Skip to main content
Log in

Recent Progress in Optical Sensors Based on MXenes Quantum Dots and MXenes Nanosheets

  • Review
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

In recent years, MXenes, as a new promising two-dimensional material, have received extensive attentions in the fields of environmental remediation, catalysts, sensors, and energy storage. To broaden the applications of MXenes in sensing, MXenes nanosheets (MNSs) and MXenes quantum dots (MQDs) are prepared by physical etching or chemical oxidation. MNSs are monolayered or multilayered MXenes nanosheets within several nanometers in height, and can serve as the perfect reaction substrate and fluorescence quencher. MQDs are spherical, fluorescent MXenes QDs within several nanometers in size, which possess favorable stability and photostability. Since the distinct features such as high conductivity, favorable hydrophilicity, biocompatibility, abundant surface functional groups, and easy functionalization, MNSs and MQDs show potential applications in the fields of anti-counterfeiting, environmental monitoring, biosensing and biomedicine. This review focuses on the research of MNSs/MQDs-based optical sensors, including colorimetric sensors, fluorescence sensors, electrochemiluminescence sensors, surface plasmon resonance sensors, and surface-enhanced Raman scattering sensors. Furthermore, the current challenges and prospects concerning MNSs/MQDs-based optical sensing techniques are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Anichini C, Czepa W, Pakulski D, Aliprandi A, Ciesielski A, Samori P. Chemical sensing with 2D materials. Chem Soc Rev. 2018;47:4860–908.

    Article  CAS  PubMed  Google Scholar 

  2. Xu ZH, He M, Wu QK, Wu CC, Li XB, Liu BL, Tang MC, Yao J, Wei GD. Ultrafast charge transfer 2D MoS2 /organic heterojunction for sensitive photodetector. Adv Sci. 2023;10:2207743.

    Article  CAS  Google Scholar 

  3. Zhang Y, Feng Z, Wang X, Hu H, Wu M. MXene/carbon composites for electrochemical energy storage and conversion. Mater Today Sustain. 2023;22: 100350.

    Article  Google Scholar 

  4. Bhardwaj SK, Singh H, Khatri M, Kim KH, Bhardwaj N. Advances in MXenes-based optical biosensors: A review. Biosens Bioelectron. 2022;202: 113995.

    Article  CAS  PubMed  Google Scholar 

  5. Gan W, Tserkezis C, Cai Q, Falin A, Mateti S, Nguyen M, Aharonovich I, Watanabe K, Taniguchi T, Huang F, Song L, Kong L, Chen Y, Li LH. Atomically thin boron nitride as an ideal spacer for metal-enhanced fluorescence. ACS Nano. 2019;13:12184–91.

    Article  CAS  PubMed  Google Scholar 

  6. Rong MC, Lin LP, Song XH, Zhao TT, Zhong YX, Yan JW, Wang YR, Chen X. A label-free fluorescence sensing approach for selective and sensitive detection of 2,4,6-trinitrophenol (TNP) in aqueous solution using graphitic carbon nitride nanosheets. Anal Chem. 2015;87:1288–96.

    Article  CAS  PubMed  Google Scholar 

  7. Rong MC, Lin LP, Song XH, Wang YR, Zhong YX, Yan JW, Feng YF, Zeng XY, Chen X. Fluorescence sensing of chromium (VI) and ascorbic acid using graphitic carbon nitride nanosheets as a fluorescent “switch”. Biosens Bioelectron. 2015;68:210–7.

    Article  CAS  PubMed  Google Scholar 

  8. Yola ML, Atar N. A novel detection approach for serotonin by graphene quantum dots/two-dimensional (2D) hexagonal boron nitride nanosheets with molecularly imprinted polymer. Appl Surf Sci. 2018;458:648–55.

    Article  ADS  CAS  Google Scholar 

  9. Rohaizad N, Mayorga-Martinez CC, Fojtu M, Latiff NM, Pumera M. Two-dimensional materials in biomedical, biosensing and sensing applications. Chem Soc Rev. 2021;50:619–57.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang QX, Wang F, Zhang HX, Zhang YY, Liu ML, Liu Y. Universal Ti3C2 MXenes based self-standard ratiometric fluorescence resonance energy transfer platform for highly sensitive detection of exosomes. Anal Chem. 2018;90:12737–44.

    Article  CAS  PubMed  Google Scholar 

  11. Ai FR, Fu CJ, Cheng GJ, Zhang HH, Feng YC, Yan XL, Zheng XJ. Amino-functionalized Ti3C2 MXene quantum dots as photoluminescent sensors for diagnosing histidine in human serum. ACS Appl Nano Mater. 2021;4:8192–9.

    Article  CAS  Google Scholar 

  12. Soomro RA, Jawaid S, Zhu QZ, Abbas Z, Xu B. A mini-review on MXenes as versatile substrate for advanced sensors. Chin Chem Lett. 2020;31:922–30.

    Article  CAS  Google Scholar 

  13. Huang HY, Jiang RM, Feng YL, Ouyang H, Zhou NG, Zhang XY, Wei Y. Recent development and prospects of surface modification and biomedical applications of MXenes. Nanoscale. 2020;12:1325–38.

