Skip to main content
Log in

Electromagnetic fields in ultra-peripheral relativistic heavy-ion collisions

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Ultra-peripheral heavy-ion collisions (UPCs) offer unique opportunities to study processes under strong electromagnetic fields. In these collisions, highly charged fast-moving ions carry strong electromagnetic fields that can be effectively treated as photon fluxes. The exchange of photons can induce photonuclear and two-photon interactions and excite ions. This excitation of the ions results in Coulomb dissociation with the emission of photons, neutrons, and other particles. Additionally, the electromagnetic fields generated by the ions can be sufficiently strong to enforce mutual interactions between the two colliding ions. Consequently, the two colliding ions experience an electromagnetic force that pushes them in opposite directions, causing a back-to-back correlation in the emitted neutrons. Using a Monte Carlo simulation, we qualitatively demonstrate that the above electromagnetic effect is large enough to be observed in UPCs, which would provide a clear means to study strong electromagnetic fields and their effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. D. Kharzeev, R.D. Pisarski, M.H.G. Tytgat, Possibility of spontaneous parity violation in hot QCD. Phys. Rev. Lett. 81, 512–515 (1998). https://doi.org/10.1103/PhysRevLett.81.512

    Article  ADS  Google Scholar 

  2. X.G. Huang, Electromagnetic fields and anomalous transports in heavy-ion collisions—a pedagogical review. Rept. Prog. Phys. 79, 076302 (2016). https://doi.org/10.1088/0034-4885/79/7/076302

    Article  ADS  Google Scholar 

  3. F.Q. Wang, J. Zhao, Search for the chiral magnetic effect in heavy ion collisions. Nucl. Sci. Tech. 29, 179 (2018). https://doi.org/10.1007/s41365-018-0520-z

    Article  Google Scholar 

  4. J. Zhao, F. Wang, Experimental searches for the chiral magnetic effect in heavy-ion collisions. Prog. Part. Nucl. Phys. 107, 200–236 (2019). https://doi.org/10.1016/j.ppnp.2019.05.001

    Article  ADS  Google Scholar 

  5. R. Fang, R. Dong, D. Hou et al., Thermodynamics of the system of massive Dirac fermions in a uniform magnetic field. Chin. Phys. Lett. 38, 091201 (2021). https://doi.org/10.1088/0256-307X/38/9/091201

    Article  ADS  Google Scholar 

  6. Y.C. Liu, X.G. Huang, Spin polarization formula for Dirac fermions at local equilibrium. Sci. China Phys. Mech. Astron. 65, 272011 (2022). https://doi.org/10.1007/s11433-022-1903-8

    Article  ADS  Google Scholar 

  7. L. Adamczyk, J.K. Adkins, G. Agakishiev et al., Global \(\Lambda\) hyperon polarization in nuclear collisions: evidence for the most vortical fluid. Nature 548, 62–65 (2017). https://doi.org/10.1038/nature23004

  8. J. Adam, L. Adamczyk, M. Zyzak et al., Methods for a blind analysis of isobar data collected by the STAR collaboration. Nucl. Sci. Tech. 32, 48 (2021). https://doi.org/10.1007/s41365-021-00878-y

    Article  Google Scholar 

  9. Y.C. Liu, X.G. Huang, Anomalous chiral transports and spin polarization in heavy-ion collisions. Nucl. Sci. Tech. 31, 56 (2020). https://doi.org/10.1007/s41365-020-00764-z

    Article  Google Scholar 

  10. J.H. Gao, G.L. Ma, S. Pu et al., Recent developments in chiral and spin polarization effects in heavy-ion collisions. Nucl. Sci. Tech. 31, 9 (2020). https://doi.org/10.1007/s41365-020-00801-x

    Article  Google Scholar 

  11. C.A. Bertulani, S.R. Klein, J. Nystrand, Physics of ultra-peripheral nuclear collisions. Ann. Rev. Nucl. Part. Sci. 55, 271–310 (2005). https://doi.org/10.1146/annurev.nucl.55.090704.151526

    Article  ADS  Google Scholar 

  12. S.R. Klein, J. Nystrand, J. Seger et al., STARlight: a Monte Carlo simulation program for ultra-peripheral collisions of relativistic ions. Comput. Phys. Commun. 212, 258–268 (2017). https://doi.org/10.1016/j.cpc.2016.10.016

