Skip to main content
Log in

Upconversion Nanoparticle-Organic Dye Nanocomposites for Chemo- and Biosensing

  • Review
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

The emerging nanocomposite of lanthanide-doped upconversion nanoparticles (UCNPs) and organic dyes (ODs), which combines the advantages of each component, possesses a series of attractive properties, making the nanocomposite suitable for sensing. With the rising demand for chemo- and biosensing, a variety of sensors based on UCNP-OD nanocomposites have been developed for various analytes. The recent evolution of UCNP-OD-based sensors has enabled the detection of targeted analytes in situ, in vitro, and in vivo. In this review, beginning with a brief introduction to the fabrication and working principles of UCNP-OD-based sensors, we discuss UCNP-OD-based sensors for chemo- and biosensing. Concentrating on recent representative examples, we review UCNP-OD-based sensors for detecting different analytes, including ions, reactive oxygen species, reactive nitrogen species, gases, and biomolecules, by paying particular attentions to the design strategies and working principles. We lastly point out some remaining challenges and potential directions for the further development of UCNP-OD-based sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

(Reproduced with permission from Ref. [84]. Copyright 2020, Spring Nature). d Scheme of the spatial orientation of dye molecules on UCNPs. e Measured H2O2 concentrations in the ascites after NuTu-19 cells were inoculated. (Reproduced with permission from Ref. [90]. Copyright 2023, Wiley–VCH). f Luminescence response and color change (inset) of the sensor to ONOO. g In vivo imaging of drug-induced ONOO. (Reproduced with permission from Ref. [98]. Copyright 2017, Wiley–VCH)

Fig. 5

(Reproduced with permission from Ref. [107]. Copyright 2022, American Chemical Society). c Schematic illustration of the NO sensor and corresponding working principle. d Detection of NO gas on the test paper upon modulation of the intensity ratio. (Reproduced with permission from Ref. [114]. Copyright 2021, American Chemical Society). e Response of the cyanine dye to COCl2. f Absorbance spectra of the cyanine dye before and after the addition of COCl2 (left panel) and the response kinetics of the dye to COCl2 (right panel). (Reproduced with permission from Ref. [118]. Copyright 2020, Wiley–VCH)

Fig. 6

(Reproduced with permission from Ref. [31]. Copyright 2019, American Chemical Society). c Upconversion luminescence spectra of the DNAzyme-coupled sensor for detecting miRNA-21. (Reproduced with permission from Ref. [131]. Copyright 2023, Elsevier). d Schematic illustration of the glutathione sensor and sensing of glutathione through the target-modulated sensitization. e Upconversion luminescence enhancement factor of the sensor responding to glutathione. (Reproduced with permission from Ref. [140]. Copyright 2018, American Chemical Society)

Similar content being viewed by others

References

  1. Huang Y, Luo C, Xia F, Song Y, Jiang L, Li F. Multi-analyte sensing strategies towards wearable and intelligent devices. Chem Sci. 2022;13(42):12309–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liang L, Qin F, Wang S, Wu J, Li R, Wang Z, Ren M, Liu D, Wang D, Astruc D. Overview of the materials design and sensing strategies of nanopore devices. Coord Chem Rev. 2023;478: 214998.

    Article  CAS  Google Scholar 

  3. Wu D, Sedgwick AC, Gunnlaugsson T, Akkaya EU, Yoon J, James TD. Fluorescent chemosensors: the past, present and future. Chem Soc Rev. 2017;46(23):7105–23.

    Article  CAS  PubMed  Google Scholar 

  4. Duan N, Wang H, Li Y, Yang S, Tian H, Sun B. The research progress of organic fluorescent probe applied in food and drinking water detection. Coord Chem Rev. 2021;427: 213557.

    Article  CAS  Google Scholar 

  5. Sun Y, Sun P, Li Z, Qu L, Guo W. Natural flavylium-inspired far-red to NIR-II dyes and their applications as fluorescent probes for biomedical sensing. Chem Soc Rev. 2022;51(16):7170–205.

    Article  CAS  PubMed  Google Scholar 

  6. Wu D, Chen L, Lee W, Ko G, Yin J, Yoon J. Recent progress in the development of organic dye based near-infrared fluorescence probes for metal ions. Coord Chem Rev. 2018;354:74–97.

    Article  CAS  Google Scholar 

  7. Huang Y, Chen W, Chung J, Yin J, Yoon J. Recent progress in fluorescent probes for bacteria. Chem Soc Rev. 2021;50(13):7725–44.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang M, Wang N, Li Z. Recent advances in chromophore-assembled upconversion nanoprobes for chemo/biosensing. Trends in Analyt Chem. 2022;151: 116602.

    Article  CAS  Google Scholar 

  9. Dubey N, Chandra S. Upconversion nanoparticles: recent strategies and mechanism based applications. J Rare Earth. 2022;40(9):1343–59.

    Article  CAS  Google Scholar 

  10. Yuan Z, Zhang L, Li S, Zhang W, Lu M, Pan Y, Xie X, Huang L, Huang W. Paving metal-organic frameworks with upconversion nanoparticles via self-assembly. J Am Chem Soc. 2018;140(45):15507–15.

    Article  CAS  PubMed  Google Scholar 

  11. Patel M, Meenu M, Pandey JK, Kumar P, Patel R. Recent development in upconversion nanoparticles and their application in optogenetics: a review. J Rare Earth. 2022;40(6):847–61.

    Article  CAS  Google Scholar 

  12. Chen X, Wan J, Wei M, Xia Z, Zhou J, Lu M, Yuan Z, Huang L, Xie X. Tandem fabrication of upconversion nanocomposites enabled by confined protons. Nanoscale. 2023;15(6):2642–9.

    Article  CAS  PubMed  Google Scholar 

  13. Ansari AA, Parchur AK, Chen G. Surface modified lanthanide upconversion nanoparticles for drug delivery, cellular uptake mechanism, and current challenges in NIR-driven therapies. Coord Chem Rev. 2022;457: 214423.

    Article  CAS  Google Scholar 

  14. Zheng B, Fan J, Chen B, Qin X, Wang J, Wang F, Deng R, Liu X. Rare-earth doping in nanostructured inorganic materials. Chem Rev. 2022;122(6):5519–603.

    Article  CAS  PubMed  Google Scholar 

  15. Cheng X, Zhou J, Yue J, Wei Y, Gao C, Xie X, Huang L. Recent development in sensitizers for lanthanide-doped upconversion luminescence. Chem Rev. 2022;122(21):15998–6050.