    Article  CAS  PubMed  Google Scholar 

  14. He ZQ, Rong TD, Li Y, Ma JJ, Li QS, Wu FR, Wang YH, Wang FP. Two-dimensional TiVC solid-solution MXene as surface-enhanced Raman scattering substrate. ACS Nano. 2022;16:4072–83.

    Article  CAS  PubMed  Google Scholar 

  15. Peng XY, Zhang YL, Lu DT, Guo YJ, Guo SJ. Ultrathin Ti3C2 nanosheets based “off-on” fluorescent nanoprobe for rapid and sensitive detection of HPV infection. Sens Actuators B. 2019;286:222–9.

    Article  CAS  Google Scholar 

  16. Zhang DZ, Yu SJ, Wang XW, Huang JK, Pan WJ, Zhang JH, Meteku BE, Zeng JB. UV illumination-enhanced ultrasensitive ammonia gas sensor based on (001)TiO2/MXene heterostructure for food spoilage detection. J Hazard Mater. 2022;423: 127160.

    Article  CAS  PubMed  Google Scholar 

  17. Wang SG, Zeng P, Zhu XH, Lei CY, Huang Y, Nie Z. Chimeric peptides self-assembling on titanium carbide MXenes as biosensing interfaces for activity assay of post-translational modification enzymes. Anal Chem. 2020;92:8819–26.

    Article  CAS  PubMed  Google Scholar 

  18. Singh B, Bahadur R, Neekhra S, Gandhi M, Srivastava R. Hydrothermal-assisted synthesis and stability of multifunctional MXene nanobipyramids: structural, chemical, and optical evolution. ACS Appl Mater Interfaces. 2021;13:3011–23.

    Article  CAS  PubMed  Google Scholar 

  19. Bian FK, Sun LY, Cai LJ, Wang Y, Zhao YJ. Bioinspired MXene-integrated colloidal crystal arrays for multichannel bioinformation coding. Proc Natl Acad Sci USA. 2020;117:22736–42.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu Y, Yu XK, Liu YL, Xu YY, Chang ZH, Wang DF, Li Q. Expanded polytetrafluoroethylene/Mxene nanosheet composites with hydrophilicity and lipophilicity for purification of oil spills and wastewater. ACS Appl Nano Mater. 2022;5:2483–91.

    Article  CAS  Google Scholar 

  21. Yuan WY, Cheng LF, An YR, Wu H, Yao N, Fan XL, Guo XH. MXene nanofibers as highly active catalysts for hydrogen evolution reaction. ACS Sustainable Chem Eng. 2018;6:8976–82.

    Article  CAS  Google Scholar 

  22. Song ML, Ma YJ, Li LH, Wong MC, Wang P, Chen JK, Chen HL, Wang F, Hao JH. Multiplexed detection of SARS-CoV-2 based on upconversion luminescence nanoprobe/MXene biosensing platform for COVID-19 point-of-care diagnostics. Mater Des. 2022;223: 111249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jia YP, Pan YM, Wang CF, Liu CT, Shen CY, Pan CF, Guo ZH, Liu XH. Flexible Ag microparticle/MXene-based film for energy harvesting. Nanomicro Lett. 2021;13:201.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guo Z, Zhu XH, Wang SG, Lei CY, Huang Y, Nie Z, Yao SZ. Fluorescent Ti3C2 MXene quantum dots for an alkaline phosphatase assay and embryonic stem cell identification based on the inner filter effect. Nanoscale. 2018;10:19579–85.

    Article  CAS  PubMed  Google Scholar 

  25. Guan QW, Ma JF, Yang WJ, Zhang R, Zhang XJ, Dong XX, Fan YT, Cai LL, Cao Y, Zhang YL, Li N, Xu Q. Highly fluorescent Ti3C2 MXene quantum dots for macrophage labeling and Cu2+ ion sensing. Nanoscale. 2019;11:14123–33.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang QX, Sun Y, Liu ML, Liu Y. Selective detection of Fe3+ ions based on fluorescence MXene quantum dots via a mechanism integrating electron transfer and inner filter effect. Nanoscale. 2020;12:1826–32.

    Article  CAS  PubMed  Google Scholar 

  27. Rasool K, Helal M, Ali A, Ren CE, Gogotsi Y, Mahmoud KA. Antibacterial activity of Ti3C2Tx MXene. ACS Nano. 2016;10:3674–84.

    Article  CAS  PubMed  Google Scholar 

  28. Liu MW, Zhou J, He Y, Cai ZX, Ge YL, Zhou JG, Song GW. ε-Poly-L-lysine-protected Ti3C2 MXene quantum dots with high quantum yield for fluorometric determination of cytochrome c and trypsin. Mikrochim Acta. 2019;186:770.

    Article  CAS  PubMed  Google Scholar 

  29. Bai YX, He Y, Wang MM, Song GW. Microwave-assisted synthesis of nitrogen, phosphorus-doped Ti3C2 MXene quantum dots for colorimetric/fluorometric dual-modal nitrite assay with a portable smartphone platform. Sens Actuators B. 2022;357: 131410.

