Skip to main content
Log in

Intermittent plasma turbulence in the Martian plasma environment

  • Review Paper
  • Published:
Reviews of Modern Plasma Physics Aims and scope Submit manuscript

Abstract

Due to the absence of a global intrinsic magnetic field, Mars presents an induced magnetosphere, which is formed by the interaction between the solar wind and the conductive ionosphere of the planet. In that interaction, plasma boundaries and regions are created. Wave activity is present in the Mars plasma environment, and as consequence of non-linear interaction of those fluctuations, turbulence arises in the plasma. In this work, a review of the intermittent plasma turbulence in the upstream and main regions of the induced magnetosphere of Mars is presented. The influence of solar wind dynamic pressure, Mars seasonal variation and the presence of transients in the solar wind on the turbulence and wave activities at Mars are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Lillis et al. (2015)

Fig. 2
Fig. 3

Source: http://www-mars.lmd.jussieu.fr/mars/time/solar_longitude.html

Fig. 4

Source: Souza Franco et al. (2019)

Fig. 5
Fig. 6

Source: Ruhunusiri et al. (2015)

Fig. 7

Source: adapted from Franco et al. (2022)

Fig. 8
Fig. 9

Source: Poh et al. (2021)

Fig. 10

Source: Adapted from Wang et al. (2022)

Fig. 11

Source: Eastwood and Kiehas (2015)

Similar content being viewed by others

Availability of data and materials

There are no data associated to this paper.

References

  • A. Chicarro, P. Martin, R. Trautner, The Mars Express mission: an overview. in Mars express: the scientific Payload, vol. 1240, ed. by A. Wilson, A. Chicarro (ESA Special Publication, 2004) pp. 3–13

  • A.M.S. Franco, E. Echer, M.J.A. Bolzan, M. Fraenz, Study of fluctuations in the martian magnetosheath using a kurtosis technique: Mars express observations. Earth Planet. Phys. (2022). https://doi.org/10.26464/epp2022006

  • A.N. Kolmogorov, V. Levin, J.C.R. Hunt, O.M. Phillips, D. Williams, Dissipation of energy in the locally isotropic turbulence. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 434(1890), 15–17 (1991). https://doi.org/10.1098/rspa.1991.0076

  • M. Acuña, J. Connerney, P. Wasilewski, R. Lin, K. Anderson, C. Carlson, J. McFadden, D. Curtis, D. Mitchell, H. Reme, C. Mazelle, J.-A. Sauvaud, C. D’Uston, A. Cros, J. Medale, S. Bauer, P. Cloutier, M. Mayhew, D. Winterhalter, N. Ness, Magnetic field and plasma observations at mars: initial results of the mars global surveyor mission. Science 279, 1676–1680 (1998). https://doi.org/10.1126/science.279.5357.1676

    Article  PubMed  ADS  Google Scholar 

  • N. Andrés, N. Romanelli, L.Z. Hadid, F. Sahraoui, G. DiBraccio, J. Halekas, Solar wind turbulence around mars: Relation between the energy cascade rate and the proton cyclotron waves activity. Astrophys. J. (2020). https://doi.org/10.3847/1538-4357/abb5a7

    Article  Google Scholar 

  • A.V. Artemyev, V. Angelopoulos, J.S. Halekas, A. Runov, L.M. Zelenyi, J.P. McFadden, Mars’s magnetotail: Nature’s current sheet laboratory. J. Geophys. Res. Space Phys. 122(5), 5404–5417 (2017). https://doi.org/10.1002/2017JA024078

    Article  ADS  Google Scholar 

  • G.K. Batchelor, in The Theory of Homogeneous Turbulence (Cambridge University Press, Cambridge, 1982). Originally published: Cambridge: Cambridge University Press, 1953 (Cambridge monographs on mechanics and applied mathematics). https://doi.org/10.1002/qj.49707934126

  • W. Baumjohann, G. Paschmann, C.A. Cattell, Average plasma properties in the central plasma sheet. J. Geophys. Res. Space Phys. 94(A6), 6597–6606 (1989). https://doi.org/10.1029/JA094iA06p06597

    Article  ADS  Google Scholar 

  • C. Bertucci, C. Mazelle, M.H. AcuñA, C.T. Russell, J.A. Slavin, Structure of the magnetic pileup boundary at Mars and Venus. J. Geophys. Res. Space Phys. 110(A1), 01209 (2005). https://doi.org/10.1029/2004JA010592

    Article  ADS  Google Scholar 

  • S. Boldyrev, N.F. Loureiro, Tearing instability in alfvén and kinetic-alfvén turbulence. J. Geophys. Res. Space Phys. 125(9), 2020–028185 (2020). https://doi.org/10.1029/2020JA028185

    Article  Google Scholar 

  • M. Bolzan, R. Rosa, Multifractal analysis of interplanetary magnetic field obtained during CME events. Annales Geophysicae 30, 1107–1112 (2012). https://doi.org/10.5194/angeo-30-1107-2012

