanne C, Boyer RF (1985) Influence of tacticity on T βT g, and T LL in poly(methyl methacrylate)s by the method of thermally stimulated current (TSC). J Polym Sci Polym Phys Ed 23:889–916

    CAS  Google Scholar 

  68. Abd El-Kader FH, Shehap AM, Abo-Ellil MS, Mahmoud KH (2005) Relaxation phenomenon of poly(vinyl alcohol)/sodium carboxy methyl cellulose blend by thermally stimulated depolarization currents and thermal sample technique. J Appl Polym Sci 95:1342–1353

    Google Scholar 

  69. Sato K, Koizumi T, Okajima K (2005) Analysis of ice water by the thermally stimulated depolarized current (TSDC) method. Anal Sci 21:331–335

    CAS  Google Scholar 

  70. Dubey AK, Yamada H, Kakimoto K (2013) Space charge polarization induced augmented in vitro bioactivity of piezoelectric (Na, K) NbO3. J Appl Phys 114:124701

    Google Scholar 

  71. Liao CJ, Lin FH, Chen KS, Sun JS (1999) Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere. Biomaterials 20(19):1807–1813

    CAS  Google Scholar 

  72. Coffey WT (1990) On the derivation of debye theory of dielectric relaxation from the Langevin equation in the presence of the driving field. J Chem Phys 93(1):724–729

    Google Scholar 

  73. Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, Amsterdam

    Google Scholar 

  74. González-Abreu Y, Peláiz-Barranco A, Garcia-Wong AC, Guerra JDS (2012) The pyroelectricbehavior of lead free ferroelectric ceramics in thermally stimulated depolarization current measurements. J Appl Phys 111:124102

    Google Scholar 

  75. Nagai M, Nishino T (1988) Surface conduction of porous hydroxyapatite ceramics at elevated temperatures. Solid State Ionics 28–30(2):1456–1461

    Google Scholar 

  76. Gittings JP, Bowen CR, Dent ACE, Turner IG, Baxter FR, Chaudhuri JB (2009) Electrical characterization of hydroxyapatite-based bioceramics. Acta Biomater 5(2):743–754

    CAS  Google Scholar 

  77. Kasamatsu S, Sugino O (2018) First-principles investigation of polarization and ion conduction mechanisms in hydroxyapatite. Phys Chem Chem Phys 20(13):8744–8752

    CAS  Google Scholar 

  78. Takahashi T, Tanase S, Yamamoto O (1978) Electrical conductivity of some hydroxyapatites. ElectrochimicaActa 23(4):369–373

    CAS  Google Scholar 

  79. Yamashita K, Owada H, Umegaki T, Kanazawa T, Futagami T (1988) Ionic conduction in apatite solid solutions. Solid State Ionics 28–30(1):660–663

    Google Scholar 

  80. Yamashita K (2016) Electrically active materials for medical devices. Ch. 7:91–102

    Google Scholar 

  81. Matsunaga K, Kuwabara A (2007) First-principles study of vacancy formation in hydroxyapatite. Phys Rev B 75(1):014102

    Google Scholar 

  82. Tanaka Y, Nakamura M, Nagai A, Toyama T, Yamashita K (2009) Ionic conduction mechanism in Ca-deficient hydroxyapatite whiskers. Mater Sci Eng, B 161(1–3):115–119

    CAS  Google Scholar 

  83. Ikoma T, Yamazaki A, Nakamura S, Akao M (1998) Phase transition of monoclinic hydroxyapatite. Netsu Sokutei 25(5):141–149

    CAS  Google Scholar 

  84. Yamashita K, Owada H, Nakagawa H, Umegaki T, Kanazawa T (1986) Trivalent cation substituted calcium oxyhydroxyapatite. J Am Ceram Soc 69:590–594

    CAS  Google Scholar 

  85. Royce BS (1974) Field induced transport mechanisms in hydroxyapatite. Ann N Y Acad Sci 238:131–138

    CAS  Google Scholar 

  86. Ueshima M, Nakamura S, Yamashita K (2002) Huge, millicoulomb charge storage in ceramic hydroxyapatite by bimodal electric polarization. Adv Mater 14:591–595