    Article  CAS  PubMed  Google Scholar 

  16. Arai MS, de Camargo ASS. Exploring the use of upconversion nanoparticles in chemical and biological sensors: from surface modifications to point-of-care devices. Nanoscale Adv. 2021;3(18):5135–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wei M, Yuan Z, Lu M, Ma H, Xie X, Huang L. Recent advance in lanthanide doped upconversion nanoparticle-metal organic framework composites. Chem J Chin Univ. 2021;42(8):2313–23.

    CAS  Google Scholar 

  18. Hou Y, Lv C, Guo Y, Ma X, Liu W, Jin Y, Li B, Yang M, Yao S. Recent advances and applications in paper-based devices for point-of-care testing. J Anal Test. 2022;6:247–73.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Song H, Zhou H, Zhuang Q, Li Z, Sun F, Yuan Z, Lou Y, Zhou G, Zhao Y. IFE based nanosensor composed of UCNPs and Fe(II)-phenanthroline for detection of hypochlorous acid and periodic acid. J Rare Earth. 2023;41(2):200–7.

    Article  CAS  Google Scholar 

  20. Hu J, Zhao B, Wen R, Zhang X, Zhang Y, Kohane DS, Liu Q. Squaraine dye-sensitized upconversion with enhanced stability and minimized aggregation-caused quenching. Nano Lett. 2023;23(11):5209–16.

    Article  CAS  PubMed  Google Scholar 

  21. Chen B, Wang F. Recent advances in the synthesis and application of Yb-based fluoride upconversion nanoparticles. Inorg Chem Front. 2020;7(5):1067–81.

    Article  CAS  Google Scholar 

  22. Wang L, Xiong Z, Ran X, Tang H, Cao D. Recent advances of NIR dyes of pyrrolopyrrole cyanine and pyrrolopyrrole aza-BODIPY: synthesis and application. Dyes Pigm. 2022;198: 110040.

    Article  CAS  Google Scholar 

  23. Wang K, Lei Y, Chen J, Ge Z, Liu W, Zhang Q, Chen S, Hu Z. The coumarin conjugate: synthesis, photophysical properties and the ratiometric fluorescence response to water content of organic solvent. Dyes Pigm. 2018;151:233–7.

    Article  CAS  Google Scholar 

  24. Liang T, Wang Q, Li Z, Wang P, Wu J, Zuo M, Liu Z. Removing the obstacle of dye-sensitized upconversion luminescence in aqueous phase to achieve high-contrast deep imaging in vivo. Adv Funct Mater. 2020;30(16):1910765.

    Article  CAS  Google Scholar 

  25. Yu X, Ouyang W, Qiu H, Zhang Z, Wang Z, Xing B. Detection of reactive oxygen and nitrogen species by upconversion nanoparticle-based near-infrared nanoprobes: recent progress and perspectives. Chem Eur J. 2022;28(65): e202201966.

    Article  CAS  PubMed  Google Scholar 

  26. Chen H, Wang W, Ji C, Wang L. Dye-sensitized core-shell NaGdF4:Yb, Er@NaGdF4:Yb, Nd upconversion nanoprobe for determination of H2S. Spectrochim Acta A Mol Biomol Spectrosc. 2021;248: 119281.

    Article  CAS  PubMed  Google Scholar 

  27. Yang C, Li Y, Wu N, Zhang Y, Feng W, Yu M, Li Z. Ratiometric upconversion luminescence nanoprobes for quick sensing of Hg2+ and cells imaging. Sens Actuators B. 2021;326: 128841.

    Article  CAS  Google Scholar 

  28. Ma X, Zhao Y. Biomedical applications of supramolecular systems based on host–guest interactions. Chem Rev. 2015;115(15):7794–839.

    Article  CAS  PubMed  Google Scholar 

  29. Zhou Y, Chen W, Zhu J, Pei W, Wang C, Huang L, Yao C, Yan Q, Huang W, Loo JSC, Zhang Q. Inorganic-organic hybrid nanoprobe for NIR-excited imaging of hydrogen sulfide in cell cultures and inflammation in a mouse model. Small. 2014;10(23):4874–85.

    Article  CAS  PubMed  Google Scholar 

  30. Liu X, Lai H, Peng J, Cheng D, Zhang X, Yuan L. Chromophore-modified highly selective ratiometric upconversion nanoprobes for detection of ONOO-related hepatotoxicity in vivo. Small. 2019;15(43): e1902737.

    Article  PubMed  Google Scholar 

  31. Li C, Kang Y, Qi C, Zheng B, Zheng M, Song C, Guo Z, Lin Y, Pang D, Tang H. Breaking through bead-supported assay: integration of optical tweezers assisted fluorescence imaging and luminescence confined upconversion nanoparticles triggered luminescent resonance energy transfer (LRET). Anal Chem. 2019;91(12):7950–7.

    Article  CAS  PubMed  Google Scholar 

  32. Ding C, Cheng S, Yuan F, Zhang C, Xian Y. Ratiometrically pH-insensitive upconversion nanoprobe: toward simultaneously quantifying organellar calcium and chloride and understanding the interaction of the two ions in lysosome function. Anal Chem. 2022;94(30):10813–23.

    Article  CAS  PubMed  Google Scholar 

  33. Chai Y, Zhou X, Chen X, Wen C, Ke J, Feng W, Li F. Influence on the apparent luminescent lifetime of rare-earth upconversion nanoparticles by quenching the sensitizer’s excited state for hypochlorous acid detection and bioimaging. ACS Appl Mater Interfaces. 2022;14(12):14004–11.

    Article  CAS  PubMed  Google Scholar 

  34. Li Y, Jia D, Ren W, Shi F, Liu C. A versatile photoinduced electron transfer-based upconversion fluorescent biosensing platform for the detection of disease biomarkers and nerve agent. Adv Funct Mater. 2019;29(32):1903191.

    Article  Google Scholar 

  35. Medintz IL, Pons T, Susumu K, Boeneman K, Dennis AM, Farrell D, Deschamps JR, Melinger JS, Bao G, Mattoussi H. Resonance energy transfer between luminescent quantum dots and diverse fluorescent protein acceptors. J Phys Chem C. 2009;113(43):18552–61.

    Article  CAS  Google Scholar 

  36. Bao G, Wen S, Lin G, Yuan J, Lin J, Wong KL, Bünzli JCG, Jin D. Learning from lanthanide complexes: the development of dye-lanthanide nanoparticles and their biomedical applications. Coord Chem Rev. 2021;429(15): 213642.

