Skip to main content
Log in

Salting-out Assisted Liquid–Liquid Extraction for Analysis of Caffeine and Nicotinic Acid in Coffee by HPLC–UV/Vis Detector

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

A salting-out assisted liquid–liquid extraction method followed by high performance liquid chromatography with ultraviolet–visible detector (SALLE-HPLC–UV/Vis) has been proposed for determination of caffeine and nicotinic acid in raw and roasted coffee samples. Various parameters affecting chromatographic separations including mobile phase composition, injection volume, flow rate and column temperature were studied. Experimental parameters affecting the extraction efficiency of SALLE method such as type and volume of the organic solvent, type and amount of salt, pH of the sample, and concentration of the ion-pairing reagent were also studied and thereby optimum conditions were established. The calibration curves which were constructed at five different concentration levels using the optimum conditions exhibited good linearity, with the coefficient of determination (R2) 0.999 and 0.995 for caffeine and nicotinic acid, respectively. The limits of detection (LOD) and quantification (LOQ) which were determined at 3 and 10 times signal-to-noise ratio were 0.05 and 0.13 mg/L for nicotinic acid and 0.20 and 0.63 mg/L for caffeine, respectively. Intra- and inter-day precision studies were demonstrated satisfactory precision with RSD values below 10. Relative recoveries were also studied, and their results were ranging from 82–122% for both raw and roasted coffee samples. The findings demonstrated that the proposed method could be used as an effective and best alternative for the determination of caffeine and nicotinic acid in raw and roasted coffee samples.

Highlights

• SALLE was proposed for extraction caffeine and NA from raw and roasted coffee samples.

• HPLC-UV/Vis was used for separation and determination of the target analytes.

• The method has exhibited satisfactory analytical performance characteristics and good selectivity for both analytes.

• The method uses classical laboratory apparatuses and small volume of less toxic organic solvent.

• Compared to the other methods, the proposed method has similar or better LOD and LOQ than the earlier reported methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sunarharum WB, Williams DJ, Smyth HE. Complexity of coffee flavor: a compositional and sensory perspective. Food Res Int. 2014;62:315–25. https://doi.org/10.1016/j.foodres.2014.02.030.

    Article  CAS  Google Scholar 

  2. Toledo PRAB, Pezza L, Pezza HR, Toci AT. Relationship between the different aspects related to coffee quality and their volatile compounds. Compr Rev Food Sci Food Saf. 2016;15(4):705–19. https://doi.org/10.1111/1541-4337.12205.

    Article  Google Scholar 

  3. Cheng B, Furtado A, Smyth HE, Henry RJ. Influence of genotype and environment on coffee quality. Trends Food Sci Tech. 2016;57(Part A):20–30. https://doi.org/10.1016/j.tifs.2016.09.003.

    Article  CAS  Google Scholar 

  4. Casal S, Oliveira MBPP, Alves MR, Ferreira MA. Discriminate analysis of roasted coffee varieties for trigonelline, nicotinic acid, and caffeine content. J Agric Food Chem. 2000;48(8):3420–4. https://doi.org/10.1021/jf990702b.

    Article  CAS  PubMed  Google Scholar 

  5. Liu H, Shao J, Li Q, Li Y, Yan H, He L. Determination of trigonelline, nicotinic acid, and caffeine in Yunnan arabica coffee by microwave-assisted extraction and HPLC with two columns in series. J AOAC Intl. 2012;95(4):1138–41. https://doi.org/10.1021/jf990702b.

    Article  CAS  Google Scholar 

  6. Jeszka-Skowron M, Sentkowska A, Pyrzyńska K, De Peña MP. Chlorogenic acids, caffeine content and antioxidant properties of green coffee extracts: influence of green coffee bean preparation. Eur Food Res Technol. 2016;242(8):1403–9. https://doi.org/10.1007/s00217-016-2643-y.

    Article  CAS  Google Scholar 

  7. Nuhu AA. Bioactive micronutrients in coffee: recent analytical approaches for characterization and quantification. ISRN Nutr. 2014. https://doi.org/10.1155/2014/384230.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Casas MI, Vaughan MJ, Bonello P, Gardener B, Grotewold E, Alonso AP. Identification of biochemical features of defective Coffea arabica L. beans. Food Res Int. 2017;95:59–67. https://doi.org/10.1016/j.foodres.2017.02.015.

    Article  CAS  PubMed  Google Scholar 

  9. Kraemer K, Semba RD, Eggersdorfer M, Schaumberg DA. Introduction: the diverse and essential biological functions of vitamins. Ann Nutr Metab. 2012;61(3):185–91. https://doi.org/10.1159/000343103.