    Article  CAS  Google Scholar 

  30. Li XS, Liu F, Huang DP, Xue N, Dang YY, Zhang MQ, Zhang LL, Li B, Liu D, Wang L, Liu H, Tao XT. Nonoxidized MXene quantum dots prepared by microexplosion method for cancer catalytic therapy. Adv Funct Mater. 2020;30:2000308.

    Article  CAS  Google Scholar 

  31. Han WJ, Wen XK, Ding YD, Li ZP, Lu M, Zhu HC, Wang GR, Yan JY, Hong X. Ultraviolet emissive Ti3C2Tx MXene quantum dots for multiple anti-counterfeiting. Appl Surf Sci. 2022;595: 153563.

    Article  CAS  Google Scholar 

  32. Lu QY, Wang J, Li BZ, Weng CY, Li XY, Yang W, Yan XQ, Hong JL, Zhu WY, Zhou XM. Dual-emission reverse change ratio photoluminescence sensor based on a probe of nitrogen-doped Ti3C2 quantum dots@DAP to detect H2O2 and xanthine. Anal Chem. 2020;92:7770–7.

    Article  CAS  PubMed  Google Scholar 

  33. Wu YF, Tilley RD, Gooding JJ. Challenges and solutions in developing ultrasensitive biosensors. J Am Chem Soc. 2018;141:1162–70.

    Article  PubMed  Google Scholar 

  34. Yan FY, Sun JR, Zang YY, Sun ZH, Zhang H, Xu JX, Wang X. Solvothermal synthesis of nitrogen-doped MXene quantum dots for the detection of alizarin red based on inner filter effect. Dyes Pigm. 2021;195: 109720.

    Article  CAS  Google Scholar 

  35. Zhang HX, Wang L, Zhuang TT, Wei ZH, Xia JF, Wang ZH. Nano-hybrid luminophores of Ti3C2Tx quantum dots-gold nanoparticles based on in situ generation for sensitive electrochemiluminescence biosensing. Anal Bioanal Chem. 2022;414:6753–60.

    Article  CAS  PubMed  Google Scholar 

  36. Chen RY, Kan L, Duan FH, He LH, Wang MH, Cui J, Zhang ZH, Zhang ZH. Surface plasmon resonance aptasensor based on niobium carbide MXene quantum dots for nucleocapsid of SARS-CoV-2 detection. Mikrochim Acta. 2021;188:316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xue Q, Zhang HJ, Zhu MS, Pei ZX, Li HF, Wang ZF, Huang Y, Huang Y, Deng QH, Zhou J, Du SY, Huang Q, Zhi CY. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv Mater. 2017;29:1604847.

    Article  Google Scholar 

  38. Huang DY, Wu YT, Ai FX, Zhou X, Zhu GB. Fluorescent nitrogen-doped Ti3C2 MXene quantum dots as a unique “on-off-on” nanoprobe for chrominum (VI) and ascorbic acid based on inner filter effect. Sens Actuators B. 2021;342: 130074.

    Article  CAS  Google Scholar 

  39. Jiang XY, Wang HJ, Shen Y, Hu NN, Shi WB. Nitrogen-doped Ti3C2 MXene quantum dots as novel high-efficiency electrochemiluminescent emitters for sensitive mucin 1 detection. Sens Actuators B. 2022;350: 130891.

    Article  CAS  Google Scholar 

  40. Wei Y, Zhang P, Soomro RA, Zhu QZ, Xu B. Advances in the synthesis of 2D MXenes. Adv Mater. 2021;33:2103148.

    Article  CAS  Google Scholar 

  41. Naguib M, Kurtoglu M, Presser V, Lu J, Niu JJ, Heon M, Hultman L, Gogotsi Y, Barsoum MW. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23:4248–53.

    Article  CAS  PubMed  Google Scholar 

  42. Wu LX, Lu XB, Dhanjai, Wu ZS, Dong YF, Wang XH, Zheng SH, Chen JP. 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol. Biosens Bioelectron. 2018;107:69–75.

  43. Tran VA, Tran NT, Doan VD, Nguyen TQ, Pham Thi HH, Vo GNL. Application prospects of MXenes materials modifications for sensors. Micromachines. 2023;14:247.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kumar JA, Prakash P, Krithiga T, Amarnath DJ, Premkumar J, Rajamohan N, Vasseghian Y, Saravanan P, Rajasimman M. Methods of synthesis, characteristics, and environmental applications of MXene: A comprehensive review. Chemosphere. 2022;286: 131607.

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Ghidiu M, Lukatskaya MR, Zhao MQ, Gogotsi Y, Barsoum MW. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature. 2014;516:78–81.

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Zhu XH, Pang X, Zhang YY, Yao SZ. Titanium carbide MXenes combined with red-emitting carbon dots as a unique turn-on fluorescent nanosensor for label-free determination of glucose. J Mater Chem B. 2019;7:7729–35.

    Article  CAS  PubMed  Google Scholar 

  47. Wang LF, Zhang NN, Li Y, Kong WH, Gou JY, Zhang YJ, Wang LN, Yu GH, Zhang P, Cheng HH, Qu LT. Mechanism of nitrogen-doped Ti3C2 quantum dots for free-radical scavenging and the ultrasensitive H2O2 detection performance. ACS Appl Mater Interfaces. 2021;13:42442–50.