    Article  ADS  Google Scholar 

  • D.A. Brain, Mars Global Surveyor measurements of the Martian solar wind interaction. Space Sci. Rev. 126(1–4), 77–112 (2006). https://doi.org/10.1007/s11214-006-9122-x

    Article  ADS  Google Scholar 

  • D.A. Brain, A.H. Baker, J. Briggs, J.P. Eastwood, J.S. Halekas, T.-D. Phan, Episodic detachment of Martian crustal magnetic fields leading to bulk atmospheric plasma escape. Geophys. Res. Lett. (2010). https://doi.org/10.1029/2010GL043916

    Article  Google Scholar 

  • A. Bößwetter, T. Bagdonat, U. Motschmann, K. Sauer, Plasma boundaries at mars: a 3-d simulation study. Annales Geophysicae 22(12), 4363–4379 (2004). https://doi.org/10.5194/angeo-22-4363-2004

    Article  ADS  Google Scholar 

  • Y. Chen, M. Wu, S. Xiao, A. Du, G. Wang, Y. Chen, Z. Pan, T. Zhang, Magnetic fluctuations associated with small-scale magnetic holes in the Martian magnetosheath. Front. Astron. Space Sci. 9, 858300 (2022). https://doi.org/10.3389/fspas.2022.858300

    Article  Google Scholar 

  • R. Chhiber, A. Chasapis, R. Bandyopadhyay, T.N. Parashar, W.H. Matthaeus, B.A. Maruca, T.E. Moore, J.L. Burch, R.B. Torbert, C.T. Russell, O. Le Contel, M.R. Argall, D. Fischer, L. Mirioni, R.J. Strangeway, C.J. Pollock, B.L. Giles, D.J. Gershman, Higher-order turbulence statistics in the earth’s magnetosheath and the solar wind using magnetospheric multiscale observations. J. Geophys. Res. Space Phys. 123(12), 9941–9954 (2018). https://doi.org/10.1029/2018JA025768

    Article  ADS  Google Scholar 

  • G. Collinson, L.B. Wilson III., N. Omidi, D. Sibeck, J. Espley, C.M. Fowler, D. Mitchell, J. Grebowsky, C. Mazelle, S. Ruhunusiri, J. Halekas, R. Frahm, T. Zhang, Y. Futaana, B. Jakosky, Solar wind induced waves in the skies of mars: Ionospheric compression, energization, and escape resulting from the impact of ultralow frequency magnetosonic waves generated upstream of the martian bow shock. J. Geophys. Res. Space Phys. 123(9), 7241–7256 (2018). https://doi.org/10.1029/2018JA025414

    Article  ADS  Google Scholar 

  • D. Zhao, J. Guo, H. Lin, W. Meng, L. He, Y. Chen, Y. Wei, L. Liu, Upstream proton cyclotron waves at mars during the passage of solar wind stream interaction regions. Astron. Astrophys. 674, A158 (2023). https://doi.org/10.1051/0004-6361/202346199

  • M. Delva, E. Dubinin, Upstream ULF fluctuations near Mars. J. Geophys. Res. Space Phys. 103(A1), 317–326 (1998). https://doi.org/10.1029/97JA02501

    Article  ADS  Google Scholar 

  • G.A. DiBraccio, J. Dann, J.R. Espley, J.R. Gruesbeck, Y. Soobiah, J.E.P. Connerney, J.S. Halekas, Y. Harada, C.F. Bowers, D.A. Brain, S. Ruhunusiri, T. Hara, B.M. Jakosky, Maven observations of tail current sheet flapping at Mars. J. Geophys. Res. Space Phys. 122(4), 4308–4324 (2017). https://doi.org/10.1002/2016JA023488

    Article  ADS  Google Scholar 

  • E. Dubinin, M. Fraenz, J. Woch, F. Duru, D. Gurnett, R. Modolo, S. Barabash, R. Lundin, Ionospheric storms on Mars: impact of the corotating interaction region. Geophys. Res. Lett. (2009). https://doi.org/10.1029/2008GL036559

    Article  Google Scholar 

  • E. Dubinin, M. Fraenz, J. Woch, T.L. Zhang, J. Wei, A. Fedorov, S. Barabash, R. Lundin, Bursty escape fluxes in plasma sheets of Mars and Venus. Geophys. Research Lett. (2012). https://doi.org/10.1029/2011GL049883

    Article  Google Scholar 

  • E. Dubinin, M. Fränz, J. Woch, E. Roussos, S. Barabash, R. Lundin, J. Winningham, R. Frahm, M. Acuña, Plasma morphology at mars. ASPERA-3 observations. Space Sci. Rev. 126, 209–238 (2006). https://doi.org/10.1007/s11214-006-9039-4

    Article  ADS  Google Scholar 

  • E. Dubinin, M. Fraenz, 3. Magnetotails of Mars and Venus. American Geophysical Union (AGU) (2015). pp. 43–59. https://doi.org/10.1002/9781118842324.ch3

  • E. Priest, T. Forbes, Magnetic Reconnection (2007)