    Article  CAS  PubMed  Google Scholar 

  10. Dórea JG, da Costa THM. Is coffee a functional food? Br J Nutr. 2005;93(6):773–82. https://doi.org/10.1079/BJN20051370.

    Article  CAS  PubMed  Google Scholar 

  11. Jeszka-Skowron M, Frankowski R, Zgoła-Grześkowiak A. Comparison of methylxanthines, trigonelline, nicotinic acid and nicotinamide contents in brews of green and processed Arabica and Robusta coffee beans–Influence of steaming, decaffeination and roasting processes on coffee beans. LWT-Food Sci Technol. 2020;125:109344. https://doi.org/10.1016/j.lwt.2020.109344.

    Article  CAS  Google Scholar 

  12. Caprioli G, Cortese M, Maggi F, Minnetti C, Odello L, Sagratini G, Vittori S. Quantification of caffeine, trigonelline and nicotinic acid in espresso coffee: the influence of espresso machines and coffee cultivars. Int J Food Sci Nutr. 2014;65(4):465–9. https://doi.org/10.3109/09637486.2013.873890.

    Article  CAS  PubMed  Google Scholar 

  13. Dias RCE, Benassi MT. Discrimination between arabica and robusta coffees using hydro-soluble compounds: is the efficiency of the parameters dependent on the roast degree? Beverages. 2015;1(3):127–39. https://doi.org/10.3390/beverages1030127.

    Article  CAS  Google Scholar 

  14. Gant A, Leyva VE, Gonzalez AE, Maruenda H. Validated HPLC-diode array detector method for simultaneous evaluation of six quality markers in coffee. J AOAC Intl. 2015;98(1):98–102. https://doi.org/10.5740/jaoacint.14-113.

    Article  CAS  Google Scholar 

  15. Casal S, Oliveira MB, Ferreira MA. Development of an HPLC/diode-array detector method for simultaneous determination of trigonelline, nicotinic acid, and caffeine in coffee. J Liq Chrom Rel Technol. 1998;21(20):3187–95. https://doi.org/10.1080/10826079808001267.

    Article  CAS  Google Scholar 

  16. Casal S, Oliveira MB, Ferreira MA. HPLC/diode-array applied to the thermal degradation of trigonelline, nicotinic acid and caffeine in coffee. Food Chem. 2000;68(4):481–5. https://doi.org/10.1016/s0308-8146(99)00228-9.

    Article  CAS  Google Scholar 

  17. Perrone D, Donangelo CM, Farah A. Fast simultaneous analysis of caffeine, trigonelline, nicotinic acid and sucrose in coffee by liquid chromatography–mass spectrometry. Food Chem. 2008;110(4):1030–5. https://doi.org/10.1016/j.foodchem.2008.03.012.

    Article  CAS  PubMed  Google Scholar 

  18. Rodrigues NP, Bragagnolo N. Identification and quantification of bioactive compounds in coffee brews by HPLC–DAD–MSn. J Food Compos Anal. 2013;32(2):105–15. https://doi.org/10.1016/j.jfca.2013.09.002.

    Article  CAS  Google Scholar 

  19. Song HY, Jang HW, Debnath T, Lee KG. Analytical method to detect adulteration of ground roasted coffee. Int J Food Sci Technol. 2019;54(1):256–62. https://doi.org/10.1111/ijfs.13942.

    Article  CAS  Google Scholar 

  20. Arai K, Terashima H, Aizawa S, Taga A, Yamamoto A, Tsutsumiuchi K, Kodama S. Simultaneous determination of trigonelline, caffeine, chlorogenic acid, their related compounds in instant coffee samples by HPLC using an acidic mobile phase containing octanesulfonate. Anal Sci. 2015;31(8):831–5. https://doi.org/10.2116/analsci.31.831.

    Article  CAS  PubMed  Google Scholar 

  21. Ciaramelli C, Palmioli A, Airold C. Coffee variety, origin and extraction procedure: implications for coffee beneficial effects on human health. Food Chem. 2019;278:47–55. https://doi.org/10.1016/j.foodchem.2018.11.063.

    Article  CAS  PubMed  Google Scholar 

  22. Itzberger CSG, Scholz MBS, Benassi MT. Bioactive compounds content in roasted coffee from traditional and modern coffea arabica cultivars grown under the same edapho-climatic conditions. Food Res Int. 2014;61:61–6. https://doi.org/10.1016/j.foodres.2014.04.031.

