Skip to main content
Log in

The energy response of LaBr\(_{3}\)(Ce), LaBr\(_{3}\)(Ce,Sr), and NaI(Tl) crystals for GECAM

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The GECAM series of satellites utilizes LaBr\(_3\)(Ce), LaBr\(_3\)(Ce,Sr), and NaI(Tl) crystals as sensitive materials for gamma-ray detectors (GRDs). To investigate the nonlinearity in the detection of low-energy gamma rays and address the errors in the calibration of the E–C relationship, comprehensive tests and comparative studies of the three aforementioned crystals were conducted using Compton electrons, radioactive sources, and mono-energetic X-rays. The nonlinearity test results of the Compton electrons and X-rays demonstrated substantial differences, with all three crystals presenting a higher nonlinearity for X/\(\gamma\)-rays than for Compton electrons. Despite the LaBr\(_3\)(Ce) and LaBr\(_3\)(Ce,Sr) crystals having higher absolute light yields, they exhibited a noticeable nonlinear decrease in the light yield, especially at energies below 400 keV. The NaI(Tl) crystal demonstrated an "excess" light output in the 6–200 keV range, reaching a maximum "excess" of 9.2% at 30 keV in the X-ray testing and up to 15.5% at 14 keV during Compton electron testing, indicating a significant advantage in the detection of low-energy gamma rays. Furthermore, we explored the underlying causes of the observed nonlinearity in these crystals. This study not only elucidates the detector responses of GECAM, but also initiates a comprehensive investigation of the nonlinearity of domestically produced lanthanum bromide and sodium iodide crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The data that support the findings of this study are openly available in Science Data Bank at https://cstr.cn/31253.11.sciencedb.14337 and https://www.doi.org/10.57760/sciencedb.14337.

References

  1. B. Abbott, R. Abbott, T. Abbott et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016). https://doi.org/10.1103/PhysRevLett.116.061102

    Article  MathSciNet  ADS  Google Scholar 

  2. B. Abbott, R. Abbott, T. Abbott et al., Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB170817A. Astrophys. J. Lett. 848, L13 (2017). https://doi.org/10.3847/2041-8213/aa920c

    Article  ADS  Google Scholar 

  3. B. Abbott, R. Abbott, T. Abbott et al., Gw170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017). https://doi.org/10.1103/PhysRevLett.119.161101

    Article  ADS  Google Scholar 

  4. B. Abbott, R. Abbott, T. Abbott et al., Multi-messenger observations of a binary neutron star merger. Astrophys. J. Lett 848, L12 (2017). https://doi.org/10.3847/2041-8213/aa91c9

    Article  ADS  Google Scholar 

  5. T. Li, S. Xiong, S. Zhang et al., Insight-HXMT observations of the first binary neutron star merger gw170817. Sci. China.-Phys. Mech. Astr. 61, 031011 (2018). https://doi.org/10.1007/s11433-017-9107-5

    Article  ADS  Google Scholar 

  6. V. Connaughton, M. Briggs, A. Goldstein et al., Localization of gamma-ray bursts using the fermi gamma-ray burst monitor. Astrophys. J. Suppl. S. 216, 791–804 (2015). https://doi.org/10.1088/0067-0049/216/2/32

    Article  Google Scholar 

  7. M. Stanbro, M. Briggs, O. Roberts et al., A fermi gamma-ray burst monitor event observed as a terrestrial gamma-ray flash and terrestrial electron beam. J. Geophys. Res.-Space. 124, 10580–10591 (2019). https://doi.org/10.1029/2019JA026749

    Article  ADS  Google Scholar 

  8. S. Xiao, S.L. Xiong, C. Cai et al., Energetic transients joint analysis system for multi-instrument (ETJASMIN) for GECAM - I. Positional, temporal, and spectral analyses. Mon. Not. R. Astron. Soc. 514, 2397–2406 (2022). https://doi.org/10.1093/mnras/stac999

    Article  Google Scholar 

  9. M. Stanbro, M. Briggs, O. Roberts et al., A study of consecutive terrestrial gamma-ray flashes using the gamma-ray burst monitor. J. Geophys. Res.-Space. 123, 9634–9651 (2018). https://doi.org/10.1029/2018JA025710

    Article  ADS  Google Scholar 

  10. S. Xiong, Special topic: Gecam gamma-ray all-sky monitor. Sci. Sin.-Phys. Mech. Astr. 50, 129501 (2020). https://doi.org/10.1360/SSPMA-2020-0457

    Article  Google Scholar 

  11. L. Lin, S. Xiao, Y. Huang et al., Observational prospects for magnetars with GECAM. Sci. Sin.-Phys. Mech. Astr. 50, 129521 (2020). https://doi.org/10.1360/SSPMA-2019-0397

    Article  Google Scholar 

  12. Y. Huang, Q. Luo, B. Zhang et al., Ultra-long gamma-ray bursts and ultra-soft gamma-ray bursts. Sci. Sin.-Phys. Mech. Astr. 50, 129504 (2020). https://doi.org/10.1360/SSPMA-2019-0415