    Article  CAS  Google Scholar 

  37. Gu B, Zhang Q. Recent advances on functionalized upconversion nanoparticles for detection of small molecules and ions in biosystems. Adv Sci. 2018;5(3):1700609.

    Article  Google Scholar 

  38. Zheng W, Huang P, Tu D, Ma E, Zhu H, Chen X. Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection. Chem Soc Rev. 2015;44(6):1379–415.

    Article  CAS  PubMed  Google Scholar 

  39. Wu YN, Qiu AT, Zhong ZQ, Wang LZ, Yuan MY, Zhao HX, Xiao SJ. Selective and sensitive discrimination of zinc and cadmium based on a novel fluorescent porous organic polymer. J Anal Test. 2021;5:235–41.

    Article  Google Scholar 

  40. Wang X, Shen C, Zhou C, Bu Y, Yan X. Methods, principles and applications of optical detection of metal ios. Chem Eng J. 2021;417: 129125.

    Article  CAS  Google Scholar 

  41. Chen M, Kutsanedzie FYH, Cheng W, Li H, Chen Q. Ratiometric fluorescence detection of Cd2+ and Pb2+ by inner filter-based upconversion nanoparticle-dithizone nanosystem. Microchem J. 2019;144:296–302.

    Article  Google Scholar 

  42. Mou X, Wang J, Meng X, Liu J, Shi L, Sun L. Multifunctional nanoprobe based on upconversion nanoparticles for luminescent sensing and magnetic resonance imaging. J Lumin. 2017;190:16–22.

    Article  CAS  Google Scholar 

  43. Zhang T, Liu F, Ning H, Chen M, Li F. Electrochemiluminescence detection of Cu2+ by quinacridone-modified microporous electrodes. Chin J Anal Lab. 2022;41(12):1538–44.

    CAS  Google Scholar 

  44. Jiang X, Meng G. A rhodamine-based sensing probe excited by upconversion NaYF4:Yb3+/Er3+ nanoparticles: the realization of simple Cu(II) detection with high sensitivity and unique selectivity. J Lumin. 2013;135:227–31.

    Article  CAS  Google Scholar 

  45. Shi Y, Liu Q, Yuan W, Xue M, Feng W, Li F. Dye-assembled upconversion nanocomposite for luminescence ratiometric in vivo bioimaging of copper ions. ACS Appl Mater Interfaces. 2019;11(1):430–6.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang J, Li B, Zhang L, Jiang H. An optical sensor for Cu(II) detection with upconverting luminescent nanoparticles as an excitation source. Chem Commun. 2012;48(40):4860–2.

    Article  CAS  Google Scholar 

  47. Li C, Liu J, Alonso S, Li F, Zhang Y. Upconversion nanoparticles for sensitive and in-depth detection of Cu2+ ions. Nanoscale. 2012;4(19):6065–71.

    Article  CAS  PubMed  Google Scholar 

  48. Meng Z, Wu S, Zhong L, Zeng M, Sun X, Li L, Zhang S. Rhodamine B derivatives-modified upconversion nanoparticles as a fluorescent turn-off-on sensor for the highly sensitive detection of Cu2+ and pyrophosphate. RSC Adv. 2018;8(66):38075–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gu B, Ye M, Nie L, Fang Y, Wang Z, Zhang X, Zhang H, Zhou Y, Zhang Q. Organic-dye-modified upconversion nanoparticle as a multichannel probe to detect Cu2+ in living cells. ACS Appl Mater Interfaces. 2018;10(1):1028–32.

    Article  CAS  PubMed  Google Scholar 

  50. Yan Q, Chen ZH, Xue SF, Han XY, Lin ZY, Zhang S, Shi G, Zhang M. Lanthanide-doped nanoparticles encountering porphyrin hydrate: boosting a dual-mode optical nanokit for Cu2+ sensing. Sens Actuators B. 2018;268:108–14.

    Article  CAS  Google Scholar 

  51. Wang X, Zhang X, Huang D, Zhao T, Zhao L, Fang X, Yang C, Chen G. High-sensitivity sensing of divalent copper ions at the single upconversion nanoparticle level. Anal Chem. 2021;93(34):11686–91.

    Article  CAS  PubMed  Google Scholar 

  52. Jiang T, Huang J, Ran G, Song Q, Wang C. A colorimetric and fluorometric dual-mode carbon dots probe derived from phenanthroline precursor for the selective detection of Fe2+ and Fe3+. Anal Sci. 2023;39:325–33.

    CAS  PubMed  Google Scholar 

  53. Sanchez M, Sabio L, Galvez N, Capdevila M, Dominguez-Vera JM. Iron chemistry at the service of life. IUBMB Life. 2017;69:382–8.

    Article  CAS  PubMed  Google Scholar 

  54. Brissot P, Loréal O. Iron metabolism and related genetic diseases: a cleared land, keeping mysteries. J Hepatol. 2016;64(2):505–15.

    Article  CAS  PubMed  Google Scholar 

  55. Wang Y, Wang M, Liu Y, Tao H, Banerjee S, Srinivasan S, Nemeth E, Czaja MJ, He P. Integrated regulation of stress responses, autophagy and survival by altered intracellular iron stores. Redox Biol. 2022;55: 102407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ding Y, Zhu H, Zhang X, Zhu JJ, Burda C. Rhodamine B derivative-functionalized upconversion nanoparticles for FRET-based Fe3+-sensing. Chem Commun. 2013;49(71):7797–9.

    Article  CAS  Google Scholar 

  57. Wei R, Wei Z, Sun L, Zhang JZ, Liu J, Ge X, Shi L. Nile red derivative-modified nanostructure for upconversion luminescence sensing and intracellular detection of Fe3+ and MR imaging. ACS Appl Mater Interfaces. 2016;8(1):400–10.

    Article  CAS  PubMed  Google Scholar 

  58. Meng Z, Wu S, Zhong L, Sun X, Li L, Zhang S. Fe3+-sensing by 3,3’,5,5’-tetramethylbenzidine-functionalized upconversion nanoparticles. Nanotechnology. 2019;30: 135502.