    Article  CAS  Google Scholar 

  23. Alshishani A, Salhimi SM, Saad B. Salting-out assisted liquid-liquid extraction coupled with hydrophilic interaction chromatography for the determination of biguanides in biological and environmental samples. J Chromatogr B. 2018;1073:51–9. https://doi.org/10.1016/j.jchromb.2017.12.013.

    Article  CAS  Google Scholar 

  24. Gezahegn T, Tegegne B, Zewge F, Chandravansh BS. Salting-out assisted liquid–liquid extraction for the determination of ciprofloxacin residues in water samples by high performance liquid chromatography–diode array detector. BMC Chem. 2019;13:28. https://doi.org/10.1186/s13065-019-0543-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tandel D, Shah P, Patel K, Thakkar V, Patel K, Gandhi T. Salting-out assisted liquid–liquid extraction for quantification of febuxostat in plasma using RP-HPLC and its pharmacokinetic application. J Chromatogr Sci. 2016;54(10):1827–33. https://doi.org/10.1093/chromsci/bmw124.

    Article  CAS  PubMed  Google Scholar 

  26. Sazali NH, Alshishani A, Saad B, Chew KY, Chong MM, Miskam M. Salting-out assisted liquid–liquid extraction coupled with high-performance liquid chromatography for the determination of vitamin D3 in milk samples. Roy Soc Open Sci. 2019;6(8):190952. https://doi.org/10.1098/rsos.190952.

    Article  CAS  Google Scholar 

  27. Gure A, Lara FJ, Moreno-Ganzález D, Megersa N, Olmo-Iruela MD, García-Campaña AM. Salting-out assisted liquid–liquid extraction combined with capillary HPLC for the determination of sulfonylurea herbicides in environmental water and banana juice samples. Talanta. 2014;127:51–8. https://doi.org/10.1016/j.talanta.2014.03.070.

    Article  CAS  PubMed  Google Scholar 

  28. Roth J, Peer CJ, Widemann B, Cole DE, Ershler R, Helman L, Schrump D, Figg WD. Quantitative determination of mithramycin in human plasma by a novel, sensitive ultra-HPLC–MS/MS method for clinical pharmacokinetic application. J Chromatogr B. 2014;970:95–101. https://doi.org/10.1016/j.jchromb.2014.08.021.

    Article  CAS  Google Scholar 

  29. Ahmed OS, Ladner Y, Montels J, Philibert L, Perrin C. Coupling of salting-out assisted liquid–liquid extraction with on-line stacking for the analysis of tyrosine kinase inhibitors in human plasma by capillary zone electrophoresis. J Chromatogr A. 2018;1579:121–8. https://doi.org/10.1016/j.chroma.2018.10.017.

    Article  CAS  PubMed  Google Scholar 

  30. Myasein F, Kim E, Zhang J, Wu H, El-Shourbagy TA. Rapid, simultaneous determination of lopinavir and ritonavir in human plasma by stacking protein precipitations and salting-out assisted liquid/liquid extraction, and ultrafast LC–MS/MS. Anal Chim Acta. 2009;651(1):112–6. https://doi.org/10.1016/j.aca.2009.08.010.

    Article  CAS  PubMed  Google Scholar 

  31. Hassan J, Bahrani S. Determination of atorvastatin in human serum by salting out assisted solvent extraction and reversed-phase high-performance liquid chromatography–UV detection. Arabian J Chem. 2014;7(1):87–90. https://doi.org/10.1016/j.arabjc.2013.07.057.

    Article  CAS  Google Scholar 

  32. Alshishani AA, Saad B, Semail NF, Salhimi SM, Talib MKM. Salting-out assisted liquid-liquid extraction method coupled to gas chromatography for the simultaneous determination of thujones and pulegone in beverages. Int J Food Prop. 2017;20(3):S2776–85. https://doi.org/10.1080/10942912.2017.1373665.

    Article  CAS  Google Scholar 

  33. Fan Y, Hu S, Liu S. Salting-out assisted liquid–liquid extraction coupled to dispersive liquid–liquid microextraction for the determination of chlorophenols in wine by high-performance liquid chromatography. J Sep Sci. 2014;37(24):3662–8. https://doi.org/10.1002/jssc.201400869.

    Article  CAS  PubMed  Google Scholar 

  34. Song S, Ediage EN, Wu A, Saege SD. Development and application of salting-out assisted liquid/liquid extraction for multi-mycotoxin biomarkers analysis in pig urine with high performance liquid chromatography/tandem mass spectrometry. J Chromatogr A. 2013;1292:111–20. https://doi.org/10.1016/j.chroma.2012.10.071.