    CAS  Google Scholar 

  87. Tanaka Y, Iwasaki T, Nakamura M, Nagai A, Katayama K, Yamashita K (2010) Polarization and microstructural effects of ceramic hydroxyapatite electrets. J Appl Phys 107:014107

    Google Scholar 

  88. Fujimori H, Toya H, Ioku K, Goto S, Yoshimura M (2000) In situ observation of defects in hydroxyapatite up to 1200 °C by ultraviolet Raman spectroscopy. Chem Phys Lett 325(4):383–388

    CAS  Google Scholar 

  89. Yamashita K, Kitagaki K, Umegaki T, Kanazawa T (1991) Effects of sintering ambient H2O vapour on the protonic conduction properties of ceramic hydroxyapatite. J Mater Sci Lett 10:4

    CAS  Google Scholar 

  90. Nakamura M, Nagai A, Tanaka Y, Sekijima Y, Yamashita K (2010) Polarized hydroxyapatite promotes spread and motility of osteoblastic cells. J Biomed Mater Res 92:783–790

    Google Scholar 

  91. Wei X, Yates MZ (2012) Yttrium-doped hydroxyapatite membranes with high proton conductivity. Chem Mater 24(10):1738–1743

    CAS  Google Scholar 

  92. Yashima M, Kubo N, Omoto K, Fujimori H, Fujii K, Ohoyama K (2014) Diffusion path and conduction mechanism of protons in hydroxyapatite. J Phys Chem C 118(10):5180–5187

    CAS  Google Scholar 

  93. Horiuchi N, Nakaguki S, Wada N, Nozaki K, Nakamura M, Nagai A, Katayama K, Yamashita K (2014) Polarization-induced surface charges in hydroxyapatite ceramics. J Appl Phys 116(1):014902

    Google Scholar 

  94. Wada N, Mukougawa K, Horiuchi N, Hiyama T, Nakamura M, Nagai A, Okura T, Yamashita K (2013) Fundamental electrical properties of ceramic electrets. Mater Res Bull 48(10):3854–3859

    CAS  Google Scholar 

  95. Tofail SAM, Haverty D, Stanton KT, McMonagle JB (2005) Structural order and dielectric behaviour of hydroxyapatite. Ferroelectrics 319(1):117–123

    Google Scholar 

  96. Tofail SAM, Baldisserri C, Haverty D, McMonagle JB, Erhart J (2009) Pyroelectric surface charge in hydroxyapatite ceramics. J Appl Phys 106(10):106104

    Google Scholar 

  97. Tofail SAM, Haverty D, Cox F, Erhart J, Hána P, Ryzhenko V (2009) Direct and ultrasonic measurements of macroscopic piezoelectricity in sintered hydroxyapatite. J Appl Phys 105(6):064103

    Google Scholar 

  98. Gandhi AA, Wojtas M, Lang SB, KholkinandS AL, Tofail A (2014) Piezoelectricity in poled hydroxyapatite ceramics. J Am Ceram Soc 97:2867–2872

    CAS  Google Scholar 

  99. Bystrov VS (2015) Piezoelectricity in the ordered monoclinic hydroxyapatite. Ferroelectrics 475(1):148–153

    CAS  Google Scholar 

  100. Lang SB (2016) Review of ferroelectric hydroxyapatite and its application to biomedicine. Phase Transit 89(7–8):678–694

    CAS  Google Scholar 

  101. Horiuchi N, Iwasaki K, Nozaki M, Nakamur K, Hashimoto A, Nagai K Yamashita (2017) A critical phenomenon of phase transition in hydroxyapatite investigated by thermally stimulated depolarization currents. J Am Ceram Soc 100:501–505

    CAS  Google Scholar 

  102. Zakharov NA (2001) An analysis of the phase transitions in biocompatible Ca10(PO4)6(OH)2. Tech Phys Lett 27(12):1035–1037

