Skip to main content
Log in

Incorporation of Fluorescent Carbon Quantum Dots into Metal–Organic Frameworks with Peroxidase-Mimicking Activity for High-Performance Ratiometric Fluorescent Biosensing

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

A new ratiometric fluorescent sensor based on the bifunctional carbon quantum dots (CQDs)@metal–organic framework (MOF) nanocomposite possessing peroxidase-mimicking catalytic and luminescent characteristics was developed for hydrogen peroxide (H2O2) and cholesterol detection. The incorporation of fluorescent CQDs into the cavities of MIL-101(Fe) MOF with peroxidase-like activities endows the nanocomposite with bifunctional properties. The CQDs@MOF can oxidize o-phenylene-diamine to 2,3-diaminophenolazine by H2O2 with yellow fluorescence (556 nm). Meantime, the intrinsic fluorescence signal (455 nm) of CQDs@MOF is inhibited due to the inner filter effect. Therefore, the ratio of the fluorescent intensity is employed as the signal output to construct the H2O2 ratiometric biosensor. In addition, the cholesterol can be determined by the ratiometric sensor with high sensitivity. In addition, the total cholesterol in human serum is determined with high accuracy using our ratiometric biosensor. This ratiometric fluorescent platform based on the bifunctional CQDs@MOF provides new insights in the field of bio-sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kitchawengkul N, Prakobkij A, Anutrasakda W, Yodsin N, Jungsuttiwong S, Chunta S, Amatatongchai M, Jarujamrus P. Mimicking peroxidase-like activity of nitrogen-doped carbon dots (N-CDs) coupled with a laminated three-dimensional microfluidic paper-based analytical device (laminated 3D-muPAD) for smart sensing of total cholesterol from whole blood. Anal Chem. 2021;93(18):6989.

    Article  CAS  Google Scholar 

  2. Narwa V, Deswal R, Batra B, Kalra V, Hooda R, Sharma M, Rana JS. Cholesterol biosensors: a review. Steroids. 2019;143:6–17.

    Article  Google Scholar 

  3. Xia F, Shi QF, Nan ZD. Facile synthesis of Cu–CuFe2O4 nanozymes for sensitive assay of H2O2 and GSH. Dalton Trans. 2020;49(36):12780–92.

    Article  CAS  Google Scholar 

  4. Chen JY, Shu Y, Li HL, Xu Q, Hu XY. Nickel metal–organic framework 2D nanosheets with enhanced peroxidase nanozyme activity for colorimetric detection of H2O2. Talanta. 2018;189:254–61.

    Article  CAS  Google Scholar 

  5. Shu Y, Xu J, Chen JY, Xu Q, Xiao X, Jin DQ, Pang H, Hu XY. Ultrasensitive electrochemical detection of H2O2 in living cells based on ultrathin MnO2 nanosheets. Sens Actuator B-Chem. 2017;252:72–8.

    Article  CAS  Google Scholar 

  6. Shu Y, Li B, Xu Q, Gu P, Xiao X, Liu FP, Yu LY, Pang H, Hu XY. Cube-like CoSn(OH)6 nanostructure for sensitive electrochemical detection of H2O2 in human serum sample. Sens Actuator B-Chem. 2017;241:528–33.

    Article  CAS  Google Scholar 

  7. Cue Y, Chen F, Yin XB. A ratiometric fluorescence platform based on boric-acid-functional Eu-MOF for sensitive detection of H2O2 and glucose. Biosens Bioelectron. 2019;135:208–15.

    Article  Google Scholar 

  8. Cowan EA, Taylor JL, Oldham CD, Dasari M, Doyle D, Murthy N, May SW. Cellular antioxidant activity of phenylaminoethyl selenides as monitored by chemiluminescence of peroxalate nanoparticles and by reduction of lipopolysaccharide-induced oxidative stress. Enzyme MicrobTechnol. 2013;53(6–7):373–77.

