Skip to main content
Log in

Differences in Default Mode Network Connectivity in Meditators and Non-meditators During an Attention Task

  • Original Article
  • Published:
Journal of Cognitive Enhancement Aims and scope Submit manuscript

Abstract

Activity in the default mode network (DMN) is reduced during non-self-referential goal-directed tasks in healthy individuals. In this study, we investigated differences in DMN functional connectivity between regular meditators and non-meditators during an attention paradigm. Non-meditators and regular meditators, matched by age, years of education, and gender were instructed to name the color of single words visually presented in a Stroop Word-Color Task (SWCT) adapted for functional magnetic resonance imaging (fMRI). The task was performed when the participants were not formally meditating. Logistic analysis based on imaging data indicated that the connectivity between the PCC (precuneus/posterior cingulate cortex) and the right and left parietal lobules helps differentiating regular meditators from non-meditators. Granger causality results showed that the activity in the PCC contains information to predict the activity in the right lateral parietal cortex and that the accuracy in this prediction is higher in regular meditators when compared to non-meditators. This suggests a stronger link between these two regions in regular meditators. In contrast to regular meditators, the PCC is more influenced by the left parietal region (related to the process of reading—which is the interference in the SWCT), and this region is more influenced by the PCC in non-meditators. These functional connectivity differences in the DMN between groups possibly reflect a higher degree of interference and probably more distraction during the SWCT in non-meditators compared with meditators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Beckmann, C. F., & Smith, S. M. (2005). Tensorial extensions of independent component analysis for multisubject fMRI analysis. NeuroImage, 25(1), 294–311.

    Article  PubMed  Google Scholar 

  • Berkovich-Ohana, A., Harel, M., Hahamy, A., Arieli, A., & Malach, R. (2016a). Alterations in task-induced activity and resting-state fluctuations in visual and DMN areas revealed in long-term meditators. NeuroImage, 135, 125–134.

    Article  PubMed  Google Scholar 

  • Berkovich-Ohana, A., Harel, M., Hahamy, A., Arieli, A., & Malach, R. (2016b). Data for default network reduced functional connectivity in meditators, negatively correlated with meditation expertise. Data in Brief, 15(8), 910–914.

    Article  Google Scholar 

  • Brefczynski-lewis, J. A., Lutz, A., Schaefer, H. S., Levinson, D. B., & Davidson, R. J. (2007). Neural correlates of attentional expertise in long-term meditation practitioners. Proceedings of the National Academy of Sciences of the United States of America, 104(27), 11483–11488.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brewer, J. A., Worhunsky, P. D., Gray, J. R., Tang, Y. Y., Weber, J., & Kober, H. (2011). Meditation experience is associated with differences in default mode network activity and connectivity. Proceedings of the National Academy of Sciences of the United States of America, 108(50), 20254–20259.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buckner, R. L., Andrews-hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38.

    Article  PubMed  Google Scholar 

  • Carter, C. S., Mintun, M., & Cohen, J. D. (1995). Interference and facilitation effects during selective attention: an H2 15O pet study of Stroop task performance. NeuroImage, 2(4), 264–272.

    Article  PubMed  Google Scholar 

  • Farb, N. A. S., Segal, V., & Anderson, A. K. (2013). Mindfulness meditation training alters cortical representations of interoceptive attention. Social, Cognitive & Affective Neuroscience, 8(1), 15–26.

    Article  Google Scholar 

  • Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fransson, P., & Marrelec, G. (2008). The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: evidence from a partial correlation network analysis. NeuroImage, 42(3), 1178–1184.

    Article  PubMed  Google Scholar 

  • Froeliger, B., Garland, E. L., Kozink, R. V., Modlin, L. A., Chen, N. K., McClernon, F. J., Greeson, J. M., & Sobin, P. (2012). Meditation-state functional connectivity (msFC): strengthening of the dorsal attention network and beyond. Evidence Based Complementary and Alternative Medicine, 2012, 680407.

    PubMed  PubMed Central  Google Scholar 

  • Garrison, K. A., Zeffiro, T. A., Scheinost, D., Constable, R. T., & Brewerm, J. A. (2015). Meditation leads to reduced default mode network activity beyond an active task. Cognitive Affective and Behavioral Neuroscience., 15(3), 712–720.

    Article  Google Scholar 

  • Gevins, A., & Smith, M. E. (2000). Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style. Cerebral Cortex, 10(9), 829–839.

    Article  PubMed  Google Scholar 

  • Gilbert, S. J., Dumontheil, I., Simons, J. S., Frith, C. D., & Burgess, P. W. (2007). Comment on “wandering minds: the default network and stimulus-independent thought”. Science, 317(5834), 43.

    Article  PubMed  Google Scholar 

  • Gruberger, M., Ben-Simon, E., Levkovitz, Y., Zangen, A., & Hendler, T. (2011). Towards a neuroscience of mind-wandering. Frontiers in Human Neuroscience, 5, 56.

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrison, B. J., Shaw, M., Yücel, M., Purcell, R., Brewer, W. J., Strother, S. C., Egan, G. F., Olver, J. S., Nathan, P. J., & Pantelis, C. (2005). Functional connectivity during Stroop task performance. NeuroImage, 24(1), 181–191.