    Article  CAS  PubMed  Google Scholar 

  35. Romero-González RR, Verpoorte R. Salting-out gradients in centrifugal partition chromatography for the isolation of chlorogenic acids from green coffee beans. J Chromatogr A. 2014;1216(19):4245–51. https://doi.org/10.1016/j.chroma.2009.02.007.

    Article  CAS  Google Scholar 

  36. Tsai WH, Huang TC, Chen HH, Wu YW, Huang JJ, Chuang HY. Determination of sulfonamides in swine muscle after salting-out assisted liquid extraction with acetonitrile coupled with back-extraction by a water/acetonitrile/dichloromethane ternary component system prior to high-performance liquid chromatography. J Chromatogr A. 2010;1217(3):250–5. https://doi.org/10.1016/j.chroma.2009.11.035.

    Article  CAS  PubMed  Google Scholar 

  37. Razmara R, Daneshfar A, Sahrai R. Determination of methylene blue and sunset yellow in wastewater and food samples using salting out assisted liquid–liquid extraction. J Indus Eng Chem. 2011;17(3):533–6. https://doi.org/10.1016/j.jiec.2010.10.028.

    Article  CAS  Google Scholar 

  38. Wang M, Cai Z, Xu L. Coupling of acetonitrile deproteinization and salting-out extraction with acetonitrile stacking in chiral capillary electrophoresis for the determination of warfarin enantiomers. J Chromatogr A. 2011;1218(26):4045–51. https://doi.org/10.1016/j.chroma.2011.04.067.

    Article  CAS  PubMed  Google Scholar 

  39. Wang H, Zhou X, Zhang Y, Chen H, Li G, Xu Y, Zhao Q, Song W, Jin H, Ding L. Dynamic microwave-assisted extraction coupled with salting-out liquid-liquid extraction for determination of steroid hormones in fish tissues. J Agric Food Chem. 2012;60(41):10343–51. https://doi.org/10.1021/jf303124c.

    Article  CAS  PubMed  Google Scholar 

  40. Tang YQ, Weng N. Salting-out assisted liquid–liquid extraction for bioanalysis. Bioanalysis/. 2013;5(12):1583–98. https://doi.org/10.4155/bio.13.117.

    Article  CAS  Google Scholar 

  41. Gao S, Wu G, Li X, Chen J, Wu Y, Wang J, Zhang Z. Determination of triazine herbicides in environmental water samples by acetonitrile inorganic salt aqueous two-phase microextraction system. J Anal Test. 2018;2(4):322–31. https://doi.org/10.1007/s41664-018-0073-5.

    Article  Google Scholar 

  42. Liu J, Jiang M, Li G, Xu L, Xie M. Miniaturized salting-out liquid–liquid extraction of sulfonamides from different matrices. Anal Chim Acta. 2010;679(1–2):74–80. https://doi.org/10.1016/j.aca.2010.09.013.

    Article  CAS  PubMed  Google Scholar 

  43. Kukusamude C, Burakham R, Chailapakul O, Srijaranai S. High performance liquid chromatography for the simultaneous analysis of penicillin residues in beef and milk using ion paired extraction and binary water-acetonitrile mixture. Talanta. 2012;92:38–44. https://doi.org/10.1016/j.talanta.2012.01.020.

    Article  CAS  PubMed  Google Scholar 

  44. Fernandes JO, Ferreira MA. Combined ion-pair extraction and gas chromatography-mass spectrometry for the simultaneous determination of diamines, polyamines and aromatic amines in Port wine and grape juice. J Chromatogr A. 2000;886(1–2):183–95. https://doi.org/10.1016/s0021-9673(00)00447-7.

    Article  CAS  PubMed  Google Scholar 

  45. Quesada-Molina C, García-Campaña AM, Olmo-Iruel MD. Ion-paired extraction of cephalosporins in acetone prior to their analysis by capillary liquid chromatography in environmental water and meat samples. Talanta. 2013;115:943–9. https://doi.org/10.1016/j.talanta.2013.07.008.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Jimma University Chemistry Department (Jimma, Ethiopia) is greatly acknowledged for providing laboratory facilities and chemicals for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abera Gure.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chirfa, G., Merdassa, Y. & Gure, A. Salting-out Assisted Liquid–Liquid Extraction for Analysis of Caffeine and Nicotinic Acid in Coffee by HPLC–UV/Vis Detector. J. Anal. Test. 4, 298–306 (2020). https://doi.org/10.1007/s41664-020-00148-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-020-00148-7

Keywords

Navigation