    Article  ADS  Google Scholar 

  13. S. Klein, P. Steinberg, Photonuclear and two-photon interactions at high-energy nuclear colliders. Ann. Rev. Nucl. Part. Sci. 70, 323–354 (2020). https://doi.org/10.1146/annurev-nucl-030320-033923

    Article  ADS  Google Scholar 

  14. G. Baur, K. Hencken, D. Trautmann, Photon-photon physics in very peripheral collisions of relativistic heavy ions. J. Phys. G 24, 1657–1692 (1998). https://doi.org/10.1088/0954-3899/24/9/003

    Article  ADS  Google Scholar 

  15. S. Klein, J. Nystrand, Exclusive vector meson production in relativistic heavy ion collisions. Phys. Rev. C 60, 014903 (1999). https://doi.org/10.1103/PhysRevC.60.014903

    Article  ADS  Google Scholar 

  16. C. Adler, Z. Ahammed, C. Allgower et al., Coherent \({\uprho}^{0}\) production in ultraperipheral heavy ion collisions. Phys. Rev. Lett. 89, 272302 (2002). https://doi.org/10.1103/PhysRevLett.89.272302

    Article  Google Scholar 

  17. S. Afanasiev, C. Aidala, N.N. Ajitanand et al., Photoproduction of J/ \({\Uppsi}\) and of high mass e+e- in ultra-peripheral Au+Au collisions at \(\sqrt{s_{\text {NN}}}\)  = 200 GeV. Phys. Lett. B 679, 321–329 (2009). https://doi.org/10.1016/j.physletb.2009.07.061

    Article  ADS  Google Scholar 

  18. B. Abelev, J. Adam, D. Adamová et al., Coherent \(J/\psi\) photoproduction in ultra-peripheral Pb-Pb collisions at \(\sqrt{s_{NN}} = 2.76\) TeV. Phys. Lett. B 718, 1273–1283 (2013). https://doi.org/10.1016/j.physletb.2012.11.059

  19. V. Khachatryan, et al., Coherent \(J/\psi\) photoproduction in ultra-peripheral PbPb collisions at \(\sqrt{s_{NN}} =\) 2.76 TeV with the CMS experiment. Phys. Lett. B 772, 489–511 (2017). https://doi.org/10.1016/j.physletb.2017.07.001

  20. M. Aaboud, G. Aad, B. Abbott et al., Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC. Nat. Phys. 13, 852–858 (2017). https://doi.org/10.1038/nphys4208

    Article  Google Scholar 

  21. J. Adam, L. Adamczyk, J.R. Adams et al., Measurement of \(e^+e^-\) momentum and angular distributions from linearly polarized photon collisions. Phys. Rev. Lett. 127, 052302 (2021). https://doi.org/10.1103/PhysRevLett.127.052302

  22. M. Goldhaber, E. Teller, On nuclear dipole vibrations. Phys. Rev. 74, 1046–1049 (1948). https://doi.org/10.1103/PhysRev.74.1046

    Article  ADS  Google Scholar 

  23. B.L. Berman, S.C. Fultz, Measurements of the giant dipole resonance with monoenergetic photons. Rev. Mod. Phys. 47, 713–761 (1975). https://doi.org/10.1103/RevModPhys.47.713

    Article  ADS  Google Scholar 

  24. P. Chomaz, N. Frascaria, Multiple phonon excitation in nuclei. Phys. Rep. 252, 275–405 (1995). https://doi.org/10.1016/0370-1573(94)00079-I

    Article  ADS  Google Scholar 

  25. A. Veyssiere, H. Beil, R. Bergere et al., Photoneutron cross sections of 208 Pb and 197 Au. Nucl. Phys. A 159, 561–576 (1970). https://doi.org/10.1016/0375-9474(70)90727-X

    Article  ADS  Google Scholar 

  26. C. Tao, Y.G. Ma, G.Q. Zhang et al., Pygmy and giant dipole resonances by coulomb excitation using a quantum molecular dynamics model. Phys. Rev. C 87, 014621 (2013). https://doi.org/10.1103/PhysRevC.87.014621

    Article  ADS  Google Scholar 

  27. W.B. He, Y.G. Ma, X.G. Cao et al., Giant dipole resonance as a fingerprint of \(\alpha\) clustering configurations in 12C and 16O. Phys. Rev. Lett. 113, 032506 (2014). https://doi.org/10.1103/PhysRevLett.113.032506

  28. B.S. Huang, Y.G. Ma, Dipole excitation of 6li and 9be studied with an extended quantum molecular dynamics model. Phys. Rev. C 103, 054318 (2021). https://doi.org/10.1103/PhysRevC.103.054318