    Article  PubMed  Google Scholar 

  • Hasenkamp, W., & Barsalou, L. W. (2012). Effects of meditation experience on functional connectivity of distributed brain networks. Frontiers in Human Neuroscience, 6, 38.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hölzel, B. K., Lazar, S. W., Gard, T., Schuman-Olivier, Z., Vago, D. R., & Ott, U. (2011). How does mindfulness meditation work? Proposing mechanisms of action from a conceptual and neural perspective. Perspectives on Psychological Science, 6(6), 537–559.

    Article  PubMed  Google Scholar 

  • Jha, A. P., Krompinger, J., & Baime, M. J. (2007). Mindfulness training modifies subsystems of attention. Cognitive, Affective & Behavioral Neurosciences, 7(2), 109–119.

    Article  Google Scholar 

  • Kozasa, E. H., Sato, J. R., Lacerda, S. S., Barreiros, M. A. M., Radvany, J., Russell, T. A., Sanches, L. G., Mello, L. E. A. M., & Amaro Jr., E. (2012). Meditation training increases brain efficiency in an attention task. NeuroImage, 59(1), 745–749.

    Article  PubMed  Google Scholar 

  • Moore, A., & Malinowski, P. (2009). Meditation, mindfulness and cognitive flexibility. Consciousness and Cognition, 18(1), 176–186.

    Article  PubMed  Google Scholar 

  • Pagnoni, G., Cekic, M., & Guo, Y. (2008). “Thinking about not-thinking”: neural correlates of conceptual processing during zen meditation. PloS One, 3(9), e3083.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peterson, B. S., Skudlarski, P., Gatenby, J. C., Zhang, H., Anderson, A. W., & Gore, J. C. (1999). An fMRI study of Stroop word-color interference: evidence for cingulate subregions subserving multiple distributed attentional systems. Biological Psychiatry, 45(10), 1237–1258.

    Article  PubMed  Google Scholar 

  • Peterson, B. S., Potenza, M. N., Wang, Z., Zhu, H., Martin, A., Marsh, R., Plessen, K. J., & Yu, S. (2009). An fMRI study of the effects of psychostimulants on default-mode processing during Stroop task performance in youths with ADHD. American Journal of Psychiatry, 166(11), 1286–1294.

    Article  PubMed  PubMed Central  Google Scholar 

  • Raichle, M. E., Macleod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676–682.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roebroeck, A., Formisano, E., & Goebel, R. (2005). Mapping directed influence over the brain using Granger causality and fMRI. NeuroImage, 25(1), 230–242.

    Article  PubMed  Google Scholar 

  • Scheibner, H.J., Bogler, C., Gleich, T., Haynes, J.D., Bermpohl, F. (2010). Internal and external attention and the default mode network. NeuroImage 2017 18(148):381–389.

  • Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A. L., & Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27(9), 2349–2356.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheline, Y. I., Barch, D. M., Price, J. L., Rundle, M. M., Vaishnavi, S. N., Snyder, A. Z., Mintun, M. A., Wang, S., Coalson, R. S., & Raichle, M. E. (2009). The default mode network and self-referential processes in depression. Proceedings of the National Academy of Sciences of the United States of America, 106(6), 1942–1947.

    Article  PubMed  PubMed Central  Google Scholar 

  • Simon, R., & Engström, M. (2015). The default mode network as a biomarker for monitoring the therapeutic effects of meditation. Frontiers in Psychology, 6, 776.

    Article  PubMed  PubMed Central  Google Scholar 

  • Slagter, H. A., Lutz, A., Greischar, L. L., Francis, A. D., Nieuwenhuis, S., Davis, J. M., & Davidson, R. J. (2007). Mental training affects distribution of limited brain resources. PLoS Biology, 5(6), e138.

    Article  PubMed  PubMed Central  Google Scholar 

  • Slagter, H. A., Lutz, A., Greischar, L. L., Nieuwenhuis, S., & Davidson, R. J. (2009). Theta phase synchrony and conscious target perception: impact of intensive mental training. Journal of Cognitive Neuroscience, 21(8), 1536–1549.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 12569–12574.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomasino, B., Fregona, S., Skrap, M., & Fabbro, F. (2013). Meditation-related activations are modulated by the practices needed to obtain it and by the expertise: an ALE meta-analysis study. Frontiers in Human Neuroscience, 6, 346.

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Mark, S., Klaver, P., Bucher, K., Maurer, U., Schulz, E., Brem, S., Martin, E., & Brandeis, D. (2011). The left occipitotemporal system in reading: disruption of focal fMRI connectivity to left inferior frontal and inferior parietal language areas in children with dyslexia. NeuroImage, 54(3), 2426–2436.

    Article  PubMed  Google Scholar 

  • Weissman, D. H., Roberts, K. C., Visscher, K. M., & Woldorff, M. G. (2006). The neural bases of momentary lapses in attention. Nature Neuroscience, 9(7), 971–978.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Instituto Israelita de Ensino e Pesquisa Albert Einstein—IIEPAE, Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP, Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (476288/2009-6), and Associação Fundo de Incentivo à Pesquisa—AFIP. Authors would like to thank Coen sensei, Zendo Brasil staff for discussing the inclusion/exclusion criteria, Marta O. S. Freitas for helping with the recruitment of volunteers for this study, and Liana G. Sanches for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa H. Kozasa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozasa, E.H., Sato, J.R., Russell, T.A. et al. Differences in Default Mode Network Connectivity in Meditators and Non-meditators During an Attention Task. J Cogn Enhanc 1, 228–234 (2017). https://doi.org/10.1007/s41465-017-0031-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41465-017-0031-6

Keywords

Navigation