    Article  CAS  PubMed  Google Scholar 

  48. Shao BB, Liu ZF, Zeng GM, Wang H, Liang QH, He QY, Cheng M, Zhou CY, Jiang LB, Song B. Two-dimensional transition metal carbide and nitride (MXene) derived quantum dots (QDs): synthesis, properties, applications and prospects. J Mater Chem A. 2020;8:7508–35.

    Article  CAS  Google Scholar 

  49. Sariga, Babu AM, Kumar S, Rajeev R, Thadathil DA, Varghese A. New horizons in the synthesis, properties, and applications of MXene quantum dots. Adv Mater Interfaces. 2023;10: 2202139.

  50. Liu MW, Bai YX, He Y, Zhou J, Ge YL, Zhou JG, Song GW. Facile microwave-assisted synthesis of Ti3C2 MXene quantum dots for ratiometric fluorescence detection of hypochlorite. Mikrochim Acta. 2021;188:15.

    Article  CAS  PubMed  Google Scholar 

  51. Yang XH, Zhang PG, Tan J, Li XB, Zhang WD, Bian W, Choi MMF. B-GQDs@GSH as a highly selective and sensitive fluorescent probe for the detection of Fe3+ in water samples and intracellular. J Anal Test. 2022;7:147–56.

  52. Rong MC, Wang DR, Li YY, Zhang YZ, Huang HY, Liu RF, Deng XZ. Green-emitting carbon dots as fluorescent probe for nitrite detection. J Anal Test. 2021;5:51–9.

  53. Gui RJ, Jin H, Bu XN, Fu YX, Wang ZH, Liu QY. Recent advances in dual-emission ratiometric fluorescence probes for chemo/biosensing and bioimaging of biomarkers. Coord Chem Rev. 2019;383:82–103.

    Article  CAS  Google Scholar 

  54. Wen JL, Li N, Li D, Zhang MM, Lin YW, Liu ZP, Lin XF, Shui LL. Cesium-Doped Graphene Quantum Dots as Ratiometric Fluorescence Sensors for Blood Glucose Detection. ACS Appl Nano Mater. 2021;4:8437–46.

    Article  CAS  Google Scholar 

  55. Rong MC, Song XH, Zhao TT, Yao QH, Wang YR, Chen X. Synthesis of highly fluorescent P, O-g-C3N4 nanodots for the label-free detection of Cu2+ and acetylcholinesterase activity. J Mater Chem C. 2015;3:10916–24.

    Article  CAS  Google Scholar 

  56. Sharbirin AS, Akhtar S, Kim J. Light-emitting MXene quantum dots. Opto-Electronic. Advances. 2021;4: 200077.

    CAS  Google Scholar 

  57. Liu MW, He Y, Zhou J, Ge YL, Zhou JG, Song GW. A “naked-eye” colorimetric and ratiometric fluorescence probe for uric acid based on Ti3C2 MXene quantum dots. Anal Chim Acta. 2020;1103:134–42.

    Article  CAS  PubMed  Google Scholar 

  58. Gao XH, Shao XC, Qin LL, Li YJ, Huang SX, Deng LW. N, N-dimethyl formamide regulating fluorescence of MXene quantum dots for the sensitive determination of Fe3+. Nanoscale Res Lett. 2021;16:160.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang GH, Zhao JL, Yi SZ, Wan XJ, Tang JN. Biodegradable and photostable Nb2C MXene quantum dots as promising nanofluorophores for metal ions sensing and fluorescence imaging. Sens Actuators B. 2020;309: 127735.

    Article  CAS  Google Scholar 

  60. Li SZ, Ma JF, Zhao XL, Zhu PD, Xu M, Niu YC, Luo DX, Xu Q. Highly fluorescence Ta4C3 MXene quantum dots as fluorescent nanoprobe for heavy ion detection and stress monitoring of fluorescent hydrogels. Chin Chem Lett. 2022;33:1850–4.

    Article  CAS  Google Scholar 

  61. Wang X, Zhang XD, Cao HY, Huang YM. A facile and rapid approach to synthesize uric acid-capped Ti3C2 MXene quantum dots for the sensitive determination of 2,4,6-trinitrophenol both on surfaces and in solution. J Mater Chem B. 2020;8:10837–44.

    Article  CAS  PubMed  Google Scholar 

  62. Feng YF, Zhou FR, Deng QH, Peng C. Solvothermal synthesis of in situ nitrogen-doped Ti3C2 MXene fluorescent quantum dots for selective Cu2+ detection. Ceram Int. 2020;46:8320–7.

    Article  CAS  Google Scholar 

  63. Wan MJ, Zhou JQ, Yang HL, Dai XM, Zheng YC, Xia ZN, Wang LJ. Covalently N-doped MXene quantum dots for highly stable fluorescent Cu2+ ion sensor. ACS Appl Nano Mater. 2022;5:11715–22.