  • J.P. Eastwood, D.A. Brain, J.S. Halekas, J.F. Drake, T.D. Phan, M. Øieroset, D.L. Mitchell, R.P. Lin, M. Acuña, Evidence for collisionless magnetic reconnection at mars. Geophys. Res. Lett. 35, 2 (2008). https://doi.org/10.1029/2007GL032289

    Article  Google Scholar 

  • J.R. Espley, The martian magnetosphere: areas of unsettled terminology. J. Geophys. Res. Space Phys. 123(6), 4521–4525 (2018). https://doi.org/10.1029/2018JA025278

    Article  ADS  Google Scholar 

  • J.R. Espley, P.A. Cloutier, D.A. Brain, D.H. Crider, M.H. Acuña, Observations of low-frequency magnetic oscillations in the Martian magnetosheath, magnetic pileup region, and tail. J. Geophys. Res. Space Phys. (2004). https://doi.org/10.1029/2003JA010193

    Article  Google Scholar 

  • C.M. Fowler, L. Andersson, R.E. Ergun, Y. Harada, T. Hara, G. Collinson, W.K. Peterson, J. Espley, J. Halekas, J. Mcfadden, D.L. Mitchell, C. Mazelle, M. Benna, B.M. Jakosky, Maven observations of solar wind-driven magnetosonic waves heating the Martian dayside ionosphere. J. Geophys. Res. Space Phys. 123(5), 4129–4149 (2018). https://doi.org/10.1029/2018JA025208

    Article  ADS  Google Scholar 

  • A.M.S. Franco, M. Fränz, E. Echer, M.J.A. Bolzan, Wavelet analysis of low frequency plasma oscillations in the magneto sheath of Mars. Adv. Space Res. 65(9), 2090–2098 (2020). https://doi.org/10.1016/j.asr.2019.09.009

    Article  ADS  CAS  Google Scholar 

  • A.M.d.S. Franco, E. Echer, M. Fraenz, M.J.A. Bolzan, ULF Waves propagating through the Martian Magnetosheath into the ionosphere: a statistical study using mars express observations. Brazilian J. Phys. 53(1), 14 (2023). https://doi.org/10.1007/s13538-022-01213-5

  • T. Gold, Plasma and magnetic fields in the solar system. J. Geophys. Res. (1896-1977) 64(11), 1665–1674 (1959). https://doi.org/10.1029/JZ064i011p01665

    Article  Google Scholar 

  • R. Grard, C. Nairn, A. Pedersen, S. Klimov, S. Savin, A. Skalsky, J.G. Trotignon, Plasma and waves around mars. Planet. Space Sci. 39(1), 89–98 (1991). https://doi.org/10.1016/0032-0633(91)90131-S

    Article  ADS  Google Scholar 

  • R. Grard, A. Pedersen, S. Klimov, S. Savin, A. Skalsky, J. Trotignon, C. Kennel, First measurements of plasma waves near Mars. Nature 341(6243), 607–609 (1989)

    Article  ADS  Google Scholar 

  • E.E. Grigorenko, L.M. Zelenyi, G. DiBraccio, V.N. Ermakov, S.D. Shuvalov, H.V. Malova, V.Y. Popov, J.S. Halekas, D.L. Mitchell, E. Dubinin, Thin current sheets of sub-ion scales observed by Maven in the martian magnetotail. Geophys. Res. Lett. 46(12), 6214–6222 (2019). https://doi.org/10.1029/2019GL082709

    Article  ADS  Google Scholar 

  • H. Elliott, R. Frahm, J. Sharber, T. Howard, D. Odstrci, H. Opgenoorth, D. Andrews, O. Witasse, M. Fränz, The influence of corotating interaction regions and high speed streams on electrons in the martian magnetosheath and ionosphere. In: EGU General Assembly Conference Abstracts. EGU General Assembly Conference Abstracts, (2013). p. 14060

  • B.E.S. Hall, M. Lester, B. Sáinchez-Cano, J.D. Nichols, D.J. Andrews, N.J.T. Edberg, H.J. Opgenoorth, M. Fränz, M. Holmström, R. Ramstad, O. Witasse, M. Cartacci, A. Cicchetti, R. Noschese, R. Orosei, Annual variations in the Martian bow shock location as observed by the Mars express mission. J. Geophys. Res. Space Phys. 121(11), 11474–11494 (2016). https://doi.org/10.1002/2016JA023316

    Article  ADS  Google Scholar 

  • X. Han, M. Fraenz, E. Dubinin, Y. Wei, D.J. Andrews, W. Wan, M. He, Z.J. Rong, L. Chai, J. Zhong, K. Li, S. Barabash, Discrepancy between ionopause and photoelectron boundary determined from Mars express measurements. GRL 41(23), 8221–8227 (2014). https://doi.org/10.1002/2014GL062287

