Skip to main content
Log in

Development of a 6D Kalman filter for charged particle tracking in time projection chamber without magnetic field

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Background

Track reconstruction is necessary for time projection chamber (TPC), because TPCs usually face the measurement error that impedes gaining precise spacial and angular resolution.

Purpose

Kalman filter is a well-performed and applicable algorithm to denoise and reconstruct the event track.

Methods

In this paper, we develop a six-dimensional Kalman filter to reconstruct the particle track in high-energy physics experiments, while the most common form of Kalman filter used in many research fields is four-dimensional. The modelisation is based on a gaseous TPC, and the whole reconstruction process is first tested by a toy Monte Carlo simulation.

Results

The results show the Kalman filter can effectively reduce the noise and improve the detector resolution. Then, the performance of the Kalman filter is also verified with the data produced by the Geant4 toolkit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Attié David, Tpc review. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detectors Assoc. Equip. 598, 89–93 (2009)

    Article  ADS  Google Scholar 

  2. V. Alvarez et al., NEXT-100 technical design report (TDR): executive summary. JINST 7, T06001 (2012)

    ADS  Google Scholar 

  3. Xun Chen, Fu ChangBo, Javier Galan, Karl Giboni, Franco Giuliani, Gu LingHui, Ke Han, XiangDong Ji, Heng Lin, JiangLai Liu et al., Pandax-iii: searching for neutrinoless double beta decay with high pressure 136 xe gas time projection chambers. Sci. China Phys. Mech. Astron. 60(6), 061011 (2017)

    Article  ADS  Google Scholar 

  4. D. Bernard, HARPO: 1.7–74 MeV gamma-ray beam validation of a high angular resolution, high linear polarisation dilution, gas time projection chamber telescope and polarimeter. Nuovo Cim. C40(3), 117 (2017)

    ADS  MathSciNet  Google Scholar 

  5. Y. Mizumura et al., Development of a 30 cm-cube electron-tracking compton camera for the SMILE-II experiment. JINST 9, C05045 (2014)

    Article  Google Scholar 

  6. F. Gao, H.-Q. Tong, Nonlinear least squares estimation based on improved particle swarm optimization. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Syst. Eng. Electron. 28(5), 775–778 (2006). cited By 3

    MATH  Google Scholar 

  7. Ie Vovk, M. Strzys, C. Fruck, Spatial likelihood analysis for MAGIC telescope data—from instrument response modelling to spectral extraction. Astron. Astrophys. 619, A7 (2018)

    Article  ADS  Google Scholar 

  8. Tong suo Lu, Shi jun Lei, Jing jing Zang, Jin Chang, Jian Wu, Study of track reconstruction for dampe. Chin. Astron. Astrophys. 41(3), 455–470 (2017)

    Article  ADS  Google Scholar 

  9. G. Welch, G. Bishop, An introduction to the Kalman filter. Proc. SIGGRAPH Course 8(1), 16 (2001)

    Google Scholar 

  10. S. Agostinelli et al., Geant4-a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A 506(3), 250–303 (2003)

    Article  ADS  Google Scholar 

  11. H.A. Bethe, Moliere’s theory of multiple scattering. Phys. Rev. 89, 1256–1266 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  12. R.L. Gluckstern, Uncertainties in track momentum and direction, due to multiple scattering and measurement errors. Nucl. Instrum. Methods 24, 381–389 (1963)

    Article  ADS  Google Scholar 

  13. Walter R. Innes, Some formulas for estimating tracking errors. Nucl. Instrum. Methods Phys. Res. Sect. A 329(1), 238–242 (1993)

    Article  ADS  Google Scholar 

  14. J. Beringer et al., Review of particle physics (RPP). Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  15. Rudolph Emil Kalman, A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82(Series D), 35–45 (1960)

    Article  MathSciNet  Google Scholar 

  16. D. Stampfer, M. Regler, R. Frühwirth, Track fitting with energy loss. Comput. Phys. Commun. 79(2), 157–164 (1994)

    Article  ADS  Google Scholar 

  17. Pierre Billoir, Track fitting with multiple scattering: a new method. Nucl. Instrum. Methods Phys. Res. 225(2), 352–366 (1984)

    Article  ADS  Google Scholar 

  18. Rudolf Frühwirth, Application of Kalman filtering to track and vertex fitting. Nucl. Instrum. Methods Phys. Res. Sect. A 262, 444–450 (1987)

    Article  ADS  Google Scholar 

  19. Yung-Su Tsai, Pair production and bremsstrahlung of charged leptons. Rev. Mod. Phys. 46, 815–851 (1974)

    Article  ADS  Google Scholar 

  20. D. Bernard, Tpc in \(\gamma \)-ray astronomy above pair-creation threshold. Nucl. Instrum. Methods Phys. Res. Sect. A 701, 225–230 (2013)

    Article  ADS  Google Scholar 

  21. J. Zhang et al., Low transverse momentum track reconstruction based on the Hough transform for the besiii drift chamber. Radiat. Detect. Technol. Methods 2(1), 20 (2018)

    Article  Google Scholar 

  22. C. Amsler et al., Review of particle physics. Phys. Lett. B 667(1), 1–6 (2008). Review of Particle Physics

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yikai Huo or Shaobo Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Q., Lu, J., Huo, Y. et al. Development of a 6D Kalman filter for charged particle tracking in time projection chamber without magnetic field. Radiat Detect Technol Methods 4, 70–77 (2020). https://doi.org/10.1007/s41605-019-0151-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41605-019-0151-x

Keywords

Navigation