    Article  CAS  Google Scholar 

  64. Ren DD, Cheng X, Chen QT, Xu GH, Wei FD, Yang J, Xu J, Wang L, Hu Q, Cen Y. MXene-derived Ti3C2 quantum dots-based ratiometric fluorescence probe for ascorbic acid and acid phosphatase determination. Microchem J. 2023;187: 108397.

    Article  CAS  Google Scholar 

  65. Bai YX, He Y, Wang YP, Song GW. Nitrogen, boron-doped Ti3C2 MXene quantum dot-based ratiometric fluorescence sensing platform for point-of-care testing of tetracycline using an enhanced antenna effect by Eu3+. Mikrochim Acta. 2021;188:401.

    Article  CAS  PubMed  Google Scholar 

  66. Yan X, Ma JF, Yu KX, Li JP, Yang L, Liu JQ, Wang JC, Cai LL. Highly green fluorescent Nb2C MXene quantum dots for Cu2+ ion sensing and cell imaging. Chin Chem Lett. 2020;31:3173–7.

    Article  CAS  Google Scholar 

  67. Chen X, Sun XK, Xu W, Pan GC, Zhou DL, Zhu JY, Wang H, Bai X, Dong B, Song HW. Ratiometric photoluminescence sensing based on Ti3C2 MXene quantum dots as an intracellular pH sensor. Nanoscale. 2018;10:1111–8.

    Article  CAS  PubMed  Google Scholar 

  68. Wei ZY, Yu L, Wang S, Li S, Xiao YX. Label-free, rapid and ratiometric detection of tetracyclines via guest stacking-induced emission triggered by MXene-derived nanosensors. Sens Actuators B. 2023;377: 133026.

    Article  CAS  Google Scholar 

  69. Gu JJ, Lu XC, Li GJ, Shan BL, Liu JH, Qu YX, Ye H, Xi K, Wu HH. Beyond carbon dots: Intrinsic reducibility in Ti3C2 MXene quantum dots induces ultrasensitive fluorescence detection and scavenging of Mn(VII). Chem Eng J. 2023;467: 143445.

    Article  CAS  Google Scholar 

  70. Li ZR, Wang ZZ, Nie YX, Wang PL, Ma Q. A novel GSH-capping MXene QD-based ECL biosensor for the detection of miRNA221 in triple-negative breast cancer tumor. Chem Eng J. 2022;448: 137636.

    Article  CAS  Google Scholar 

  71. Nie YX, Liang ZH, Wang PL, Ma Q, Su XG. MXene-derived quantum dot@gold nanobones heterostructure-based electrochemiluminescence sensor for triple-negative breast cancer diagnosis. Anal Chem. 2021;93:17086–93.

    Article  CAS  PubMed  Google Scholar 

  72. Wang JM, Zhang L, Qu Y, Yang YX, Cao T, Cao YP, Iqbal A, Qin WW, Liu Y. Long-wavelength ratiometric fluorescent probe for the early diagnosis of diabetes. Anal Chem. 2021;93:11461–9.

    Article  CAS  PubMed  Google Scholar 

  73. Wang ZW, Zhu YH, Wu YC, Ding WY, Li XT. Tunable fluorescent amino-functionalized Ti3C2Tx MXene quantum dots for ultrasensitive Fe3+ ion sensing. Nanoscale. 2022;14:9498–506.

    Article  CAS  PubMed  Google Scholar 

  74. Wei ZH, Zhang HX, Wang ZH. High-intensity focused ultrasound combined with Ti3C2-TiO2 to enhance electrochemiluminescence of luminol for the sensitive detection of polynucleotide kinase. ACS Appl Mater Interfaces. 2023;15:3804–11.

    Article  CAS  PubMed  Google Scholar 

  75. Zhao QQ, Zhu WK, Cai WR, Li JY, Wu DT, Kong Y. TiO2 nanotubes decorated with CdSe quantum dots: a bifunctional electrochemiluminescent platform for chiral discrimination and chiral sensing. Anal Chem. 2022;94:9399–406.

    Article  CAS  PubMed  Google Scholar 

  76. Shang L, Shi BJ, Zhang W, Jia LP, Ma RN, Xue QW, Wang HS. Ratiometric electrochemiluminescence sensing of carcinoembryonic antigen based on luminol. Anal Chem. 2022;94:12845–51.

    Article  CAS  PubMed  Google Scholar 

  77. Yang YT, Liu JL, Sun MF, Yuan R, Chai YQ. Highly efficient electrochemiluminescence of MnS:CdS@ZnS core-shell quantum dots for ultrasensitive detection of microRNA. Anal Chem. 2022;94:6874–81.

    Article  CAS  PubMed  Google Scholar 

  78. Wu FF, Zhou Y, Wang JX, Zhuo Y, Yuan R, Chai YQ. A novel electrochemiluminescence immunosensor based on Mn doped Ag2S quantum dots probe for laminin detection. Sens Actuators B. 2017;243:1067–74.

    Article  CAS  Google Scholar 

  79. Han TT, Cao Y, Wang J, Jiao JM, Song Y, Wang LY, Ma C, Chen HY, Zhu JJ. Crystallization-induced enhanced electrochemiluminescence from a New tris(bipyridine)ruthenium(II) derivative. Adv Funct Mater. 2023;33:2212394.