    Article  ADS  Google Scholar 

  • Y. Harada, J.S. Halekas, J.P. McFadden, D.L. Mitchell, C. Mazelle, J.E.P. Connerney, J. Espley, D.E. Larson, D.A. Brain, L. Andersson, G.A. DiBraccio, G.A. Collinson, R. Livi, T. Hara, S. Ruhunusiri, B.M. Jakosky, Magnetic reconnection in the near-Mars magnetotail: Maven observations. Geophys. Res. Lett. 42(21), 8838–8845 (2015). https://doi.org/10.1002/2015GL065004

    Article  ADS  CAS  Google Scholar 

  • Y. Harada, S. Ruhunusiri, J.S. Halekas, J. Espley, G.A. DiBraccio, J.P. Mcfadden, D.L. Mitchell, C. Mazelle, G. Collinson, D.A. Brain, T. Hara, M. Nosé, S. Oimatsu, K. Yamamoto, B.M. Jakosky, Locally generated ULF waves in the Martian magnetosphere: Maven observations. J. Geophys. Res. Space Phys. 124(11), 8707–8726 (2019). https://doi.org/10.1029/2019JA027312

    Article  ADS  Google Scholar 

  • H. Hasegawa, M. Fujimoto, T. Phan, H. Reme, A. Balogh, M. Dunlop, C. Hashimoto, R. TanDokoro, Transport of solar wind into earth’s magnetosphere through rolled-up Kelvin-Helmholtz vortices. Nature 430, 755–758 (2004). https://doi.org/10.1038/nature02799

    Article  PubMed  ADS  CAS  Google Scholar 

  • A. Hillier, V. Polito, Observations of the Kelvin–Helmholtz instability driven by dynamic motions in a solar prominence. Astrophys. J 864(1), 10 (2018). https://doi.org/10.3847/2041-8213/aad9a5

    Article  Google Scholar 

  • J.G. Luhmann, C.T. Russell, L.H. Brace, O.L. Vaisberg, The intrinsic magnetic field and solar-wind interaction of Mars. in Mars ed. by M. George (1992), pp. 1090–1134

  • J.G. Luhmann, The solar wind interaction with venus and mars: cometary analogies and contrasts. American Geophysical Union (AGU) (1991), pp. 5–16. https://doi.org/10.1029/GM061p0005

  • J.P. Eastwood, S.A. Kiehas, Origin and Evolution of Plasmoids and Flux Ropes in the Magnetotails of Earth and Mars, American Geophysical Union (AGU) (2015), pp. 269–287. https://doi.org/10.1002/9781118842324.ch16

  • B.M. Jakosky, J.M. Grebowsky, J.G. Luhmann, D.A. Brain, Initial results from the MAVEN mission to Mars. Geophys. Res. Lett. 42(21), 8791–8802 (2015). https://doi.org/10.1002/2015GL065271

    Article  ADS  Google Scholar 

  • B.M. Jakosky, J.M. Grebowsky, J.G. Luhmann, J. Connerney, F. Eparvier, R. Ergun, J. Halekas, D. Larson, P. Mahaffy, J. McFadden, D.L. Mitchell, N. Schneider, R. Zurek, S. Bougher, D. Brain, Y.J. Ma, C. Mazelle, L. Andersson, D. Andrews, D. Baird, D. Baker, J.M. Bell, M. Benna, M. Chaffin, P. Chamberlin, Y.-Y. Chaufray, J. Clarke, G. Collinson, M. Combi, F. Crary, T. Cravens, M. Crismani, S. Curry, D. Curtis, J. Deighan, G. Delory, R. Dewey, G. DiBraccio, C. Dong, Y. Dong, P. Dunn, M. Elrod, S. England, A. Eriksson, J. Espley, S. Evans, X. Fang, M. Fillingim, K. Fortier, C.M. Fowler, J. Fox, H. Gröller, S. Guzewich, T. Hara, Y. Harada, G. Holsclaw, S.K. Jain, R. Jolitz, F. Leblanc, C.O. Lee, Y. Lee, F. Lefevre, R. Lillis, R. Livi, D. Lo, M. Mayyasi, W. McClintock, T. McEnulty, R. Modolo, F. Montmessin, M. Morooka, A. Nagy, K. Olsen, W. Peterson, A. Rahmati, S. Ruhunusiri, C.T. Russell, S. Sakai, J.-A. Sauvaud, K. Seki, M. Steckiewicz, M. Stevens, A.I.F. Stewart, A. Stiepen, S. Stone, V. Tenishev, E. Thiemann, R. Tolson, D. Toublanc, M. Vogt, T. Weber, P. Withers, T. Woods, R. Yelle, Maven observations of the response of Mars to an interplanetary coronal mass ejection. Science 350(6261), 0210 (2015). https://doi.org/10.1126/science.aad0210

    Article  CAS  Google Scholar 

  • R. Jarvinen, E. Kallio, T.I. Pulkkinen, Ultra-low frequency foreshock waves and ion dynamics at Mars. J. Geophys. Res. Space Phys. 127(5), 2021–030078 (2022). https://doi.org/10.1029/2021JA030078