    Article  Google Scholar 

  13. Y. Su, W. Chen, S. Xiong et al., Monitoring and research of high-energy solar flare emissions with GECAM. Sci. Sin.-Phys. Mech. Astr. 50, 129505 (2020). https://doi.org/10.1360/SSPMA-2020-0012

    Article  Google Scholar 

  14. X. Li, X. Wen, Z. An et al., The GECAM and its payload. Sci. Sin.-Phys. Mech. Astr. 50, 129508 (2020). https://doi.org/10.1360/SSPMA-2019-0417

    Article  Google Scholar 

  15. Z. An, X. Sun, D. Zhang et al., The design and performance of GRD onboard the GECAM satellite. Radiat. Detect. Technol. Methods 6, 43–52 (2022). https://doi.org/10.1007/s41605-021-00289-y

    Article  Google Scholar 

  16. D. Zhang, C. Zheng, J. Liu et al., The performance of SIPM-based gamma-ray detector (GRD) of GECAM-C. Nucl. Instrum. Methods Phys. Res. A. 1056, 168586 (2023). https://doi.org/10.1016/j.nima.2023.168586

    Article  Google Scholar 

  17. C. Zheng, W.X. Peng, X.B. Li et al., Electron non-linear light yield of LaBr3 detector aboard GECAM. Nucl. Instrum. Methods Phys. Res. A 1042, 167427 (2022). https://doi.org/10.1016/j.nima.2022.167427

    Article  Google Scholar 

  18. W. Lu, L. Wang, Y. Yuan et al., Monte Carlo simulation for performance evaluation of detector model with a monolithic LaBr3(Ce) crystal and SIPM array for \(\gamma\) radiation imaging. Nucl. Sci. Tech. 33, 107 (2022). https://doi.org/10.1007/s41365-022-01081-3

    Article  Google Scholar 

  19. C. Zheng, Z. An, W. Peng, et al., Ground calibration of gamma-ray detectors of GECAM-C. arXiv preprint arXiv:2303.00687 . https://doi.org/10.48550/arXiv.2303.00687

  20. W. Wang, X. Li, J. Wu et al., Development and performance study of a dual-layer compton camera. Nucl. Tech. 46, 030401 (2023). https://doi.org/10.11889/j.0253-3219.2023.hjs.46.030401. (in Chinese)

    Article  Google Scholar 

  21. F. Hua, Y. Ye, X. Yang et al., Several nuclear physics experiments based on the Beijing cyclotron. Nucl. Tech. 46, 080004 (2023). https://doi.org/10.11889/j.0253-3219.2023.hjs.46.080004. (in Chinese)

    Article  Google Scholar 

  22. J. Zhao, S. Jiang, Y. Li et al., The contribution of 4–400 mev cosmic ray protons to the annihilation radiation in near-lunar space orbit gamma spectra. Nucl. Tech. 46, 050201 (2023). https://doi.org/10.11889/j.0253-3219.2023.hjs.46.050201. (in Chinese)

    Article  Google Scholar 

  23. M. Moszyski, A. Syntfeld-Kauch, L. Swiderski et al., Energy resolution of scintillation detectors. Nucl. Instrum. Methods Phys. Res. A. 805, 25–35 (2016). https://doi.org/10.1016/j.nima.2015.07.059

    Article  ADS  Google Scholar 

  24. P. Limkitjaroenporn, W. Hongtong, W. Chaiphaksa et al., The light yield non-proportionality and electron energy resolution study of CsI(tl) scintillator by Compton coincidence technique (CCT). Mat. Today-Proc. 5, 15110–15114 (2018). https://doi.org/10.1016/j.matpr.2018.04.066

    Article  Google Scholar 

  25. G. Yang, L. Hua, F. Lu et al., Response functions of a 4 \(\pi\) summing \(\gamma\) detector in \(\beta\)-Oslo method. Nucl. Sci. Tech. 33, 68 (2022). https://doi.org/10.1007/s41365-022-01058-2

    Article  Google Scholar 

  26. V. Ranga, S. Rawat, S. Sharma et al., Intrinsic resolution of Compton electrons in CeBr3 scintillator using compact CCT. IEEE T. Nucl. Sci. 65, 616–620 (2017). https://doi.org/10.1109/TNS.2017.2779888

    Article  ADS  Google Scholar 

  27. K. Roemer, G. Pausch, C. Herbach et al., A technique for measuring the energy resolution of low-z scintillators. 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), Orlando, FL, USA, 2009, pp. 6–11 (2009). https://doi.org/10.1109/NSSMIC.2009.5401909

  28. L. Swiderski, R. Marcinkowski, M. Szawlowski et al., Non-proportionality of electron response and energy resolution of Compton electrons in scintillators. IEEE T. Nucl. Sci. 59, 222–229 (2012). https://doi.org/10.1109/TNS.2011.2175407

    Article  ADS  Google Scholar 

  29. S. Zhang, J. Xia, T. Sun et al., Transition edge sensor-based detector: from x-ray to \(\gamma\)-ray. Nucl. Sci. Tech. 33, 84 (2022). https://doi.org/10.1007/s41365-022-01071-5