    Article  CAS  Google Scholar 

  80. Qin YL, Wang ZQ, Liu NY, Sun Y, Han DX, Liu Y, Niu L, Kang ZH. High-yield fabrication of Ti3C2Tx MXene quantum dots and their electrochemiluminescence behavior. Nanoscale. 2018;10:14000–4.

    Article  CAS  PubMed  Google Scholar 

  81. Jebelli A, Oroojalian F, Fathi F, Mokhtarzadeh A, Guardia M. Recent advances in surface plasmon resonance biosensors for microRNAs detection. Biosens Bioelectron. 2020;169: 112599.

    Article  CAS  PubMed  Google Scholar 

  82. Jia BL, Chen JJ, Zhou J, Zeng YJ, Ho H-P, Shao YH. Passively and actively enhanced surface plasmon resonance sensing strategies towards single molecular detection. Nano Res. 2022;15:8367–88.

    Article  ADS  Google Scholar 

  83. Ferhan AR, Jackman JA, Park JH, Cho NJ, Kim DH. Nanoplasmonic sensors for detecting circulating cancer biomarkers. Adv Drug Deliv Rev. 2018;125:48–77.

    Article  CAS  PubMed  Google Scholar 

  84. Singh M, Holzinger M, Tabrizian M, Winters S, Berner NC, Cosnier S, Duesberg GS. Noncovalently functionalized monolayer graphene for sensitivity enhancement of surface plasmon resonance immunosensors. J Am Chem Soc. 2015;137:2800–3.

    Article  CAS  PubMed  Google Scholar 

  85. Wu Q, Sun Y, Ma PY, Zhang D, Li S, Wang XH, Song DQ. Gold nanostar-enhanced surface plasmon resonance biosensor based on carboxyl-functionalized graphene oxide. Anal Chim Acta. 2016;913:137–44.

    Article  CAS  PubMed  Google Scholar 

  86. Kaushik S, Tiwari UK, Pal SS, Sinha RK. Rapid detection of Escherichia coli using fiber optic surface plasmon resonance immunosensor based on biofunctionalized Molybdenum disulfide MoS2 nanosheets. Biosens Bioelectron. 2019;126:501–9.

    Article  CAS  PubMed  Google Scholar 

  87. Zhou X, Zhang JR, Liao DY, Wu KC, Liu HD, Zhu GB, Yi YH. Self-reduce gold nanoparticles on Ti3C2Tx MXene nanoribbons to highly sensitive colorimetric determination of mercury ion and cysteine based on the mercury-motivated peroxidase mimetic activity. Sens Actuators B. 2023;379: 133271.

    Article  CAS  Google Scholar 

  88. Chen D, Shao SB, Zhang W, Zhao JB, Lian ML. Nitrogen and sulfur co-doping strategy to trigger the peroxidase-like and electrochemical activity of Ti3C2 nanosheets for sensitive uric acid detection. Anal Chim Acta. 2022;1197: 339520.

    Article  CAS  PubMed  Google Scholar 

  89. Li MM, Peng XY, Han YJ, Fan LF, Liu ZG, Guo YJ. Ti3C2 MXenes with intrinsic peroxidase-like activity for label-free and colorimetric sensing of proteins. Microchem J. 2021;166: 106238.

    Article  CAS  Google Scholar 

  90. Huang J, Gu HF, Feng XW, Wang G, Chen ZB. Copper nanoparticle/N-doped Ti3C2Tx MXene hybrids with enhanced peroxidase-like activity for colorimetric glucose sensing. ACS Appl Nano Mater. 2022;5:15531–8.

    Article  CAS  Google Scholar 

  91. Wang WZ, Yin YQ, Gunasekaran S. Oxygen-terminated few-layered Ti3C2Tx MXene nanosheets as peroxidase-mimic nanozyme for colorimetric detection of kanamycin. Biosens Bioelectron. 2022;218: 114774.

    Article  CAS  PubMed  Google Scholar 

  92. Mi XN, Li H, Tan R, Feng BN, Tu YF. The TDs/aptamer cTnI biosensors based on HCR and Au/ Ti3C2-MXene amplification for screening serious patient in COVID-19 pandemic. Biosens Bioelectron. 2021;192: 113482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wu LM, You Q, Shan YX, Gan SW, Zhao YT, Dai XY, Xiang YJ. Few-layer Ti3C2Tx MXene: A promising surface plasmon resonance biosensing material to enhance the sensitivity. Sens Actuators B. 2018;277:210–5.

    Article  CAS  Google Scholar 

  94. Xiong S, He T, Zhou T, Wang DL, Wang YY, Dai CQ, Liu W. In situ synthesis of MXene/Ag nanocomposites based flexible SERS substrates on PDMS for detection on fruit surfaces. Colloid Surface A. 2022;654: 130077.

    Article  CAS  Google Scholar 

  95. Kalkal A, Kadian S, Kumar S, Manik G, Sen P, Kumar S, Packirisamy G. Ti3C2-MXene decorated with nanostructured silver as a dual-energy acceptor for the fluorometric neuron specific enolase detection. Biosens Bioelectron. 2022;195: 113620.