    Article  Google Scholar 

  • W. Jiang, H. Li, X. Liu, D. Verscharen, C. Wang, Statistical properties of plateau-like turbulence spectra in the Martian magnetosheath: MAVEN observations. J. Geophys. Res. Space Phys. 128(1), 2022–030874 (2023). https://doi.org/10.1029/2022JA030874

    Article  Google Scholar 

  • R. Jin, M. Zhou, Y. Pang, X. Deng, Y. Yi, Characteristics of turbulence driven by transient magnetic reconnection in the terrestrial magnetotail. Astrophys. J. 925(1), 17 (2022). https://doi.org/10.3847/1538-4357/ac390c

    Article  ADS  Google Scholar 

  • R.E. Johnson, M.R. Combi, J.L. Fox, W.-H. Ip, F. Leblanc, M.A. McGrath, V.I. Shematovich, D.F. Strobel, J.H. Waite, Exospheres and atmospheric escape. Comp. Aeron. 29, 355 (2009). https://doi.org/10.1007/978-0-387-87825-6_10

    Article  Google Scholar 

  • R.H. Kraichnan, Intermittency in the very small scales of turbulence. Phys. Fluids 10, 2080–2082 (1967). https://doi.org/10.1063/1.1762412

    Article  ADS  Google Scholar 

  • C. Krishnaprasad, S.V. Thampi, A. Bhardwaj, T.K. Pant, R.S. Thampi, Ionospheric plasma energization at mars during the september 2017 icme event. Planet. Space Sci. 205, 105291 (2021). https://doi.org/10.1016/j.pss.2021.105291

    Article  CAS  Google Scholar 

  • E. Kuznetsov, A.C. Newell, V.E. Zakharov, Intermittency and turbulence. Phys. Rev. Lett. 67, 3243–3246 (1991). https://doi.org/10.1103/PhysRevLett.67.3243

    Article  MathSciNet  PubMed  ADS  CAS  Google Scholar 

  • L. Hadid, F. Sahraoui, K.H. Kiyani, A. Retino, R. Modolo, A. Masters, M. Dougherty, On the nature of MHD and kinetic scale turbulence in the magnetosheath of Saturn: Cassini observations, in European Planetary Science Congress (2015), pp. 2015–306

  • C.O. Lee, T. Hara, J.S. Halekas, E. Thiemann, P. Chamberlin, F. Eparvier, R.J. Lillis, D.E. Larson, P.A. Dunn, J.R. Espley, J. Gruesbeck, S.M. Curry, J.G. Luhmann, B.M. Jakosky, Maven observations of the solar cycle 24 space weather conditions at Mars. J. Geophys. Res. Space Phys. 122(3), 2768–2794 (2017). https://doi.org/10.1002/2016JA023495

    Article  ADS  CAS  Google Scholar 

  • C.L. Lentz, A. Chasapis, R.A. Qudsi, J. Halekas, B.A. Maruca, L. Andersson, D.N. Baker, On the Solar Wind Proton Temperature Anisotropy at Mars’ Orbital Location. J. Geophys. Res. Space Phys. 126(10), 29438 (2021). https://doi.org/10.1029/2021JA029438

    Article  ADS  Google Scholar 

  • R. Lillis, D. Brain, S.W. Bougher, F. Leblanc, J.G. Luhmann, B.M. Jakosky, R. Modolo, J. Fox, J. Deighan, X. Fang, Y.C. Wang, Y. Lee, C. Dong, Y. Ma, T. Cravens, L. Andersson, S. Curry, N. Schneider, M. Combi, R.P. Lin, Characterizing atmospheric escape from mars today and through time, with maven. Space Sci. Rev. (2015). https://doi.org/10.1007/s11214-015-0165-8

    Article  Google Scholar 

  • J.G. Luhmann, The inner magnetosheath of venus: an analogue for earth? J. Geophys. Res. Space Phys. 100(A7), 12035–12045 (1995). https://doi.org/10.1029/94JA02862

    Article  ADS  Google Scholar 

  • J.G. Luhmann, S.A. Ledvina, C.T. Russell, Induced magnetospheres. Adv. Space Res. 33(11), 1905–1912 (2004). https://doi.org/10.1016/j.asr.2003.03.031

    Article  ADS  Google Scholar 

  • M.G. Kivelson, F. Bagenal, Planetary magnetospheres. in Encyclopedia of the Solar System, ed. by L.-A.A. McFadden, P.R. Weissman, T.V. Johnson (2007), pp. 519–540. https://doi.org/10.1016/B978-012088589-3/50032-3

  • M.G. Kivelson, C.T. Russell, Introduction to Space Physics (1995)

  • M.G. Kivelson, Planetary Magnetospheres. APS Division of Plasma Physics Meeting Abstracts. APS Meeting Abstracts 42, 1–001 (2000)