    Article  CAS  PubMed  Google Scholar 

  59. Zhao M, Xu F, Wang L, Chen H. A single-particle enumeration method for the detection of Fe2+ based on a near-infrared core-shell upconversion nanoparticle and IR-808 dye composite nanoprobe. Analyst. 2020;145(2):530–6.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang Y, Liu H, Ning L, Gu W, Liu X. A novel core-shell upconversion nanoparticles@zirconium-based metal organic framework fluorescent nanoprobe for efficient continuous detection of trace methylene blue and ferrous ions. Talanta. 2021;224: 121853.

    Article  CAS  PubMed  Google Scholar 

  61. Gu B, Zhou Y, Zhang X, Liu X, Zhang Y, Marks R, Zhang H, Liu X, Zhang Q. Thiazole derivative-modified upconversion nanoparticles for Hg2+ detection in living cells. Nanoscale. 2016;8:276–82.

    Article  CAS  PubMed  Google Scholar 

  62. Liu Y, Chen M, Cao T, Sun Y, Li C, Liu Q, Yang T, Yao L, Feng W, Li F. A cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury. J Am Chem Soc. 2013;135(26):9869–76.

    Article  CAS  PubMed  Google Scholar 

  63. Wu YX, Zhang XB, Zhang DL, Zhang CC, Li JB, Wu Y, Song ZL, Yu RQ, Tan W. Quench-shield ratiometric upconversion luminescence nanoplatform for biosensing. Anal Chem. 2016;88(3):1639–46.

    Article  CAS  PubMed  Google Scholar 

  64. Vijayan AN, Liu Z, Zhao H, Zhang P. Nicking enzyme-assisted signal-amplifiable Hg2+ detection using upconversion nanoparticles. Anal Chim Acta. 2019;1072:75–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen H, Ren J. Sensitive determination of chromium (VI) based on the inner filter effect of upconversion luminescent nanoparticles (NaYF4:Yb3+, Er3+). Talanta. 2012;99:404–8.

    Article  CAS  PubMed  Google Scholar 

  66. Chen T, Shang Y, Zhu Y, Hao S, Yang C. Activators confined upconversion nanoprobe with near-unity Förster resonance energy transfer efficiency for ultrasensitive detection. ACS Appl Mater Interfaces. 2022;14(17):19826–35.

    Article  CAS  PubMed  Google Scholar 

  67. Liu S, Li Y, Zhang C, Yang L, Zhao T, Zhang R, Jiang C. Upconversion color tuning in Ce3+-doped LiYF4:Yb3+/Ho3+@LiYF4 nanoparticles towards ratiometric fluorescence detection of chromium(III). J Colloid Interface Sci. 2017;493:10–6.

    Article  CAS  PubMed  Google Scholar 

  68. Zhao S, Wu F, Zhao Y, Liu Y, Zhu L. Phenothiazine-cyanine-functionalized upconversion nanoparticles for LRET and colorimetric sensing of cyanide ions in water samples. J Photochem Photobiol A. 2016;319–320:53–61.

    Article  Google Scholar 

  69. Peng J, Xu W, Teoh CL, Han S, Kim B, Samanta A, Er J, Wang L, Yuan L, Liu X, Chang Y-T. High-efficiency in vitro and in vivo detection of Zn2+ by dye-assembled upconversion nanoparticles. J Am Chem Soc. 2015;137(6):2336–42.

    Article  CAS  PubMed  Google Scholar 

  70. Yang Z, Loh KY, Chu YT, Feng R, Satyavolu NSR, Xiong M, Nakamata Huynh SM, Hwang K, Li L, Xing H, Zhang X, Chemla YR, Gruebele M, Lu Y. Optical control of metal ion probes in cells and zebrafish using highly selective DNAzymes conjugated to upconversion nanoparticles. J Am Chem Soc. 2018;140(50):17656–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu Y, Ouyang Q, Li H, Zhang Z, Chen Q. Development of an inner filter effects-based upconversion nanoparticles-curcumin nanosystem for the sensitive sensing of fluoride ion. ACS Appl Mater Interfaces. 2017;9(21):18314–21.

    Article  CAS  PubMed  Google Scholar 

  72. Xu J, Liu R, Li H, Chen Q. Multifunctional upconversion nanoparticles based LRET aptasensor for specific detection of As(III) in aquatic products. Sens Actuators B. 2022;369: 132271.

    Article  CAS  Google Scholar 

  73. Ferreira CA, Ni D, Rosenkrans ZT, Cai W. Scavenging of reactive oxygen and nitrogen species with nanomaterials. Nano Res. 2018;11:4955–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang ZJ, Li Q, Tan LL, Liu CG, Shang L. Metal-organic frameworks-mediated assembly of gold nanoclusters for sensing applications. J Anal Test. 2022;6:163–77.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Yang B, Chen Y, Shi J. Reactive oxygen species (ROS)-based nanomedicine. Chem Rev. 2019;119(8):4881–985.

    Article  CAS  PubMed  Google Scholar 

  76. Xiong K, Huo F, Zhang Y, Wen Y, Yin C. A NIR ratiometric fluorescent probe for the ‘naked-eye’ detection of endogenous hypochlorous acid in practical samples. Anal Methods. 2019;11(13):1751–6.

    Article  CAS  Google Scholar 

  77. Wang K, Liu Y, Liu C, Zhu H, Li X, Yu M, Liu L, Sang G, Sheng W, Zhu B. A new-type HOCl-activatable fluorescent probe and its applications in water environment and biosystems. Sci Total Environ. 2022;839: 156164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhou Y, Pei W, Wang C, Zhu J, Wu J, Yan Q, Huang L, Huang W, Yao C, Loo JS, Zhang Q. Rhodamine-modified upconversion nanophosphors for ratiometric detection of hypochlorous acid in aqueous solution and living cells. Small. 2014;10(17):3560–7.

    Article  CAS  PubMed  Google Scholar 

  79. Zou X, Liu Y, Zhu X, Chen M, Yao L, Feng W, Li F. An Nd3+-sensitized upconversion nanophosphor modified with a cyanine dye for the ratiometric upconversion luminescence bioimaging of hypochlorite. Nanoscale. 2015;7(9):4105–13.

    Article  CAS  PubMed  Google Scholar 

  80. Wang M, Mi R, Wang L, Chen H. Preparation of cyanine dye sensitized upconversion luminescent nanoprobe and hypochlorous acid detection by light-emitting energy transfer. J Lumin. 2021;239: 118395.

    Article  CAS  Google Scholar 

  81. Sun L, Sun C, Ge Y, Zhang Z, Zhou J. Ratiometric upconversion nanoprobes for turn-on fluorescent detection of hypochlorous acid. J Photochem Photobiol A. 2023;439: 114639.