    Article  CAS  Google Scholar 

  9. Chen JQ, Xue SF, Chen ZH, Zhang SQ, Shi GY, Zhang M. GelRed/[G3T]5/Tb3+ hybrid: a novel label-free ratiometric fluorescent probe for H2O2 and oxidase-based visual biosensing. Biosens Bioelectron. 2018;100:526–32.

    Article  CAS  Google Scholar 

  10. Pundir CS, Deswal R, Narwal V. Quantitative analysis of hydrogen peroxide with special emphasis on biosensors. Bioprocess Biosyst Eng. 2018;41(3):313–29.

    Article  CAS  Google Scholar 

  11. Xu YQ, Li BH, Xiao LL, Ouyang J, Sun SG, Pang Y. A colorimetric and near-infrared fluorescent probe with high sensitivity and selectivity for acid phosphatase and inhibitor screening. Chem Commun. 2014;50(63):8677–80.

    Article  CAS  Google Scholar 

  12. Shu Y, Ye QY, Dai T, Guan J, Ji ZP, Xu Q, Hu XY. Incorporation of perovskite nanocrystals into lanthanide metal–organic frameworks with enhanced stability for ratiometric and visual sensing of mercury in aqueous solution. J Hazard Mater. 2022;430:128360.

    Article  CAS  Google Scholar 

  13. Shu Y, Dai T, Ye QY, Jin DQ, Xu Q, Hu XY. A dual-emitting two-dimensional nickel-based metal–organic framework nanosheets: Eu3+/Ag+ functionalization synthesis and ratiometric sensing in aqueous solution. J Fluoresc. 2021;31(6):1947–57.

    Article  CAS  Google Scholar 

  14. Shu Y, Ye QY, Dai T, Xu Q, Hu XY. Encapsulation of luminescent guests to construct luminescent metal–organic frameworks for chemical sensing. ACS Sensors. 2021;6(3):641–58.

    Article  CAS  Google Scholar 

  15. Lee MH, Kim JS, Sessler JL. Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules. Chem Soc Rev. 2015;44(13):4185–91.

    Article  CAS  Google Scholar 

  16. Bigdeli A, Ghasemi F, Abbasi-Moayed S, Shahrajabian M, Fahimi-Kashani N, Jafarinejad S, Nejad MAF, Hormozi-Nezhad MR. Ratiometric fluorescent nanoprobes for visual detection: design principles and recent advances—a review. Anal Chim Acta. 2019;1079:30–58.

    Article  CAS  Google Scholar 

  17. Zhang WT, Ren XY, Shi S, Li M, Liu LZ, Han XM, Zhu WX, Yue TL, Sun J, Wang JL. Ionic silver-infused peroxidase-like metal–organic frameworks as versatile “antibiotic” for enhanced bacterial elimination. Nanoscale. 2020;12(30):16330–8.

    Article  CAS  Google Scholar 

  18. Chen W, Wu CS. Synthesis, functionalization, and applications of metal–organic frameworks in biomedicine. Dalton Trans. 2018;47(7):2114–33.

    Article  CAS  Google Scholar 

  19. Zhao X, Wang YX, Li DS, Bu XH, Feng PY. Metal–Organic frameworks for separation. Adv Mater. 2018;30(37):1705189.

    Article  Google Scholar 

  20. Ye K, Wang L, Song HW, Li X, Niu XH. Bifunctional MIL-53(Fe) with pyrophosphate-mediated peroxidase-like activity and oxidation-stimulated fluorescence switching for alkaline phosphatase detection. J Mater Chem B. 2019;7(31):4794–800.

    Article  CAS  Google Scholar 

  21. Ruan XF, Liu D, Niu XH, Wang YJ, Simpson CD, Cheng N, Du D, Lin YH. 2D graphene oxide/Fe-MOF nanozyme nest with superior peroxidase-like activity and its application for detection of woodsmoke exposure biomarker. Anal Chem. 2019;91(21):13847–54.

    Article  CAS  Google Scholar 

  22. Xu WQ, Jiao L, Yan HY, Wu Y, Chen LJ, Gu WL, Du D, Lin YH, Zhu CZ. Glucose oxidase-integrated metal–organic framework hybrids as biomimetic cascade nanozymes for ultrasensitive glucose biosensing. ACS Appl Mater Interfaces. 2019;11(25):22096–101.