  • C. Martinecz, M. Fränz, J. Woch, N. Krupp, E. Roussos, E. Dubinin, U. Motschmann, S. Barabash, R. Lundin, M. Holmström, H. Andersson, M. Yamauchi, A. Grigoriev, Y. Futaana, K. Brinkfeldt, H. Gunell, R.A. Frahm, J.D. Winningham, J.R. Sharber, J. Scherrer, A.J. Coates, D.R. Linder, D.O. Kataria, E. Kallio, T. Sales, W. Schmidt, P. Riihela, H.E.J. Koskinen, J.U. Kozyra, J. Luhmann, C.T. Russell, E.C. Roelof, P. Brandt, C.C. Curtis, K.C. Hsieh, B.R. Sandel, M. Grande, J.-A. Sauvaud, A. Fedorov, J.-J. Thocaven, C. Mazelle, S. McKenna-Lawler, S. Orsini, R. Cerulli-Irelli, M. Maggi, A. Mura, A. Milillo, P. Wurz, A. Galli, P. Bochsler, K. Asamura, K. Szego, W. Baumjohann, T.L. Zhang, H. Lammer, Location of the bow shock and ion composition boundaries at Venus-initial determinations from Venus express ASPERA-4. Planet. Space Sci. 56(6), 780–784 (2008). https://doi.org/10.1016/j.pss.2007.07.007

    Article  ADS  CAS  Google Scholar 

  • Y. Matsumoto, M. Hoshino, Onset of turbulence induced by a Kelvin-Helmholtz vortex. Geophys. Res. Lett. (2004). https://doi.org/10.1029/2003GL018195

    Article  Google Scholar 

  • W.H. Matthaeus, M. Wan, S. Servidio, A. Greco, K.T. Osman, S. Oughton, P. Dmitruk, Intermittency, nonlinear dynamics and dissipation in the solar wind and astrophysical plasmas. Philos. Trans. Royal Soc. Math. Phys. Eng. Sci. 373(2041), 20140154 (2015). https://doi.org/10.1098/rsta.2014.0154

    Article  ADS  Google Scholar 

  • M. Mayyasi, J. Clarke, J.-Y. Chaufray, D. Kass, S. Bougher, D. Bhattacharyya, J. Deighan, S. Jain, N. Schneider, G.L. Villanueva, F. Montmessin, M. Benna, P. Mahaffy, B. Jakosky, Solar cycle and seasonal variability of H in the upper atmosphere of Mars. Icarus (2023). https://doi.org/10.1016/j.icarus.2022.115293

    Article  Google Scholar 

  • D.L. Mitchell, R.P. Lin, C. Mazelle, H. Rème, P.A. Cloutier, J.E.P. Connerney, M.H. Acuña, N.F. Ness, Probing mars’ crustal magnetic field and ionosphere with the mgs electron reflectometer. J. Geophys. Res. Planets 106(E10), 23419–23427 (2001). https://doi.org/10.1029/2000JE001435

    Article  ADS  Google Scholar 

  • N. Aeronautics, S. Administration, ESCAPADE. https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=ESCAPADE [Accessed: November 11, 2023] (2023)

  • A. Nagy, D. Winterhalter, K. Sauer, T. Cravens, S. Brecht, C. Mazelle, D. Crider, E. Kallio, A. Zakharov, E. Dubinin, M. Verigin, K. Galina, W.I. Axford, C. Bertucci, J.G. Trotignon, The plasma environment of Mars. Space Sci. Rev. 111, 33–114 (2004). https://doi.org/10.1023/B:SPAC.0000032718.47512.92

    Article  ADS  Google Scholar 

  • R. Nakamura, W. Baumjohann, M. Brittnacher, V.A. Sergeev, M. Kubyshkina, T. Mukai, K. Liou, Flow bursts and auroral activations: onset timing and foot point location. JGR 106(A6), 10777–10790 (2001). https://doi.org/10.1029/2000JA000249

    Article  ADS  Google Scholar 

  • H.J. Opgenoorth, D.J. Andrews, M. Fränz, M. Lester, N.J.T. Edberg, D. Morgan, F. Duru, O. Witasse, A.O. Williams, Mars ionospheric response to solar wind variability. J. Geophys. Res. Space Phys. 118(10), 6558–6587 (2013). https://doi.org/10.1002/jgra.50537

    Article  ADS  CAS  Google Scholar 

  • A. Otto, D.H. Fairfield, Kelvin-Helmholtz instability at the magnetotail boundary: MHD simulation and comparison with geotail observations. J. Geophys. Res. Space Phys. 105(A9), 21175–21190 (2000). https://doi.org/10.1029/1999JA000312

    Article  ADS  Google Scholar 

  • S. Oughton, N.E. Engelbrecht, Solar wind turbulence: connections with energetic particles. New Astronomy (2021). https://doi.org/10.1016/j.newast.2020.101507

    Article  Google Scholar 

  • T. Penz, N.V. Erkaev, H.K. Biernat, H. Lammer, U.V. Amerstorfer, H. Gunell, E. Kallio, S. Barabash, S. Orsini, A. Milillo, W. Baumjohann, Ion loss on Mars caused by the Kelvin-Helmholtz instability. Planet. Space Sci. 52(13), 1157–1167 (2004). https://doi.org/10.1016/j.pss.2004.06.001