    Article  ADS  Google Scholar 

  29. A.J. Baltz, S.R. Klein, J. Nystrand, Coherent vector meson photoproduction with nuclear breakup in relativistic heavy ion collisions. Phys. Rev. Lett. 89, 012301 (2002). https://doi.org/10.1103/PhysRevLett.89.012301

    Article  ADS  Google Scholar 

  30. W.T. Deng, X.G. Huang, Event-by-event generation of electromagnetic fields in heavy-ion collisions. Phys. Rev. C 85, 044907 (2012). https://doi.org/10.1103/PhysRevC.85.044907

    Article  ADS  Google Scholar 

  31. A. Bzdak, V. Skokov, Event-by-event fluctuations of magnetic and electric fields in heavy ion collisions. Phys. Lett. B 710, 171–174 (2012). https://doi.org/10.1016/j.physletb.2012.02.065

    Article  ADS  Google Scholar 

  32. L. Adamczyk et al., Coherent diffractive photoproduction of \(\rho ^{0}\)mesons on gold nuclei at 200 GeV/nucleon-pair at the Relativistic Heavy Ion Collider. Phys. Rev. C 96, 054904 (2017). https://doi.org/10.1103/PhysRevC.96.054904

    Article  ADS  Google Scholar 

  33. J. Chen, D. Keane, Y.G. Ma et al., Antinuclei in heavy-ion collisions. Phys. Rep. 760, 1–39 (2018). https://doi.org/10.1016/j.physrep.2018.07.002

    Article  ADS  MathSciNet  Google Scholar 

  34. K. Hattori, X.G. Huang, Novel quantum phenomena induced by strong magnetic fields in heavy-ion collisions. Nucl. Sci. Tech. 28, 26 (2017). https://doi.org/10.1007/s41365-016-0178-3

    Article  Google Scholar 

  35. R.D. Woods, D.S. Saxon, Diffuse surface optical model for nucleon-nuclei scattering. Phys. Rev. 95, 577–578 (1954). https://doi.org/10.1103/PhysRev.95.577

    Article  ADS  Google Scholar 

  36. A.J. Baltz, Y. Gorbunov, S.R. Klein et al., Two-photon interactions with nuclear breakup in relativistic heavy ion collisions. Phys. Rev. C 80, 044902 (2009). https://doi.org/10.1103/PhysRevC.80.044902

    Article  ADS  Google Scholar 

  37. M. Broz, J.G. Contreras, J.D. Tapia Takaki, A generator of forward neutrons for ultra-peripheral collisions: \(\mathrm{n^O_On}\). Comput. Phys. Commun. 253, 107181 (2020). https://doi.org/10.1016/j.cpc.2020.107181

  38. M. Chiu, A. Denisov, E. Garcia et al., Measurement of mutual coulomb dissociation in \(\sqrt{{s}_{\rm NN}}130{\rm GeV}\)\(au+au\) collisions. Phys. Rev. Lett. 89, 012302 (2002). https://doi.org/10.1103/PhysRevLett.89.012302

  39. B.I. Abelev, M.M. Aggarwal, Z. Ahammed et al., \(\rho ^0\) photoproduction in ultraperipheral relativistic heavy ion collisions at \(\sqrt{s_{NN}}\) = 200 GeV. Phys. Rev. C 77, 034910 (2008). https://doi.org/10.1103/PhysRevC.77.034910

  40. T. Nakamura, S. Shimoura, T. Kobayashi et al., Coulomb dissociation of a halo nucleus 11Be at 72A MeV. Phys. Lett. B 331, 296–301 (1994). https://doi.org/10.1016/0370-2693(94)91055-3

    Article  ADS  Google Scholar 

  41. G. Baur, K. Hencken, A. Aste et al., Multiphoton exchange processes in ultraperipheral relativistic heavy ion collisions. Nucl. Phys. A 729, 787–808 (2003). https://doi.org/10.1016/j.nuclphysa.2003.09.006

    Article  ADS  Google Scholar 

  42. STAR ZDCsmd note. https://drupal.star.bnl.gov/STAR/files/ZDC-SMD.pdf

  43. F. Tagliabue, J. Goldemberg, Angular distributions of fast photoneutrons. Nucl. Phys. 23, 144–152 (1961). https://doi.org/10.1016/0029-5582(61)90247-4