    Article  CAS  PubMed  Google Scholar 

  96. Bian FK, Sun LY, Cai LJ, Wang Y, Zhao YJ. Bioinspired MXene-integrated colloidal crystal arrays for multichannel bioinformation coding. P Natl Acad Sci USA. 2020;117:22736–42.

    Article  ADS  CAS  Google Scholar 

  97. Cui HY, Fu XQ, Yang L, Xing S, Wang XF. 2D titanium carbide nanosheets based fluorescent aptasensor for sensitive detection of thrombin. Talanta. 2021;228: 122219.

    Article  CAS  PubMed  Google Scholar 

  98. Ye QY, Dai T, Shen J, Xu Q, Hu XY, Shu Y. Incorporation of fluorescent carbon quantum dots into metal-organic frameworks with peroxidase-mimicking activity for high-performance ratiometric fluorescent biosensing. J Anal Test. 2022;7:16–24.

  99. Wen XH, Zhao XF, Wang XH, Wang Y, Guo JC, Zhou HG, Zuo CT, Lu HL. Fe3O4/MXene nanosphere-based microfluidic chip for the accurate diagnosis of Alzheimer’s disease. ACS Appl Nano Mater. 2022;5:15925–33.

    Article  CAS  Google Scholar 

  100. Wang Y, Wang S, Dong NN, Kang WY, Li K, Nie Z. Titanium carbide MXenes mediated in situ reduction allows label-free and visualized nanoplasmonic sensing of silver ions. Anal Chem. 2020;92:4623–9.

    Article  CAS  PubMed  Google Scholar 

  101. Fan YF, Zhang WC, Liu YM, Zeng ZX, Quan X, Zhao HM. Three-dimensional branched crystal carbon nitride with enhanced intrinsic peroxidase-like activity: a hypersensitive platform for colorimetric detection. ACS Appl Mater Interfaces. 2019;11:17467–74.

    Article  CAS  PubMed  Google Scholar 

  102. Ding ZY, Li Z, Zhao XX, Miao YR, Yuan ZF, Jiang YY, Lu YZ. Self-deposited ultrasmall Ru nanoparticles on carbon nitride with high peroxidase-mimicking activity for the colorimetric detection of alkaline phosphatase. J Colloid Interface Sci. 2023;631:86–95.

    Article  ADS  CAS  PubMed  Google Scholar 

  103. Shi Y, Liu Z, Liu R, Wu R, Zhang JJ. DNA-encoded MXene-Pt nanozyme for enhanced colorimetric sensing of mercury ions. Chem Eng J. 2022;442: 136072.

    Article  CAS  Google Scholar 

  104. Li YP, Kang ZW, Kong LY, Shi HT, Zhang YZ, Cui ML, Yang DP. MXene- Ti3C2/CuS nanocomposites: Enhanced peroxidase-like activity and sensitive colorimetric cholesterol detection. Mat Sci Eng C-Mater. 2019;104: 110000.

    Article  CAS  Google Scholar 

  105. Wang J, Xu W, Zhou L, Zhang TQ, Yang N, Wang M, Luo XM, Jin L, Zhu HJ, Ge WH. Sensitive colorimetric sensing of glutathione and H2O2 based on enhanced peroxidase mimetic activity of MXene@Fe3O4. Mikrochim Acta. 2022;189:452.

    Article  CAS  PubMed  Google Scholar 

  106. Yang QQ, Qin Y, Lei TT, Zhong YP, Cui XP, He Y, Song GW. Co(OH)2/MXene-Ti3C2 nanocomposites with triple-enzyme mimic activities as hydrogel sensing platform for on-site detection of hypoxanthine. Mikrochim Acta. 2022;189:481.

    Article  CAS  PubMed  Google Scholar 

  107. Yang QQ, Cui XP, Qin Y, Lei TT, He Y, Song GW. Cu nanoclusters decorated Ti3C2 nanosheets composite with tetraenzyme mimic activities and the application for smartphone-assisted detection of hypoxanthine. Anal Chim Acta. 2022;1232: 340494.

    Article  CAS  PubMed  Google Scholar 

  108. Liu FY, Zhang TK, Zhao YL, Ning HX, Li FS. Electrochemiluminescence of 1,8-naphthalimide-modified carbon nitride for Cu2+ detection. J Anal Test. 2021;6:296–307.

  109. Yang LX, Zhou XB, Zhang KX, Liu JX, Zhao LF, Cai AT, Zhao XY, Wu L, Qin YL. Electrochemiluminescent/Electrochemical ratiometric biosensor for extremely specific and ultrasensitive detection of circulating tumor DNA. Sens Actuators B. 2023;382: 133490.

    Article  CAS  Google Scholar 

  110. Zhang K, Fan ZQ, Yao B, Ding YD, Zhao J, Xie MH, Pan JB. Exploring the trans-cleavage activity of CRISPR-Cas12a for the development of a Mxene based electrochemiluminescence biosensor for the detection of Siglec-5. Biosens Bioelectron. 2021;178: 113019.