    Article  ADS  CAS  Google Scholar 

  • I.M. Podgorny, E.M. Dubinin, P.L. Israelevich, Laboratory simulation of the induced magnetospheres of comets and venus. Moon and Planets 23(3), 323–338 (1980). https://doi.org/10.1007/BF00902047

    Article  ADS  Google Scholar 

  • G. Poh, J. Espley, K. Nykyri, C. Fowler, X. Ma, S. Xu, G. Hanley, N. Romanelli, C. Bowers, J. Gruesbeck, G. DiBraccio, On the growth and development of non-linear Kelvin-Helmholtz instability at Mars: Maven observations. J. Geophys. Res. Space Phys. (2021). https://doi.org/10.1029/2021JA029224

    Article  Google Scholar 

  • D.I. Pontin, E.R. Priest, Magnetic reconnection: MHD theory and modelling. Living Rev.Solar Phys. 19(1), 1 (2022). https://doi.org/10.1007/s41116-022-00032-9

    Article  ADS  Google Scholar 

  • R. Ramstad, S. Barabash, Y. Futaana, M. Holmström, Solar wind- and euv-dependent models for the shapes of the Martian plasma boundaries based on mars express measurements. J. Geophys. Res. Space Phys. 122(7), 7279–7290 (2017). https://doi.org/10.1002/2017JA024098

    Article  ADS  Google Scholar 

  • C. Rossi, F. Califano, A. Retinò, L. Sorriso-Valvo, P. Henri, S. Servidio, F. Valentini, A. Chasapis, L. Rezeau, Two-fluid numerical simulations of turbulence inside Kelvin-Helmholtz vortices: intermittency and reconnecting current sheets. Phys. Plasmas (2015). https://doi.org/10.1063/1.4936795

    Article  Google Scholar 

  • S. Ruhunusiri, J.S. Halekas, J.R. Espley, C. Mazelle, D. Brain, Y. Harada, G.A. DiBraccio, R. Livi, D.E. Larson, D.L. Mitchell, B.M. Jakosky, G.G. Howes, Characterization of turbulence in the mars plasma environment with maven observations. J. Geophys. Res. Space Phys. 122(1), 656–674 (2017). https://doi.org/10.1002/2016JA023456

    Article  ADS  Google Scholar 

  • S. Ruhunusiri, J.S. Halekas, J.P. McFadden, J.E.P. Connerney, J.R. Espley, Y. Harada, R. Livi, K. Seki, C. Mazelle, D. Brain, T. Hara, G.A. DiBraccio, D.E. Larson, D.L. Mitchell, B.M. Jakosky, H. Hasegawa, Maven observations of partially developed Kelvin-Helmholtz vortices at mars. Geophys. Res. Lett. 43(10), 4763–4773 (2016). https://doi.org/10.1002/2016GL068926

    Article  ADS  Google Scholar 

  • C.T. Russell, The dynamics of planetary magnetospheres. Planet. Space Sci. 49(10–11), 1005–1030 (2001). https://doi.org/10.1016/S0032-0633(01)00017-4

    Article  ADS  Google Scholar 

  • C.T. Russell, J.G. Luhmann, K. Schwingenschuh, W. Riedler, Y. Yeroshenko, Upstream waves at Mars: Phobos observations. Geophys. Res. Lett. 17(6), 897–900 (1990). https://doi.org/10.1029/GL017i006p00897

    Article  ADS  Google Scholar 

  • S. Ruhunusiri, J. Halekas, J. Connerney, D. Espley, D. Larson, D. Mitchell, Maven characterization of low-frequency plasma waves in the Martian magnetosphere (2015)

  • K. Schwingeschuh, W. Riedler, T.-L. Zhang, H. Lichtenegger, H. Rosenbauer, S. Livi, G. Gevai, K. Gringauz, M. Verigin, Y. Yeroshenko, D. Möhlmann, T. Roatsch, R. Lundin, C.T. Russell, J.G. Luhmann, The Martian magnetic field environment: induced or dominated by an intrinsic magnetic field? Adv. Space Res. 12(9), 213–219 (1992). https://doi.org/10.1016/0273-1177(92)90333-S

    Article  ADS  Google Scholar 

  • L. Shan, Q. Lu, C. Mazelle, C. Huang, T. Zhang, M. Wu, X. Gao, S. Wang, The shape of the Venusian bow shock at solar minimum and maximum: revisit based on vex observations. Planet. Space Sci. 109–110, 32–37 (2015). https://doi.org/10.1016/j.pss.2015.01.004

    Article  ADS  Google Scholar 

  • A.M. Souza Franco, M. Fránz, E. Echer, M.J. Alves Bolzan, Correlation length around Mars: A statistical study with MEX and MAVEN observations. Earth Planet. Phys. 3(6), 560–569 (2019). https://doi.org/10.26464/epp2019051

  • J.R. Spreiter, A.Y. Alksne, Plasma flow around the magnetosphere. Rev. Geophys. 7(1–2), 11–50 (1969). https://doi.org/10.1029/RG007i001p00011