    Article  Google Scholar 

  30. Hamamatsu (2023). https://www.hamamatsu.com.cn/cn/zh-cn/product/optical-sensors/pmt.html

  31. X. Han, S. Wang, H. Wu et al., Csi-bowl: an ancillary detector for exit channel selection in \(\gamma\)-ray spectroscopy experiments. Nucl. Sci. Tech. 34, 133 (2023). https://doi.org/10.1007/s41365-023-01289-x

    Article  Google Scholar 

  32. Canberra (2023). https://www.mirion.com/products/technologi-es/spectroscopy-scientific-analysis

  33. BEGe(2023). https://www.gammadata.se/assets/Uploads/BEGe-SS-C49318.pdf

  34. X. Li, J. Ren, X. Ruan et al., Particle discrimination measurement of liquid scintillators using dt5751. Ann. Rep. Chin. Inst. Atom. En. 00, 147 (2014) CNKI:SUN:YNXB.0.2014-00-055 (in Chinese)

  35. X. Qian, H. Sun, C. Liu et al., Simulation study on performance optimization of a prototype scintillation detector for the grandproto35 experiment. Nucl. Sci. Tech. 32, 51 (2021). https://doi.org/10.1007/s41365-021-00882-2

    Article  Google Scholar 

  36. Y. Wei, M. Guan, W. Xiong et al., Consistency test of PMT SPE spectrum from dark-noise pulses and led low-intensity light. Radiat. Detect. Technol. Methods 2, 11 (2018). https://doi.org/10.1007/s41605-018-0042-6

    Article  Google Scholar 

  37. H. Wu, C. Li, A root-based detector test system. Nucl. Sci. Tech. 32, 115 (2021). https://doi.org/10.1007/s41365-021-00952-5

    Article  Google Scholar 

  38. S. Guo, J. Wu, D. Hou, The development, performances and applications of the monochromatic X-rays facilities in (0.218–301) keV at NIM, China. Nucl. Sci. Tech. 32, 14 (2021). https://doi.org/10.1007/s41365-021-00890-2

  39. D. Hou, J. Wu, S. Guo et al., The realization and study of (21–301) keV monochromatic X-rays. Nucl. Instrum. Methods Phys. Res. A 927, 382–389 (2019). https://doi.org/10.1016/j.nima.2019.02.024

    Article  Google Scholar 

  40. S. Guo, Z. Jiang, J. Wu et al., Research on a tunable monochromatic x-rays source in (5∼40) keV. Appl. Radiat. Isot. 181, 110096 (2022). https://doi.org/10.1016/j.apradiso.2022.110096

    Article  Google Scholar 

  41. J. He, Z. An, W. Peng et al., Ground-based calibration and characterization of LaBr3-SIPM-based gamma-ray detector on GECAM satellite: 8–160 keV. Mon. Not. R. Astron. Soc. 525, 3399–3412 (2023). https://doi.org/10.1093/mnras/stad2439

    Article  ADS  Google Scholar 

  42. J. Wen, X. Zheng, J. Yu et al., Compact CubeSat gamma-ray detector for grid mission. Nucl. Sci. Tech. 32, 99 (2021). https://doi.org/10.1007/s41365-021-00937-4

    Article  Google Scholar 

  43. X. Wen, J. Sun, J. He et al., Calibration study of the gamma-ray monitor onboard the SVOM satellite. Nucl. Instrum. Methods Phys. Res. A. 1003, 165301 (2021). https://doi.org/10.1016/j.nima.2021.165301

    Article  Google Scholar 

  44. X. Li, C. Liu, Z. Chang et al., Ground-based calibration and characterization of the He detectors for Insight-HXMT. J. High. Energy Astrophys. 24, 6–14 (2019). https://doi.org/10.1016/j.jheap.2019.09.003

    Article  Google Scholar 

  45. L. Haoran, W. Jinjie, L. Juncheng et al., Lege detector intrinsic efficiency calibration for parallel incident photons. Appl. Radiat. Isot. 109, 551–554 (2016). https://doi.org/10.1016/j.apradiso.2015.11.1023

    Article  Google Scholar 

  46. M. Alekhin, J. Haas, I. Khodyuk et al., Improvement of γ-ray energy resolution of Labr3:Ce3+ scintillation detectors by Sr2+ and Ca2+ co-doping. Appl. Phys. Lett. 102, 161915 (2013). https://doi.org/10.1063/1.4803440

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by P-YF. The first draft of the manuscript was written by Pi-Y F, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xi-Lei Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

This work was supported by the National Key Research and Development Program (Nos. 2022YFB3503600 and 2021YFA0718500), Strategic Priority Research Program of the Chinese Academy of Sciences (Nos. XDA15360102), and National Natural Science Foundation of China (Nos. 12273042 and 12075258).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, PY., Sun, XL., An, ZH. et al. The energy response of LaBr\(_{3}\)(Ce), LaBr\(_{3}\)(Ce,Sr), and NaI(Tl) crystals for GECAM. NUCL SCI TECH 35, 23 (2024). https://doi.org/10.1007/s41365-024-01383-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-024-01383-8

Keywords

Navigation