    Article  CAS  PubMed  Google Scholar 

  111. Huang W, Gao SZ, Liang WB, Li Y, Yuan R, Xiao DR. In situ growth of metal-organic layer on ultrathin Ti3C2Tx MXene nanosheet boosting fast electron/ion transport for electrochemiluminescence enhancement. Biosens Bioelectron. 2023;220: 114886.

    Article  CAS  PubMed  Google Scholar 

  112. Du JF, Chen JS, Liu XP, Mao CJ, Jin BK. Coupled electrochemiluminescent and resonance energy transfer determination of microRNA-141 using functionalized MXene composite. Mikrochim Acta. 2022;189:264.

    Article  CAS  PubMed  Google Scholar 

  113. Chen XH, Zhang DY, Lin H, Wei WT, Hao TT, Hu YF, Wang S, Guo ZY. MXene catalyzed Faraday cage-type electrochemiluminescence immunosensor for the detection of genetically modified crops. Sens Actuators B. 2021;346: 130549.

    Article  CAS  Google Scholar 

  114. Jiang D, Wei M, Du XJ, Qin M, Shan XL, Chen ZD. One-pot synthesis of ZnO quantum dots/N-doped Ti3C2 MXene: Tunable nitrogen-doping properties and efficient electrochemiluminescence sensing. Chem Eng J. 2022;430: 132771.

    Article  CAS  Google Scholar 

  115. Wu Q, Li NB, Wang Y, Xu YC, Wu JD, Jia GR, Ji FJ, Fang XD, Chen FF, Cui XQ. Ultrasensitive and selective determination of carcinoembryonic antigen using multifunctional ultrathin amino-functionalized Ti3C2-MXene nanosheets. Anal Chem. 2020;92:3354–60.

    Article  CAS  PubMed  Google Scholar 

  116. Kumar A, Verma P, Jindal P. Surface plasmon resonance biosensor based on a D-shaped photonic crystal fiber using Ti3C2Tx MXene material. Opt Mater. 2022;128: 112397.

    Article  CAS  Google Scholar 

  117. Gao ZF, Li YX, Dong LM, Zheng LL, Li JZ, Shen Y, Xia F. Photothermal-induced partial Leidenfrost superhydrophobic surface as ultrasensitive surface-enhanced Raman scattering platform for the detection of neonicotinoid insecticides. Sens Actuators B. 2021;348: 130728.

    Article  CAS  Google Scholar 

  118. Mahar N, Al-Ahmed A, Al-Saadi AA. Synthesis of vanadium carbide MXene with improved inter-layer spacing for SERS-based quantification of anti-cancer drugs. Appl Surf Sci. 2023;607: 155034.

    Article  CAS  Google Scholar 

  119. Yu MN, Liu SS, Su D, Jiang SL, Zhang GZ, Qin YF, Li MY. Controllable MXene nano-sheet/Au nanostructure architectures for the ultra-sensitive molecule Raman detection. Nanoscale. 2019;11:22230–6.

    Article  CAS  PubMed  Google Scholar 

  120. Xie HH, Li PH, Shao JD, Huang H, Chen Y, Jiang ZY, Chu PK, Yu XF. Electrostatic self-assembly of Ti3C2Tx MXene and gold nanorods as an efficient surface-enhanced Raman scattering platform for reliable and high-sensitivity determination of organic pollutants. ACS Sens. 2019;4:2303–10.

    Article  CAS  PubMed  Google Scholar 

  121. Yoo SS, Ho JW, Shin DI, Kim M, Hong S, Lee JH, Jeong HJ, Jeong MS, Yi GR, Kwon SJ, Yoo PJ. Simultaneously intensified plasmonic and charge transfer effects in surface enhanced Raman scattering sensors using an MXene-blanketed Au nanoparticle assembly. J Mater Chem A. 2022;10:2945–56.

    Article  CAS  Google Scholar 

  122. Liu RY, Jiang L, Yu ZZ, Jing XF, Liang X, Wang D, Yang B, Lu CX, Zhou W, Jin SZ. MXene (Ti3C2Tx) -Ag nanocomplex as efficient and quantitative SERS biosensor platform by in-situ PDDA electrostatic self-assembly synthesis strategy. Sens Actuators B. 2021;333: 129581.

    Article  CAS  Google Scholar 

  123. Fang XJ, Song YH, Huang Y, Yang GH, Han CQ, Li HT, Qu LL. Two-dimensional MXene modified AgNRs as a surface-enhanced Raman scattering substrate for sensitive determination of polychlorinated biphenyls. Analyst. 2020;145:7421–8.

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Youth Foundation of China (21904027), Natural Science Foundation of Guangdong Province (2019A1515011328), Science and Technology Projects in Guangzhou (202201000002) and Innovative Training Program for College Students in Guangzhou University (xj202211078179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingcong Rong.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 37 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C., Song, X., Ye, W. et al. Recent Progress in Optical Sensors Based on MXenes Quantum Dots and MXenes Nanosheets. J. Anal. Test. 8, 95–113 (2024). https://doi.org/10.1007/s41664-023-00269-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-023-00269-9

Keywords

Navigation