    Article  CAS  Google Scholar 

  82. Ke J, Lu S, Shang X, Liu Y, Guo H, You W, Li X, Xu J, Li R, Chen Z, Chen X. A strategy of NIR dual-excitation upconversion for ratiometric intracellular detection. Adv Sci. 2019;6(22):1901874.

    Article  CAS  Google Scholar 

  83. Zou X, Zhou X, Cao C, Lu W, Yuan W, Liu Q, Feng W, Li F. Dye-sensitized upconversion nanocomposites for ratiometric semi-quantitative detection of hypochlorite in vivo. Nanoscale. 2019;11(6):2959–65.

    Article  CAS  PubMed  Google Scholar 

  84. Ke J, Lu S, Li Z, Shang X, Li X, Li R, Tu D, Chen Z, Chen X. Multiplexed intracellular detection based on dual-excitation/dual-emission upconversion nanoprobes. Nano Res. 2020;13:1955–61.

    Article  CAS  Google Scholar 

  85. Zhang M, Zuo M, Wang C, Li Z, Cheng Q, Huang J, Wang Z, Liu Z. Monitoring neuroinflammation with an HOCl-activatable and blood-brain barrier permeable upconversion nanoprobe. Anal Chem. 2020;92(7):5569–76.

    Article  CAS  PubMed  Google Scholar 

  86. Kang C, Cho W, Park M, Kim J, Park S, Shin D, Song C, Lee D. H2O2-triggered bubble generating antioxidant polymeric nanoparticles as ischemia/reperfusion targeted nanotheranostics. Biomaterials. 2016;85:195–203.

    Article  CAS  PubMed  Google Scholar 

  87. Liu J, Lu L, Li A, Tang J, Wang S, Xu S, Wang L. Simultaneous detection of hydrogen peroxide and glucose in human serum with upconversion luminescence. Biosens Bioelectron. 2015;68:204–9.

    Article  CAS  PubMed  Google Scholar 

  88. Zhou Y, Pei W, Zhang X, Chen W, Wu J, Yao C, Huang L, Zhang H, Huang W, Chye Loo JS, Zhang Q. A cyanine-modified upconversion nanoprobe for NIR-excited imaging of endogenous hydrogen peroxide signaling in vivo. Biomaterials. 2015;54:34–43.

    Article  CAS  PubMed  Google Scholar 

  89. Wang H, Li Y, Yang M, Wang P, Gu Y. FRET-based upconversion nanoprobe sensitized by Nd3+ for the ratiometric detection of hydrogen peroxide in vivo. ACS Appl Mater Interfaces. 2019;11(7):7441–9.

    Article  CAS  PubMed  Google Scholar 

  90. Wang X, Fu J, Jiang C, Liao X, Chen Y, Jia T, Chen G, Feng X. Specific and long-term luminescent monitoring of hydrogen peroxide in tumor metastasis. Adv Mater. 2023;35(20):2210948.

    Article  CAS  Google Scholar 

  91. Liu L, Wang S, Zhao B, Pei P, Fan Y, Li X, Zhang F. Er3+ sensitized 1530 nm to 1180 nm second near-infrared window upconversion nanocrystals for in vivo biosensing. Angew Chem Int Ed. 2018;57(25):7518–22.

    Article  CAS  Google Scholar 

  92. Zheng J, Wu Y, Xing D, Zhang T. Synchronous detection of glutathione/hydrogen peroxide for monitoring redox status in vivo with a ratiometric upconverting nanoprobe. Nano Res. 2019;12:931–8.

    Article  CAS  Google Scholar 

  93. Li Z, Liang T, Lv S, Zhuang Q, Liu Z. A rationally designed upconversion nanoprobe for in vivo detection of hydroxyl radical. J Am Chem Soc. 2015;137(34):11179–85.

    Article  CAS  PubMed  Google Scholar 

  94. Song X, Zhang J, Yue Z, Wang Z, Liu Z, Zhang S. Dual-activator codoped upconversion nanoprobe with core-multishell structure for in vitro and in vivo detection of hydroxyl radical. Anal Chem. 2017;89(20):11021–6.

    Article  CAS  PubMed  Google Scholar 

  95. Jia Q, Liu Y, Duan Y, Zhou J. Interference-free detection of hydroxyl radical and arthritis diagnosis by rare earth-based nanoprobe utilizing SWIR emission as reference. Anal Chem. 2019;91(17):11433–9.

    Article  CAS  PubMed  Google Scholar 

  96. Lian D, Chen M, Wu H, Deng S, Hu X. The role of oxidative stress in skeletal muscle myogenesis and muscle disease. Antioxidants. 2022;11(4):755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Li L, Zhang B, Liu F, Xue Z, Lu X, Liu X. Direct sensing of peroxynitrite anion at sensitive hollow tubular organic conjugated microporous polymers modified electrode. Application to selective analysis of ROS and RNS in cells. Sens Actuators B. 2020;306:127560.

    Article  CAS  Google Scholar 

  98. Peng J, Samanta A, Zeng X, Han S, Wang L, Su D, Loong DT, Kang NY, Park SJ, All AH, Jiang W, Yuan L, Liu X, Chang Y-T. Real-time in vivo hepatotoxicity monitoring through chromophore-conjugated photon-upconverting nanoprobes. Angew Chem Int Ed. 2017;56(15):4165–9.

    Article  CAS  Google Scholar 

  99. Zhao M, Li B, Wu Y, He H, Zhu X, Zhang H, Dou C, Feng L, Fan Y, Zhang F. A tumor-microenvironment-responsive lanthanide-cyanine FRET sensor for NIR-II luminescence-lifetime in situ imaging of hepatocellular carcinoma. Adv Mater. 2020;32(28):2001172.

    Article  CAS  Google Scholar 

  100. Ai X, Wang Z, Cheong H, Wang Y, Zhang R, Lin J, Zheng Y, Gao M, Xing B. Multispectral optoacoustic imaging of dynamic redox correlation and pathophysiological progression utilizing upconversion nanoprobes. Nat Commun. 2019;10:1087.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Sun Z, Huang H, Zhang R, Yang X, Yang H, Li C, Zhang Y, Wang Q. Activatable rare earth near-infrared-II fluorescence ratiometric nanoprobes. Nano Lett. 2021;21(15):6576–83.