    CAS  Google Scholar 

  103. Ikoma T, Yamazaki A, Nakamura S, Akaro M (1999) Preparation and dielectric property of sintered monoclinic hydroxyapatite. J Mater Sci Lett 18(15):1225–1228

    CAS  Google Scholar 

  104. Chiatti F, Corno M, Ugliengo P (2012) Stability of the dipolar (001) surface of hydroxyapatite. J Phys Chem C 116(10):6108–6114

    CAS  Google Scholar 

  105. Anton EM, Jo W, Damjanovic D, Rödel J (2011) Determination of depolarization temperature of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics. J Appl Phys 119(9):094108

    Google Scholar 

  106. Guo F, Yang B, Bin S, Zhang F, Wu D, Liu P, Hu Y, Sun D, Wang W Cao (2013) Enhanced pyroelectric property in (1 − x)(Bi0.5Na0.5)TiO3-xBa(Zr0.055Ti0.945)O3: role of morphotropic phase boundary and ferroelectric-antiferroelectric phase transition. Appl Phys Lett 103(18):182906

    Google Scholar 

  107. Ngo TNM, Adem U, Palstra TTM (2015) The origin of thermally stimulated depolarization currents in multiferroic CuCrO2. Appl Phys Lett 106(15):152904

    Google Scholar 

  108. Kalogeras IM, Dova AV, Katerinopoulou A (2002) Axially dependent dielectric relaxation response of natural hydroxyapatite single crystals. J Appl Phys 92(1):406–414

    CAS  Google Scholar 

  109. Dubey AK, Kakimoto K (2016) Impedance spectroscopy and mechanical response of porous nanophase hydroxyapatite–barium titanate composite. Mater Sci Eng C 63:211–221

    CAS  Google Scholar 

  110. Zhen Y, Li JF (2008) Preparation and Electrical properties of fine-scale 1–3 lead zirconictitanate epoxy composite thin films for high frequency ultrasonic transducers. J Appl Phys 103:8

    Google Scholar 

  111. Koval V, Reece MJ, Bushby AJ (2005) Ferroelectric/Ferroelastic behaviour and piezoelectric response of lead zirconatetitanate thin films under nanoidentation. J Appl Phys 97:074301

    Google Scholar 

  112. Jones JL, Hoffman M (2006) Direct measurement of the domain switching contribution to the dynamic piezoelectric response in ferroelectric ceramic. App Phys Lett 89:092901

    Google Scholar 

  113. Kim HS, Li Y, Kim J (2008) Electro-mechanical behavior and direct piezoelectricity of cellulose electro-active paper. Sens Actuators A 147(1):304–309

    CAS  Google Scholar 

  114. Jiang W, Cao W, Yi X, Chen H (2005) Elastic and Piezoelectric properties of tungsten bronze ferroelectric crystals (Sr0.5Ba0.3)NaNb5O15 and (Sr0.3Ba0.7)2NaNb5O15. J Appl Phys 97:9

    Google Scholar 

  115. Hana P, Burianova L, Zhang SJ, Shrout TR, Furman E, Ryzhenko V, Bury P (2005) Elastic stiffness constants of PZN-4.5% PT single crystal influenced by DC bias electric field applied at various directions to prototypic crystal symmetry. Ferroelectrics 319(1):145–154

    Google Scholar 

  116. IEEE Standards on Piezoelectricity (IEEE, New York, 1988)

  117. Itoh S, Nakamura S, Kobayashi T, Shinomiya K, Yamashita K, Itoh S (2006) Effect of electrical polarization of hydroxyapatite ceramics on new bone formation. Calcif Tissue Int 78(3):133–142

    CAS  Google Scholar 

  118. McCaig CD, Zhao M (1997) Physiological electrical fields modify cell behaviour. BioEssays 19:819–826

    CAS  Google Scholar 

  119. Funk RHW (2015) Endogenous electric fields as guiding cue for cell migration. Front Physiol 6:143

    Google Scholar 

  120. Kang KS, Hong JM, Jeong YH, Seol YJ, Yong WJ, Rhie JW, Cho DW (2014) Combined effect of three types of biophysical stimuli for bone regeneration. Tissue Eng A 20:1767–1777