    Article  CAS  Google Scholar 

  23. Li SQ, Liu XD, Chai HX, Huang YM. Recent advances in the construction and analytical applications of metal–organic frameworks-based nanozymes. TrAC-Trends Anal Chem. 2018;105:391–403.

    Article  CAS  Google Scholar 

  24. Ai LH, Li LL, Zhang CH, Fu J, Jiang J. MIL-53(Fe): a metal–organic framework with intrinsic peroxidase-like catalytic activity for colorimetric biosensing. Chem-Eur J. 2013;19(45):15105–8.

    Article  CAS  Google Scholar 

  25. Gao CJ, Zhu HM, Chen J, Qiu HD. Facile synthesis of enzyme functional metal–organic framework for colorimetric detecting H2O2 and ascorbic acid. Chin Chem Lett. 2017;28(5):1006–12.

    Article  CAS  Google Scholar 

  26. Guo JJ, Wu S, Wang Y, Zhao M. A label-free fluorescence biosensor based on a bifunctional MIL-101(Fe) nanozyme for sensitive detection of choline and acetylcholine at nanomolar level. Sens Actuators B Chem. 2020;312:128021.

    Article  CAS  Google Scholar 

  27. Wang FQ, Chen L, Liu DH, Ma WR, Dramou P, He H. Nanozymes based on metal–organic frameworks: construction and prospects. TrAC-Trends Anal Chem. 2020;133:116080.

    Article  CAS  Google Scholar 

  28. Niu XH, Li X, Lyu ZY, Pan JM, Ding SC, Ruan XF, Zhu WL, Du D, Lin YH. Metal–organic framework based nanozymes: promising materials for biochemical analysis. Chem Commun. 2020;56(77):11338–53.

    Article  CAS  Google Scholar 

  29. Li SQ, Xiao DL, Liu DH, He H. Calcium-doped fluorescent carbon nanoparticles: spontaneous thermal synthesis, pH-sensitive fluorescence off-on, and mechanism. Sens Actuators B Chem. 2018;266:594–602.

    Article  CAS  Google Scholar 

  30. Zuo PL, Lu XH, Sun ZG, Guo YH, He H. A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta. 2016;183(2):519–42.

    Article  CAS  Google Scholar 

  31. Falcaro P, Furukawa S. Doping light emitters into metal–organic frameworks. Angew Chem Int Ed. 2012;51(34):8431–3.

    Article  CAS  Google Scholar 

  32. Fu QJ, Zhou XB, Wang MJ, Su XG. Nanozyme-based sensitive ratiometric fluorescence detection platform for glucose. Anal Chim Acta. 2022;1216:339993.

    Article  CAS  Google Scholar 

  33. Zhang NN, Zhao LX, He MT, Luo P, Tan L. Assay of inorganic pyrophosphatase activity based on a fluorescence “turn-off” strategy using carbon quantum dots@Cu-MOF nanotubes. Spectrochim Acta A Mol Biomol Spectrosc. 2023;284:121771.

    Article  CAS  Google Scholar 

  34. Lin RB, Li SM, Wang JY, Xu JP, Xu CH, Wang J, Li CX, Li ZQ. Facile generation of carbon quantum dots in MIL-53(Fe) particles as localized electron acceptors for enhancing their photocatalytic Cr(VI) reduction. Inorg Chem Front. 2018;5:3170–7.

    Article  CAS  Google Scholar 

  35. Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed. 2013;52(14):3953–7.

    Article  CAS  Google Scholar 

  36. Taylor-Pashow KML, Della Rocca J, Xie ZG, Tran S, Lin WB. Postsynthetic modifications of iron-carboxylate nanoscale metal–organic frameworks for imaging and drug delivery. J Am Chem Soc. 2009;131(40):14261–3.

    Article  CAS  Google Scholar 

  37. Zhang Y, Yan B. A point-of-care diagnostics logic detector based on glucose oxidase immol/lobilized lanthanide functionalized metal–organic frameworks. Nanoscale. 2019;11(47):22946–53.