    Article  CAS  PubMed  Google Scholar 

  102. Liu S, Zhang L, Yang T, Yang H, Zhang KY, Zhao X, Lv W, Yu Q, Zhang X, Zhao Q, Liu X, Huang W. Development of upconversion luminescent probe for ratiometric sensing and bioimaging of hydrogen sulfide. ACS Appl Mater Interfaces. 2014;6(14):11013–7.

    Article  CAS  PubMed  Google Scholar 

  103. Cui M, Li H, Ren X, Xia L, Deng D, Gu Y, Li D, Wang P. A FRET-based upconversion nanoprobe assembled with an electrochromic chromophore for sensitive detection of hydrogen sulfide in vitro and in vivo. Nanoscale. 2020;12(33):17517–29.

    Article  CAS  PubMed  Google Scholar 

  104. Li X, Zhao H, Ji Y, Yin C, Li J, Yang Z, Tang Y, Zhang Q, Fan Q, Huang W. Lysosome-assisted mitochondrial targeting nanoprobe based on dye-modified upconversion nanophosphors for ratiometric imaging of mitochondrial hydrogen sulfide. ACS Appl Mater Interfaces. 2018;10(46):39544–56.

    Article  CAS  PubMed  Google Scholar 

  105. Peng J, Teoh CL, Zeng X, Samanta A, Wang L, Xu W, Su D, Yuan L, Liu X, Chang Y-T. Development of a highly selective, sensitive, and fast response upconversion luminescent platform for hydrogen sulfide detection. Adv Funct Mater. 2016;26(2):191–9.

    Article  CAS  Google Scholar 

  106. Zuo M, Duan Q, Li C, Ge J, Wang Q, Li Z, Liu Z. A versatile strategy for constructing ratiometric upconversion luminescent probe with sensitized emission of energy acceptor. Anal Chem. 2021;93(13):5635–43.

    Article  CAS  PubMed  Google Scholar 

  107. Duan Q, He Y, Bi W, Liang T, Liu Z, Li Z. In vivo monitoring of hydrogen polysulfide via a NIR-excitable reversible fluorescent probe based on upconversion luminescence resonance energy transfer. Anal Chem. 2022;94(24):8792–801.

    Article  CAS  PubMed  Google Scholar 

  108. Wang H, Liu Y, Wang Z, Yang M, Gu Y. 808 nm-light-excited upconversion nanoprobe based on LRET for the ratiometric detection of nitric oxide in living cancer cells. Nanoscale. 2018;10(22):10641–9.

    Article  CAS  PubMed  Google Scholar 

  109. Ye M, Zhang J, Jiang D, Tan Q, Li J, Yao C, Zhu C, Zhou Y. A hemicyanine-assembled upconversion nanosystem for NIR-excited visualization of carbon monoxide bio-signaling in vivo. Small. 2022;18(28):2202263.

    Article  CAS  Google Scholar 

  110. Li Y, Su P, Zhang J, Ye M, Zhou Y, Yao C. Rhodamine-modified upconversion nanophosphors for ratiometric detection of phosgene. J Lumin. 2020;227: 117507.

    Article  CAS  Google Scholar 

  111. Zhang C, Ling X, Mei Q, He H, Deng S, Zhang Y. Surface lanthanide activator doping for constructing highly efficient energy transfer-based nanoprobes for the on-site monitoring of atmospheric sulfur dioxide. Analyst. 2020;145(2):537–43.

    Article  CAS  PubMed  Google Scholar 

  112. Caballano-Infantes E, Cahuana GM, Bedoya FJ, Salguero-Aranda C, Tejedo JR. The role of nitric oxide in stem cell biology. Antioxidants. 2022;11(3):497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang N, Yu X, Zhang K, Mirkin CA, Li J. Upconversion nanoprobes for the ratiometric luminescent sensing of nitric oxide. J Am Chem Soc. 2017;139(36):12354–7.

    Article  CAS  PubMed  Google Scholar 

  114. Zhou J, Wu R, Fu X, Wu J, Mei Q. Ratio-adjustable upconversion luminescence nanoprobe for ultrasensitive in vitro diagnostics. Anal Chem. 2021;93(27):9299–303.

    Article  CAS  PubMed  Google Scholar 

  115. Motterlini R, Foresti R. Biological signaling by carbon monoxide and carbon monoxide-releasing molecules. Am J Physiol Cell Physiol. 2017;312(3):C302–13.

    Article  PubMed  Google Scholar 

  116. Wang N, Li Z, Liu W, Deng T, Yang J, Yang R, Li J. Upconversion nanoprobes for in vitro and ex vivo measurement of carbon monoxide. ACS Appl Mater Interfaces. 2019;11(30):26684–9.

    Article  CAS  PubMed  Google Scholar 

  117. Ye M, Tan Q, Jiang D, Li J, Yao C, Zhou Y. Deep-depth imaging of hepatic ischemia/reperfusion injury using a carbon monoxide-activated upconversion luminescence nanosystem. ACS Appl Mater Interfaces. 2022;14(47):52659–69.

    Article  CAS  PubMed  Google Scholar 

  118. Zhang D, Wang L, Yuan X, Gong Y, Liu H, Zhang J, Zhang X, Liu Y, Tan W. Naked-eye readout of analyte-induced NIR fluorescence responses by an initiation-input-transduction nanoplatform. Angew Chem Int Ed. 2020;59(2):695–9.

    Article  Google Scholar 

  119. Datta LP, Manchineella S, Govindaraju T. Biomolecules-derived biomaterials. Biomaterials. 2020;230: 119633.

    Article  CAS  PubMed  Google Scholar 

  120. Li ZX, Zhang JL, Wang J, Luo F, Qiu B, Guo LH, Lin ZY. A novel enzyme-responded controlled release electrochemical biosensor for hyaluronidase activity detection. J Anal Test. 2021;5:69–75.

    Article  Google Scholar 

  121. Zeng T, Zhang T, Wei W, Li Z, Wu D, Wang L, Guo J, He X, Ma N. Compact, programmable, and stable biofunctionalized upconversion nanoparticles prepared through peptide-mediated phase transfer for high-sensitive protease sensing and in vivo apoptosis imaging. ACS Appl Mater Interfaces. 2015;7(22):11849–56.

    Article  CAS  PubMed  Google Scholar 

  122. Liu L, Zhang H, Song D, Wang Z. An upconversion nanoparticle-based fluorescence resonance energy transfer system for effectively sensing caspase-3 activity. Analyst. 2018;143(3):761–7.