    Google Scholar 

  121. Davies JE (1988) The importance and measurement of surface charge species in cell behaviour at the biomaterial interface. In: Ratner RD (ed) Surface characterisation of biomaterials. Elsevier, Amsterdam

    Google Scholar 

  122. Itoh S, Nakamura S, Nakamura M, Shinomiya K, Yamashita K (2006) Enhanced bone regeneration by electrical polarization of hydroxyapatite. Artif Organs 3:863–869

    Google Scholar 

  123. Teng NC, Nakamura S, Takagi Y, Yamashita Y, Ohgaki M, Yamashita K (2001) A new approach to enhancement of bone formation using electrically polarized hydroxyapatite. J Dent Res 80:1292–1295

    Google Scholar 

  124. Nakamura S, Kobayashi T, Yamashita K (2004) Numerical osteobonding evaluation of electrically polarized hydroxyapatite ceramics. J Biomed Mater Res A 68:90–94

    Google Scholar 

  125. Nakamura M, Nakamura S, Sekijima Y, Niwa K, Kobayashi T, Yamashita K (2006) Role of blood coagulation as intermediators of high osteoconductivity of electrically polarized hydroxyapatite. J Biomed Mater Res A 79(3):627–634

    Google Scholar 

  126. Nagai A, Yamashita K, Imamura M, Azuma H (2008) Hydroxyapatite electret accelerates re-endothelialisation and attenuates intimal hyperplasia occurring after endothelial removal of the rabbit carotid artery. Life Sci 82(23–24):1162–1168

    CAS  Google Scholar 

  127. Okabayashi R, Nakamura M, Okabayashi T, Tanaka Y, Nagai A, Yamashita K (2009) Efficacy of polarized hydroxyapatite and silk fibroin composite dressing gel on epidermal recovery from full-thickness skin wounds. J Biomed Mater Res B 90:641–646

    Google Scholar 

  128. Kim H, Himeno T, Kawashita M, Kokubo T, Nakamura T (2004) The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatite: an in vitro assessment. J R Soc Interface 1:17–22

    Google Scholar 

  129. Schwartz Z, Boyan BD (1994) Underlying mechanisms at the bone-biomaterial interface. J Cell Biochem 56:340–347

    CAS  Google Scholar 

  130. Puleo DA, Nanci A (1999) Understanding and controlling the bone–implant interface. Biomaterials 20(23–24):2311–2321

    CAS  Google Scholar 

  131. Lian JB (2006) Biology of bone mineralization. Curr Opin Endocrinol Diabetes 13(1):1–9

    CAS  Google Scholar 

  132. Baxter FR, Turner IG, Bowen CR, Gittings JP, Chaudhuri JB (2009) An in vitro study of electrically active hydroxyapatite-barium titanate ceramics using Saos-2 cells. J Mater Sci Mater Med 20:1697–1708

    CAS  Google Scholar 

  133. Ohba S, Wang W, Itoh S, Takagi Y, Nagai A, Yamashita K (2012) Acceleration of new bone formation by an electrically polarized hydroxyapatite microgranule/platelet-rich plasma composite. Acta Biomater 8:2778–2787

    CAS  Google Scholar 

  134. Nakamura M, Nagai A, Tanaka Y, Sekijima Y, Yamashita K (2010) Polarized hydroxyapatite promotes spread and motility of osteoblastic cells. J Biomed Mater Res 92A:783–790

    CAS  Google Scholar 

  135. Kobayasi T, Nakamura S, Ueshima M, Yamashita K (2002) Mechanism of accelerated osteogenesis around polarized hydroxyapatite in the bone. Key Eng Mater 218–220:195–198

    Google Scholar 

Download references

Acknowledgements

The financial support from SERB, DST, Govt. of India is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Kumar Dubey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, A., Pandey, M. & Dubey, A.K. Induced Electroactive Response of Hydroxyapatite: A Review. J Indian Inst Sci 99, 339–359 (2019). https://doi.org/10.1007/s41745-019-00117-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-019-00117-9

Keywords

Navigation