Skip to main content

Advertisement

Log in

Fe2+/Fe3+ Conversation-Mediated Magnetic Relaxation Switching for Detecting Staphylococcus Aureus in Blood and Abscess via Liposome Assisted Amplification

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Rapid and accurate detection of pathogenic bacteria of Staphylococcus aureus (S. aureus) is of importance in the field of clinical research and practical application. Herein, we report a magnetic relaxation switching (MRS)-based strategy for detecting S. aureus in complex samples via the assistance of signal amplification system of liposome. In this design, vancomycin (Van) modified 200 nm magnetic beads (MB200-Van) and biotinylated immunoglobulin (Biotin-IgG) were employed as capture probes for S. aureus which following labelled by biotinylated liposomes loading with glucose molecule (Biotin-liposome@Glu, BLGs) based on the affinity of biotin with streptavidin. The released glucose molecules combining with glucose oxidase generated Fe3+, causing transverse relaxation time (T2) signal change. The combination of dual recognition of S. aureus, liposome assisted signal amplification, and the MRS-based assay achieved direct and specific detection of S. aureus in blood and abscess samples. The as-proposed method for S. aureus assay in this study shows potential application for infectious diagnosis in clinical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fabijan AP, Lin RCY, Ho J, Maddocks S, Ben Zakour NL, Iredell JR, Khalid A, Venturini C, Chard R, Morales S, Sandaradura I, Gilbey T, Therapy WB. Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nat Microbiol. 2020;5(3):465–72.

    Article  CAS  Google Scholar 

  2. Cameron D, Prazak J, Itenl M, Valente L, Grandgirard D, Leib SL, Jakob SM, Haenggi M, Que Y. Utility of nebulized bacteriophages for prophylaxis of experimental ventilator associated pneumonia due to methicillin-resistant Staphylococcus aureus. Am J Respir Crit Care Med. 2020;201:A2614.

    Google Scholar 

  3. Pressly KB, Hill E, Shah KJ. Pseudomembranous colitis secondary to methicillin-resistant Staphylococcus aureus (MRSA). BMJ Case Rep. 2016;2016: 215225.

    Google Scholar 

  4. Georgescu AM, Azamfirei L, Szalman K, Szekely E. Fatal endocarditis with methicilin-sensible Staphylococcus aureus and major complications: rhabdomyolysis, pericarditis, and intracerebral hematoma: a case report and review of the literature. Medicine. 2016;95(41): e5125.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Carestia A, Davis RP, Grosjean H, Lau MW, Jenne CN. Acetylsalicylic acid inhibits intravascular coagulation during Staphylococcus aureus-induced sepsis in mice. Blood. 2020;135(15):1281–6.

    Article  PubMed  Google Scholar 

  6. Norreslet LB, Edslev SM, Clausen ML, Flachs EM, Ebbehoj NE, Andersen PS, Agner T. Hand eczema and temporal variation of Staphylococcus aureus clonal complexes: a prospective observational study. J Am Acad Dermatol. 2021. https://doi.org/10.1016/j.jaad.2021.04.037.

    Article  PubMed  Google Scholar 

  7. Zhao XN, Yuan XM, Hu M, Zhang Y, Li LL, Zhang Q, Yuan XX, Wang WB, Liu YQ. Prevalence and characterization of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus isolated from bulk tank milk in Shandong dairy farms. Food Control. 2021;125: 107836.

    Article  CAS  Google Scholar 

  8. Watanabe Y, Oikawa N, Hariu M, Seki M. Evaluation of agar culture plates to efficiently identify small colony variants of methicillin-resistant Staphylococcus aureus. Infect Drug Resist. 2019;12:1743–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Luo J, Li J, Hang Y, Yang H, Yu JP, Wei HP. Accurate detection of methicillin-resistant Staphylococcus aureus in mixtures utilizing single bacterial duplex droplet digital PCR. J Clin Microbiol. 2017;55(10):2946–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang J, Li H, Li T, Ling L. Determination of bacterial DNA based on catalytic oxidation of cysteine by G-quadruplex DNAzyme generated from asymmetric PCR: application to the colorimetric detection of Staphylococcus aureus. Microchim Acta. 2018;185(9):410.

    Article  CAS  Google Scholar 

  11. Ottesen EA, Hong JW, Quake SR, Leadbetter JR. Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science. 2006;314(5804):1464–7.

    Article  CAS  PubMed  Google Scholar 

  12. Alia A, Andrade MJ, Cordoba JJ, Martin I, Rodriguez A. Development of a multiplex real-time PCR to differentiate the four major Listeria monocytogenes serotypes in isolates from meat processing plants. Food Microbiol. 2020;87: 103367.