    Article  ADS  Google Scholar 

  • T. Chang, C.-C. Wu, V. Angelopoulos, Preferential Acceleration of Coherent Magnetic Structures and Bursty Bulk Flows in Earth’s Magnetotail. Physica Scripta Volume T 98(1), 48–51 (2001). https://doi.org/10.1238/Physica.Topical.098a00048arXiv:physics/0106098 [physics.space-ph]

  • V. Tarasov, E. Dubinin, S. Perraut, A. Roux, K. Sauer, A. Skalsky, M. Delva, Wavelet application to the magnetic field turbulence in the upstream region of the Martian bow shock. Earth Planets Space 50, 699–708 (1998). https://doi.org/10.1186/BF03352163

    Article  ADS  Google Scholar 

  • O. Vaisberg, V. Smirnov, The Martian magnetotail. Adv. Space Res. 6(1), 301–314 (1986). https://doi.org/10.1016/0273-1177(86)90046-3

    Article  ADS  CAS  Google Scholar 

  • A. Verdini, M. Velli, W.H. Matthaeus, S. Oughton, P. Dmitruk, A turbulence-driven model for heating and acceleration of the fast wind in coronal holes. Astrophys. J. Lett. 708(2), 116 (2009). https://doi.org/10.1088/2041-8205/708/2/L116

    Article  ADS  Google Scholar 

  • D. Vignes, C. Mazelle, H. Rme, M. Acuña, J. Connerney, R. Lin, D. Mitchell, P. Cloutier, D. Crider, N. Ness, The solar wind interaction with mars: locations and shapes of the bow shock and the magnetic pile-up boundary from the observations of the mag/er experiment onboard mars global surveyor. Geophys. Res. Lett. 27(1), 49–52 (2000)

    Article  ADS  Google Scholar 

  • Z. Vörös, T.L. Zhang, M.P. Leubner, M. Volwerk, M. Delva, W. Baumjohann, K. Kudela, Magnetic fluctuations and turbulence in the Venus magnetosheath and wake. Geophys. Res. Lett. (2008). https://doi.org/10.1029/2008GL033879

    Article  Google Scholar 

  • L. Wang, C. Huang, A. Du, Y. Ge, G. Chen, Z. Yang, S. Li, K. Zhang, Kelvin-Helmholtz instability at Mars: In situ observations and kinetic simulations. Astrophys. J. 947, 51 (2023). https://doi.org/10.3847/1538-4357/acc655

    Article  ADS  Google Scholar 

  • X. Wang, X. Xu, Y. Ye, J. Wang, M. Wang, Z. Zhou, Q. Chang, Q. Xu, J. Xu, L. Luo, P. He, S. Cheng, Maven observations of the Kelvin-Helmholtz instability developing at the ionopause of mars. Geophys. Res. Lett. (2022). https://doi.org/10.1029/2022GL098673

    Article  PubMed  PubMed Central  Google Scholar 

  • M. Yamauchi, T. Hara, R. Lundin, E. Dubinin, A. Fedorov, J.-A. Sauvaud, R.A. Frahm, R. Ramstad, Y. Futaana, M. Holmstrom, S. Barabash, Seasonal variation of Martian pick-up ions: evidence of breathing exosphere. Planet. Space Sci. 119, 54–61 (2015). https://doi.org/10.1016/j.pss.2015.09.013

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

A. M. S. F. would like to thank the Institute of Geosciences and Engineering- UNIFESSPA (project no. 23479.018587/2022-14). E. Echer would like to thank Brazilian agencies for research grants: CNPq (contract no. PQ-301883/2019-0). The work of M. J. A. B. was supported by CNPq agency (contract no. PQ-302330/2015-1, PQ-305692/2018-6) and FAPEG agency (contract no. 2012.1026.7000905). We thank the Brazilian Ministry of Science, Technology and Innovation and the Brazilian Space Agency as well. We would like to thank the editor and reviewers for their insightful comments, which have helped us significantly improving our manuscript.

Funding

Work of EE is funded by CNPq (contract no. PQ-302583/2015-7, PQ-301883/2019-0) and FAPESP (2018/21657-1). Work of MJAB is funded by CNPq (contract no. PQ-302330/2015-1, PQ-305692/2018-6) and FAPEG (contract no. 2012.1026.7000905).

Author information

Authors and Affiliations

Authors

Contributions

AMSF prepared the first draft of the manuscript, while all contributed in finalizing the draft. All revised and approved the final draft for submission.

Corresponding author

Correspondence to Adriane M. S. Franco.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest. No financial or personal relationship with a third party exists whose interests could be positively or negatively influenced by the content in the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franco, A.M.S., Echer, E., Fränz, M. et al. Intermittent plasma turbulence in the Martian plasma environment. Rev. Mod. Plasma Phys. 8, 3 (2024). https://doi.org/10.1007/s41614-023-00141-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41614-023-00141-4

Keywords

Navigation