    Article  CAS  Google Scholar 

  38. Geng NN, Chen W, Xu H, Ding MM, Lin T, Wu QS, Zhang L. Insights into the novel application of Fe-MOFs in ultrasound-assisted heterogeneous Fenton system: efficiency, kinetics and mechanism. Ultrason Sonochem. 2021;72:105411.

    Article  CAS  Google Scholar 

  39. Liu P, Li X, Xu X, Ye K, Wang L, Zhu H, Wang M, Niu X. Integrating peroxidase-mimicking activity with photoluminescence into one framework structure for high-performance ratiometric fluorescent pesticide sensing. Sens Actuators B Chem. 2021;328:129024.

    Article  CAS  Google Scholar 

  40. Zhou ZD, Zhao PC, Wan CX, Yan PP, Xie YX, Fe JJ. Ultra-sensitive amperometric determination of quercetin by using a glassy carbon electrode modified with a nanocomposite prepared from aminated graphene quantum dots, thiolated beta-cyclodextrin and gold nanoparticles. Microchim Acta. 2020;187(2):130.

    Article  CAS  Google Scholar 

  41. Sheng ZH, Shao L, Chen JJ, Bao WJ, Wang FB, Xia XH. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano. 2011;5(6):4350–8.

    Article  CAS  Google Scholar 

  42. Li SQ, Hu X, Chen QM, Zhang XD, Chai HX, Huang YM. Introducing bifunctional metal–organic frameworks to the construction of a novel ratiometric fluorescence sensor for screening acid phosphatase activity. Biosens Bioelectron. 2019;137:133–9.

    Article  CAS  Google Scholar 

  43. Xu XC, Luo ZJ, Ye K, Zou XB, Niu XH, Pan JM. One-pot construction of acid phosphatase and hemin loaded multifunctional metal–organic framework nanosheets for ratiometric fluorescent arsenate sensing. J Hazard Mater. 2021;412:124407.

    Article  CAS  Google Scholar 

  44. Zhang WC, Li X, Xu XC, He YF, Qiu FX, Pan JM, Niu XH. Pd nanoparticle-decorated graphitic C3N4 nanosheets with bifunctional peroxidase mimicking and ON–OFF fluorescence enable naked-eye and fluorescent dual-readout sensing of glucose. J Mater Chem B. 2019;7(2):233–9.

    Article  CAS  Google Scholar 

  45. Lei Y, Zhao W, Zhang Y, Jiang Q, He JH, Baeumner AJ, Wolfbeis OS, Wang ZL, Salama KN, Alshareef HN. A MXene-based wearable biosensor system for high-performance in vitro perspiration analysis. Small. 2019;15(19): e1901190.

    Article  Google Scholar 

  46. Yan X, Li HX, Han XS, Su XG. A ratiometric fluorescent quantum dots based biosensor for organophosphorus pesticides detection by inner-filter effect. Biosens Bioelectron. 2015;74:277–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the NSFC (21705141, 22076161, 21675140, 21575124), the Green Yang Jinfeng Talent Project of Yangzhou, the High-end talent Support Program of Yangzhou University, and the Interdisciplinary Research Foundation for Chemistry Discipline of Targeted Support of Yangzhou University (yzuxk202009).

Author information

Authors and Affiliations

Authors

Contributions

QY: Conceptualization, Methodology, Writing-original draft, Formal analysis. TD: Data curation, Methodology. JS: Data curation, Investigation. QX: Visualization, Investigation. XH: Supervision, Funding acquisition. YS: Conceptualization, Supervision, Methodology, Writing–review and editing, Project administration.

Corresponding author

Correspondence to Yun Shu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1471 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Q., Dai, T., Shen, J. et al. Incorporation of Fluorescent Carbon Quantum Dots into Metal–Organic Frameworks with Peroxidase-Mimicking Activity for High-Performance Ratiometric Fluorescent Biosensing. J. Anal. Test. 7, 16–24 (2023). https://doi.org/10.1007/s41664-022-00246-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-022-00246-8

Keywords

Navigation