    Article  CAS  PubMed  Google Scholar 

  13. Sheng J, Tao TT, Zhu XY, Bie XM, Lv FX, Zhao HZ, Lu ZX. A multiplex PCR detection method for milk based on novel primers specific for Listeria monocytogenes 1/2a serotype. Food Control. 2018;86:183–90.

    Article  CAS  Google Scholar 

  14. Zhao Q, Lu D, Zhang G, Zhang D, Shi X. Recent improvements in enzyme-linked immunosorbent assays based on nanomaterials. Talanta. 2021;223(1): 121722.

    Article  CAS  PubMed  Google Scholar 

  15. Seo SM, Cho IH, Jeon JW, Cho HK, Oh EG, Yu HS, Shin SB, Lee HJ, Paek SH. An ELISA-on-a-Chip biosensor system coupled with immunomagnetic separation for the detection of vibrio parahaemolyticus within a single working day. J Food Prot. 2010;73(8):1466–73.

    Article  PubMed  Google Scholar 

  16. Cao Y, Ma C, Zhu JJ. DNA Technology-assisted signal amplification strategies in electrochemiluminescence bioanalysis. J Anal Test. 2021;5(2):95–111.

    Article  Google Scholar 

  17. Caratelli V, Fillo S, D’Amore N, Rossetto O, Pirazzini M, Moccia M, Avitabile C, Moscone D, Lista F, Arduini F. Paper-based electrochemical peptide sensor for on-site detection of botulinum neurotoxin serotype A and C. Biosens Bioelectron. 2021;183: 113210.

    Article  CAS  PubMed  Google Scholar 

  18. Geleta GS, Zhao Z, Wang ZX. Electrochemical biosensors for detecting microbial toxins by graphene-based nanocomposites. J Anal Test. 2018;2(1):20–5.

    Article  Google Scholar 

  19. Si Y, Grazon C, Clavier G, Rieger J, Tian YY, Audibert JF, Sclavi B, Meallet-Renault R. Fluorescent copolymers for bacterial bioimaging and viability detection. ACS Sens. 2020;5(9):2843–51.

    Article  CAS  PubMed  Google Scholar 

  20. Gu GY, Wang X, Zhou HL, Liu BL. Progresses of magnetic relaxation switch sensor in medical diagnosis and food safety analysis. Chin J Anal Chem. 2018;46(8):1161–8.

    Article  CAS  Google Scholar 

  21. Zhao Y, Li YX, Jiang K, Wang J, White WL, Yang SP, Lu J. Rapid detection of Listeria monocytogenes in food by biofunctionalized magnetic nanoparticle based on nuclear magnetic resonance. Food Control. 2017;71:110–6.

    Article  CAS  Google Scholar 

  22. Hu YY, Guo X, Wang H, Luo Q, Song Y, Song EQ. Magnetic-separation-assisted magnetic relaxation switching assay for mercury ion based on the concentration change of oligonucleotide-functionalized magnetic nanoparticle. ACS Appl Bio Mater. 2020;3(5):2651–7.

    Article  CAS  PubMed  Google Scholar 

  23. Silva RN, Vijayan AN, Westbrook E, Yu Z, Zhang P. Nanoparticle assisted nuclear relaxation-based oligonucleotide detection. Anal Chim Acta. 2019;1062:118–23.

    Article  CAS  PubMed  Google Scholar 

  24. Lee DY, Kang S, Lee Y, Kim JY, Yoo D, Jung W, Lee S, Jeong YY, Lee K, Jon S. PEGylated bilirubin-coated iron oxide nanoparticles as a biosensor for magnetic relaxation switching-based ROS detection in whole blood. Theranostics. 2020;10(5):1997–2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee H, Shin TH, Cheon J, Weissleder R. Recent developments in magnetic diagnostic systems. Chem Rev. 2015;115(19):10690–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Min C, Shao HL, Liong M, Yoon TJ, Weissleder R, Lee H. Mechanism of magnetic relaxation switching sensing. ACS Nano. 2012;6(8):6821–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen YP, Zou MQ, Qi C, Xie MX, Wang DN, Wang YF, Xue Q, Li JF, Chen Y. Immunosensor based on magnetic relaxation switch and biotin-streptavidin system for the detection of Kanamycin in milk. Biosens Bioelectron. 2013;39(1):112–7.

    Article  CAS  PubMed  Google Scholar 

  28. Perez JM, O’Loughin T, Simeone FJ, Weissleder R, Josephson L. DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents. J Am Chem Soc. 2002;124(12):2856–7.

    Article  CAS  PubMed  Google Scholar 

  29. Perez JM, Josephson L, O’Loughlin T, Hogemann D, Weissleder R. Magnetic relaxation switches capable of sensing molecular interactions. Nat Biotechnol. 2002;20(8):816–20.