    Article  CAS  PubMed  Google Scholar 

  123. Liu L, Zhang H, Wang Z, Song D. Peptide-functionalized upconversion nanoparticles-based FRET sensing platform for caspase-9 activity detection in vitro and in vivo. Biosens Bioelectron. 2019;141: 111403.

    Article  CAS  PubMed  Google Scholar 

  124. Cao S, Li Z, Zhao J, Chen M, Ma N. Rational engineering a multichannel upconversion sensor for multiplex detection of matrix metalloproteinase activities. ACS Sensors. 2018;3(8):1522–30.

    Article  CAS  PubMed  Google Scholar 

  125. Xu Q, Jin J, Zhang X. A magnetic DNA nanomachine enable unload of blocker DNA for chemiluminescence sensing. Chin J Anal Lab. 2022;41(12):1551–5.

    CAS  Google Scholar 

  126. Zhou F, Noor MO, Krull UJ. Luminescence resonance energy transfer-based nucleic acid hybridization assay on cellulose paper with upconverting phosphor as donors. Anal Chem. 2014;86(5):2719–26.

    Article  CAS  PubMed  Google Scholar 

  127. Wang G, Fu Y, Ren Z, Huang J, Best S, Li X, Han G. Upconversion nanocrystal “armoured” silica fibres with superior photoluminescence for miRNA detection. Chem Commun. 2018;54(49):6324–7.

    Article  CAS  Google Scholar 

  128. Yang L, Zhang K, Bi S, Zhu J. Dual-acceptor-based upconversion luminescence nanosensor with enhanced quenching efficiency for in situ imaging and quantification of microRNA in living cells. ACS Appl Mater Interfaces. 2019;11(42):38459–66.

    Article  CAS  PubMed  Google Scholar 

  129. Li C, Kang Y, Zheng B, Xu C, Song C, Pang D, Tang H. Using optical tweezers to construct an upconversion luminescent resonance energy transfer analytical platform. Sens Actuators B. 2019;282:790–7.

    Article  CAS  Google Scholar 

  130. Chen Y, Duong HTT, Wen S, Mi C, Zhou Y, Shimoni O, Valenzuela SM, Jin D. Exonuclease III-assisted upconversion resonance energy transfer in a wash-free suspension DNA assay. Anal Chem. 2018;90(1):663–8.

    Article  CAS  PubMed  Google Scholar 

  131. Zhang Y, Luo D, Zhang Y, Zhang Q, Ji Q, Zhou S, Huang S, Li L, Lu F, Yao W, Cheng F, Zhu J, Zhang L. DNAzymes-conjugated upconversion nanoamplicon for in-situ ultrasensitive detection and imaging of microRNA in vivo. Chem Eng J. 2023;454: 140489.

    Article  CAS  Google Scholar 

  132. Gong L, Liu S, Song Y, Xie S, Guo Z, Xu J, Xu L. A versatile luminescent resonance energy transfer (LRET)-based ratiometric upconversion nanoprobe for intracellular miRNA biosensing. J Mater Chem B. 2020;8(27):5952–61.

    Article  CAS  PubMed  Google Scholar 

  133. Zuo C, Guo Y, Li J, Peng Z, Bai S, Yang S, Wang D, Chen H, Xie G. A nanoprobe for fluorescent monitoring of microRNA and targeted delivery of drugs. RSC Adv. 2021;11(15):8871–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Liu W, Chen J, Xu Z. Fluorescent probes for biothiols based on metal complex. Coord Chem Rev. 2021;429: 213638.

    Article  CAS  Google Scholar 

  135. Zhu Y, Guo X, Ma X, Liu K, Han Y, Wu Y, Li X. Rare earth upconversion luminescent composite based on energy transfer for specific and sensitive detection of cysteine. Analyst. 2023;148(5):1016–23.

    Article  CAS  PubMed  Google Scholar 

  136. Ni J, Shan C, Li B, Zhang L, Ma H, Luo Y, Song H. Assembling of a functional cyclodextrin-decorated upconversion luminescence nanoplatform for cysteine-sensing. Chem Commun. 2015;51(74):14054–6.

    Article  CAS  Google Scholar 

  137. Guan Y, Qu S, Li B, Zhang L, Ma H, Zhang L. Ratiometric fluorescent nanosensors for selective detecting cysteine with upconversion luminescence. Biosens Bioelectron. 2016;77:124–30.

    Article  CAS  PubMed  Google Scholar 

  138. Li J, Yang C, Wu Y, Zhu R, Zhao K. The combination of rare earth upconversion nanocrystals with rhodamine dyes for the selective detection of amino acids. J Lumin. 2018;204:195–202.

    Article  CAS  Google Scholar 

  139. Nguyen TTT, Huy BT, Tawfik SM, Zayakhuu G, Cho HH, Lee YI. Highly selective and sensitive optosensing of glutathione based on fluorescence resonance energy transfer of upconversion nanoparticles coated with a Rhodamine B derivative. Arabian J Chem. 2020;13(1):2671–9.

    Article  CAS  Google Scholar 

  140. Liang T, Li Z, Wang P, Zhao F, Liu J, Liu Z. Breaking through the signal-to-background limit of upconversion nanoprobes using a target-modulated sensitizing switch. J Am Chem Soc. 2018;140(44):14696–703.

    Article  CAS  PubMed  Google Scholar 

  141. Long Q, Fang A, Wen Y, Li H, Zhang Y, Yao S. Rapid and highly-sensitive uric acid sensing based on enzymatic catalysis-induced upconversion inner filter effect. Biosens Bioelectron. 2016;86:109–14.

    Article  CAS  PubMed  Google Scholar 

  142. Zhang Y, Ning L, Gao D, Jia D, Gu W, Liu X. A highly sensitive upconversion nanoparticles@zeolitic imidazolate frameworks fluorescent nanoprobe for gallic acid analysis. Talanta. 2021;233: 122588.

    Article  CAS  PubMed  Google Scholar 

  143. Zhao J, Gao J, Xue W, Di Z, Xing H, Lu Y, Li L. Upconversion luminescence-activated DNA nanodevice for ATP sensing in living cells. J Am Chem Soc. 2018;140(2):578–81.

    Article  CAS  PubMed  Google Scholar 

  144. Wang D, Sun E. Loading carboxyfluorescein into porous SiO2 spheres and UCNPs-cored porous SiO2 spheres: Emission turn-on sensing with a warning signal for tumor-biomarker 5-HIAA urine test. Microporous Mesoporous Mater. 2020;299: 110131.

