Skip to main content
Log in

Alpha particle detection with a planar CdZnTe detector and relative simulations

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Purpose

The performance of CZT in \(\gamma \)-ray and X-ray detection is growing rapidly in these years. However, there are only a few reports on its utilization in \(\alpha \) particle detection. Therefore, to study the properties of CZT for detection of \(\alpha \) particle, a detection system has been manufactured, and a series of simulations have been done.

Methods

A \(22\times 22\times 0.7 mm^3\) planar CZT detector is deployed to detect the \(\alpha \) particles from a radiation source containing Am-241 and Pu-239, while COMSOL MultiPhysics and GEANT4 are employed in the simulation of charge collection and interaction between \(\alpha \) particles and CZT.

Results

An energy resolution of 1.47% FWHM at 5.486MeV and 1.32% at 5.157MeV has been achieved. A simulated spectrum has been created, and it is analogous to the one from experiment.

Conclusion

The experiment results show the potential of CZT in \(\alpha \) detection. The simulations are confirmed effective and will guide a better design of the detecting system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R. Shi, Study on Common Modeling Analytic Technology of Alpha Particle Spectra for Semiconductor Si Detector, Ph.D. Thesis, Chengdu University of Technology(2018)(in Chinese)

  2. D. Venos, D. Srnka, J. Slesinger et al., Performance of HPGe detectors in the temperature region 2–77 K[J]. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom., Detect. Assoc. Equip. 365(2–3), 419–423 (1995)

    Article  ADS  Google Scholar 

  3. Q. Xu, P. Mulligan, J. Wang et al., Bulk GaN alpha-particle detector with large depletion region and improved energy resolution[J]. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom., Detect. Assoc. Equip. 849, 11–15 (2017)

    Article  ADS  Google Scholar 

  4. Y. He, Z. Liu, K.M. McCall et al., Perovskite CsPbBr 3 single crystal detector for alpha-particle spectroscopy[J]. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom., Detect. Assoc. Equip. 922, 217–221 (2019)

  5. F. Zhang, C. Herman, Z. He et al., Characterization of the H3D ASIC readout system and 6.0 cm\(^{3}\) 3-D position sensitive CdZnTe detectors[J]. IEEE Trans. Nucl. Sci. 59(1), 236–242 (2012)

    Article  Google Scholar 

  6. D. Shy, Super-MeV Compton Imaging and 3D Gamma-Ray Imaging Using Pixelated CdZnTe[D].(2020)

  7. R. Giubbini, M. Bertoli, R. Durmo et al., Comparison between N\(^{13}\)NH\(_3\)-PET and \(^{99{\rm m}}\)Tc-Tetrofosmin-CZT SPECT in the evaluation of absolute myocardial blood flow and flow reserve. J. Nucl. Cardiol. (2019). https://doi.org/10.1007/s12350-019-01939-x

  8. X. Wang, Principle and Experimental Characteristics of Pixellated CdZnTe Detector for Nuclear Radiation, Ph.D. Thesis, Chongqing University(2013)(in Chinese)

  9. S. Uxa, R. Grill, E. Belas, Evaluation of the mobility-lifetime product in CdTe and CdZnTe detectors by the transient-current technique[J]. J. Appl. Phys. 114(9), 094511 (2013). https://doi.org/10.1063/1.4819891

    Article  ADS  Google Scholar 

  10. K. Hecht, Zum Mechanismus des lichtelektrischen Primärstromes in isolierenden Kristallen[J]. Zeitschrift für Physik 77(3–4), 235–245 (1932). (in German)

    Article  ADS  Google Scholar 

  11. M.S. Amman, J.S. Lee, P.N. Luke, Alpha particle response characterization of CdZnTe[C]. Hard X-Ray and Gamma-Ray Detector Physics III. Int. Soc. Opt. Photon. 4507, 1–11 (2001)

    Google Scholar 

  12. M. Bettelli, N.S. Amadè, D. Calestani et al., A first principle method to simulate the spectral response of CdZnTe-based X-and gamma-ray detectors[J]. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom., Detect. Assoc. Equip. 960, 163663 (2020)

    Article  Google Scholar 

  13. W. Shockley, Currents to conductors induced by a moving point charge[J]. J. Appl. Phys. 9(10), 635–636 (1938)

    Article  ADS  Google Scholar 

  14. S. Ramo, Currents induced by electron motion[J]. Proc. IRE 27(9), 584–585 (1939)

    Article  Google Scholar 

  15. M. Kolstein, G. Ariño, M. Chmeissani et al., Simulation of charge transport in pixelated CdTe[J]. J. Instrum. 9(12), C12027 (2014)

    Article  Google Scholar 

  16. T.H. Prettyman, Method for mapping charge pulses in semiconductor radiation detectors[J]. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom., Detect. Assoc. Equip. 422(1–3), 232–237 (1999)

    Article  ADS  Google Scholar 

  17. S. Agostinelli, J. Allison, K. Amako et al., GEANT4-a simulation toolkit[J]. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom., Detect. Assoc. Equip. 506(3), 250–303 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, Y., Jiang, X., Wang, C. et al. Alpha particle detection with a planar CdZnTe detector and relative simulations. Radiat Detect Technol Methods 5, 609–617 (2021). https://doi.org/10.1007/s41605-021-00296-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41605-021-00296-z

Keywords

Navigation