    Article  CAS  PubMed  Google Scholar 

  30. Sobczak-Kupiec A, Venkatesan J, AlAnezi AA, Walczyk D, Farooqi A, Malina D, Hosseini SH, Tyliszczak B. Magnetic nanomaterials and sensors for biological detection. Nanomedicine. 2016;12(8):2459–73.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Y, Yang H, Zhou ZG, Huang K, Yang SP, Han G. Recent advances on magnetic relaxation switching assay-based nanosensors. Bioconjugate Chem. 2017;28(4):869–79.

    Article  CAS  Google Scholar 

  32. Yin BF, Wang Y, Dong ML, Wu J, Ran B, Xie MX, Joo SW, Chen YP. One-step multiplexed detection of foodborne pathogens: Combining a quantum dot-mediated reverse assaying strategy and magnetic separation. Biosens Bioelectron. 2016;86:996–1002.

    Article  CAS  PubMed  Google Scholar 

  33. Dong M, Zheng W, Chen Y, Ran B, Qian Z, Jiang X. Cu-T1 sensor for versatile analysis. Anal Chem. 2018;90(4):2833–8.

    Article  CAS  PubMed  Google Scholar 

  34. Hu YY, Guo X, Gu PL, Luo Q, Song Y, Song EQ. Mn2+-mediated magnetic relaxation switching for direct assay of ctDNA in whole blood via exonuclease III assisted amplification. Sens Actuators B. 2021;330:129340–6.

    Article  CAS  Google Scholar 

  35. Ganganboina AB, Chowdhury AD, Khoris IM, Nasrin F, Takemura K, Hara T, Abe F, Suzuki T, Park EY. Dual modality sensor using liposome-based signal amplification technique for ultrasensitive norovirus detection. Biosens Bioelectron. 2020;157: 112169.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang JL, Gao Y, Zhang XC, Feng QS, Zhan CX, Song JL, Zhang WH, Song WB. “Dual Signal-On” split-type aptasensor for TNF-alpha: integrating MQDs/ZIF-8@ZnO NR arrays with MB-Liposome-Mediated signal amplification. Anal Chem. 2021;93(19):7242–9.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Y, Xiao JY, Zhu Y, Tian LJ, Wang WK, Zhu TT, Li WW, Yu HQ. Fluorescence sensor based on biosynthetic CdSe/CdS quantum dots and liposome carrier signal amplification for mercury detection. Anal Chem. 2020;92(5):3990–7.

    Article  CAS  PubMed  Google Scholar 

  38. Lin Y, Zhou Q, Tang D. Dopamine-loaded liposomes for in-situ amplified photoelectrochemical immunoassay of AFB1 to enhance photocurrent of Mn2+-Doped Zn3(OH)2V2O7 nanobelts. Anal Chem. 2017;89(21):11803–10.

    Article  CAS  PubMed  Google Scholar 

  39. Wu L, Zhou M, Liu C, Chen XQ, Chen YP. Double-enzymes-mediated Fe2+/Fe3+ conversion as magnetic relaxation switch for pesticide residues sensing. J Hazard Mater. 2021;403: 123619.

    Article  CAS  PubMed  Google Scholar 

  40. Gore JC, Kang YS, Schulz RJ. Measurement of radiation-dose distributions by nuclear magnetic-resonance (NMR) imaging. Phys Med Biol. 1984;29(10):1189–97.

    Article  CAS  PubMed  Google Scholar 

  41. Li LY, Gu PL, Hao MQ, Xiang XL, Feng YT, Zhu XK, Song Y, Song EQ. Bacteria-targeted MRI probe-based imaging bacterial infection and monitoring antimicrobial therapy in vivo. Small. 2021;17(44):2103627.

    Article  CAS  Google Scholar 

  42. Zhang Y, Shi SY, Xing JJ, Tan WQ, Zhang CG, Zhang L, Yuan H, Zhang MM, Qiao JJ. A novel colorimetric sensing platform for the detection of S. aureus with high sensitivity and specificity. RSC Adv. 2019;9(58):33589–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22174116, 21974110), and Chongqing Science Funds for Distinguished Young Scientists (cstc2021jcyj-jqx0024), and the Innovation Research Group at higher Education Institutions in Chongqing, Chongqing Education Committee (CXQT21006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Er-Qun Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1386 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Deng, XC., Zhang, YQ. et al. Fe2+/Fe3+ Conversation-Mediated Magnetic Relaxation Switching for Detecting Staphylococcus Aureus in Blood and Abscess via Liposome Assisted Amplification. J. Anal. Test. 6, 111–119 (2022). https://doi.org/10.1007/s41664-022-00227-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-022-00227-x

Keywords

Navigation