    Article  CAS  Google Scholar 

  145. Jo EJ, Byun JY, Mun H, Bang D, Son JH, Lee JY, Lee LP, Kim MG. Single-step LRET aptasensor for rapid mycotoxin detection. Anal Chem. 2018;90(1):716–22.

    Article  CAS  PubMed  Google Scholar 

  146. Su J, Li Y, Gu W, Liu X. Spiropyran-modified upconversion nanocomposite as a fluorescent sensor for diagnosis of histidinemia. RSC Adv. 2020;10(45):26664–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kim K, Jo EJ, Lee KJ, Park J, Jung GY, Shin YB, Lee LP, Kim MG. Gold nanocap-supported upconversion nanoparticles for fabrication of a solid-phase aptasensor to detect ochratoxin A. Biosens Bioelectron. 2020;150: 111885.

    Article  CAS  PubMed  Google Scholar 

  148. Li Q, Bai J, Ren S, Wang J, Gao Y, Li S, Peng Y, Ning B, Gao Z. An ultrasensitive sensor based on quantitatively modified upconversion particles for trace bisphenol A detection. Anal Bioanal Chem. 2019;411:171–9.

    Article  CAS  PubMed  Google Scholar 

  149. Rong Y, Ali S, Ouyang Q, Wang L, Wang B, Chen Q. A turn-on upconversion fluorescence sensor for acrylamide in potato chips based on fluorescence resonance energy transfer and thiol-ene Michael addition. Food Chem. 2021;351: 129215.

    Article  CAS  PubMed  Google Scholar 

  150. Wang X, Wang S, Huang K, Liu Z, Gao Y, Zeng W. A ratiometric upconversion nanosensor for visualized point-of-care assay of organophosphonate nerve agent. Sens Actuators B. 2017;241:1188–93.

    Article  CAS  Google Scholar 

  151. Hudry D, Howard IA, Popescu R, Gerthsen D, Richards BS. Structure-property relationships in lanthanide-doped upconverting nanocrystals: recent advances in understanding core-shell structures. Adv Mater. 2019;31(26):1900623.

    Article  Google Scholar 

  152. Liang Z, Zou Z, Yan X, Zhang X, Song D, Ye C, Wang X, Tao X. Conjugate and non-conjugate controls of a sensitizer to enhance dye-sensitized upconversion luminescence. J Mater Chem C. 2022;10(6):2205–12.

    Article  CAS  Google Scholar 

  153. Gao W, Cheng X, Xing Y, Han S, Chen B, Han Q, Yan X, Liu J, Liu L, Dong J. Enhancement of red upconversion emission intensity of Ho3+ ions in NaLuF4:Yb3+/Ho3+/Ce3+@NaLuF4 core–shell nanoparticles. J Rare Earth. 2023;40(4):517–25.

    Article  Google Scholar 

  154. Shang Y, Chen T, Ma T, Hao S, Lv W, Jia D, Yang C. Advanced lanthanide doped upconversion nanomaterials for lasing emission. J Rare Earth. 2022;40(5):687–95.

    Article  CAS  Google Scholar 

  155. Deng R, Wang J, Chen R, Huang W, Liu X. Enabling Förster resonance energy transfer from large nanocrystals through energy migration. J Am Chem Soc. 2016;138(49):15972–9.

    Article  CAS  PubMed  Google Scholar 

  156. Ren J, Ding Y, Zhu H, Li Z, Hong X, Zhao H, Zhang H. Improving acceptor efficacy rather than energy transfer efficiency: dominant contribution of monomers of acceptors modified on upconversion nanoparticles. J Rare Earth. 2022;40(5):702–8.

    Article  CAS  Google Scholar 

  157. Chen X, Zhu Y, Guo X, Li X, Wu Y. Energy transfer-based rare earth upconversion luminescence composite system for detection of peroxynitrite. Chin J Anal Lab. 2022;41(10):1127–34.

    CAS  Google Scholar 

  158. Han S, Deng R, Gu Q, Ni L, Huynh U, Zhang J, Yi Z, Zhao B, Tamura H, Pershin A, Xu H, Huang Z, Ahmad S, Abdi-Jalebi M, Sadhanala A, Tang ML, Bakulin A, Beljonne D, Liu X, Rao A. Lanthanide-doped inorganic nanoparticles turn molecular triplet excitons bright. Nature. 2020;587:594–9.

    Article  CAS  PubMed  Google Scholar 

  159. Xu K, Lin C, Qin MF, Yuan Z, Tao Y, Bao SS, Chen R, Xie X, Zheng LM. Amplifying photoluminescence of lanthanide-doped nanoparticles by iridium phosphonate complex. ACS Materials Lett. 2023;5(3):854–61.

    Article  CAS  Google Scholar 

  160. Cao C, Liu Q, Shi M, Feng W, Li F. Lanthanide-doped nanoparticles with upconversion and downshifting near-infrared luminescence for bioimaging. Inorg Chem. 2019;58(14):9351–7.

    Article  CAS  PubMed  Google Scholar 

  161. Duo YY, Zhao L, Wang ZG, Liu SL. NIR-II fluorophores: from synthesis to biological applications. J Anal Test. 2023;7:245–59.

    Article  Google Scholar 

  162. Ding C, Cheng S, Zhang C, Xiong Y, Ye M, Xian Y. Ratiometric upconversion luminescence nanoprobe with near-infrared Ag2S nanodots as the energy acceptor for sensing and imaging of pH in vivo. Anal Chem. 2019;91(11):7181–8.

    Article  CAS  PubMed  Google Scholar 

  163. Ni S, Liu Y, Tong S, Li S, Song X. Emerging NIR-II luminescent gold nanoclusters for in vivo bioimaging. J Anal Test. 2023;7:260–71.

    Article  Google Scholar 

  164. Ou X, Chen X, Xu X, Xie L, Chen X, Hong Z, Bai X, Liu X, Chen Q, Li L, Yang H. Recent development in X-ray imaging technology: future and challenges. Research. 2021;2021:9892152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the National Natural Science Foundation of China (52072172 and 22105098) and Natural Science Foundation of Jiangsu Province (BK20201366).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ze Yuan, Min Lu or Xiaoji Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, M., Chen, X., Yuan, Z. et al. Upconversion Nanoparticle-Organic Dye Nanocomposites for Chemo- and Biosensing. J. Anal. Test. 7, 345–368 (2023). https://doi.org/10.1007/s41664-023-00273-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-023-00273-z

Keywords

Navigation