    Article  Google Scholar 

  44. M. Bakhtiari, N.S. Jung, H.S. Lee, Contribution of compound, preequilibrium and direct reactions to photoneutron emission spectrum from various targets induced by 16.6-MeV monoenergetic photons. Nucl. Instrum. Methods B 521, 38–46 (2022). https://doi.org/10.1016/j.nimb.2022.03.007

  45. E.D. Courant, Direct photodisintegration processes in nuclei. Phys. Rev. 82, 703–709 (1951). https://doi.org/10.1103/PhysRev.82.703

    Article  ADS  Google Scholar 

  46. M.B. Chadwick, M. Herman, P. Obložinský et al., ENDF/B-VII.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nucl. Data Sheets 112, 2887–2996 (2011). https://doi.org/10.1016/j.nds.2011.11.002

    Article  ADS  Google Scholar 

  47. A.M. Poskanzer, S. Voloshin, Methods for analyzing anisotropic flow in relativistic nuclear collisions. Phys. Rev. 58, 1671–1678 (1998). https://doi.org/10.1103/PhysRevC.58.1671

    Article  ADS  Google Scholar 

  48. B.W. Xiao, F. Yuan, J. Zhou, Momentum anisotropy of leptons from two photon processes in heavy ion collisions. Phys. Rev. Lett. 125, 232301 (2020). https://doi.org/10.1103/PhysRevLett.125.232301

    Article  ADS  Google Scholar 

  49. H. Xing, C. Zhang, J. Zhou et al., The cos 2\(\phi\) azimuthal asymmetry in \(\rho ^{0}\) meson production in ultraperipheral heavy ion collisions. JHEP 10, 064 (2020). https://doi.org/10.1007/JHEP10(2020)064

    Article  ADS  Google Scholar 

  50. C. Zhang, Q.S. Dai, D.Y. Shao, Azimuthal decorrelation for photon induced dijet production in ultra-peripheral collisions of heavy ions. JHEP 23, 002 (2020). arXiv:2211.07071. https://doi.org/10.1007/JHEP02(2023)002

  51. X. Wu, X. Li, Z. Tang et al., Reaction plane alignment with linearly polarized photon in heavy-ion collisions. Phys. Rev. Res. 4, L042048 (2022). https://doi.org/10.1103/PhysRevResearch.4.L042048

    Article  Google Scholar 

  52. Z.T. Liang, X.N. Wang, Globally polarized quark-gluon plasma in non-central A+A collisions. Phys. Rev. Lett. 94, 102301 (2005). [Erratum: Phys.Rev.Lett. 96, 039901 (2006)]. https://doi.org/10.1103/PhysRevLett.94.102301

  53. X.N. Wang, Vector meson spin alignment by the strong force field. Nucl. Sci. Tech. 34, 15 (2023). https://doi.org/10.1007/s41365-023-01166-7

    Article  Google Scholar 

  54. J. Chen, Z.T. Liang, Y.G. Ma et al., Global spin alignment of vector mesons and strong force fields in heavy-ion collisions. Sci. Bull. 68, 874–877 (2023). https://doi.org/10.1016/j.scib.2023.04.001

    Article  Google Scholar 

  55. C. Adler, A. Denisov, E. Garcia et al., The RHIC zero degree calorimeter. Nucl. Instrum. Meth. 470, 488–499 (2001). https://doi.org/10.1016/S0168-9002(01)00627-1

    Article  ADS  Google Scholar 

  56. A.J. Baltz, M.J. Rhoades-Brown, J. Weneser, Heavy ion partial beam lifetimes due to Coulomb induced processes. Phys. Rev. E 54, 4233–4239 (1996). https://doi.org/10.1103/PhysRevE.54.4233

    Article  ADS  Google Scholar 

  57. L.A. Harland-Lang, Exciting ions: a systematic treatment of ultraperipheral heavy ion collisions with nuclear breakup. Phys. Rev. D 107, 093004 (2023). arXiv:2303.04826. https://doi.org/10.1103/PhysRevD.107.093004

  58. F. Krauss, M. Greiner, G. Soff, Photon and gluon induced processes in relativistic heavy ion collisions. Prog. Part. Nucl. Phys. 39, 503–564 (1997). https://doi.org/10.1016/S0146-6410(97)00049-5

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Fu-Qiang Wang, Dr. Si-Min Wang, and Dr. Shi Pu for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by JZ. The first draft of the manuscript was written by JZ, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jin-Hui Chen or Xu-Guang Huang.

Ethics declarations

Conflict of interest

Yu-Gang Ma is the editor-in-chief and Jin-Hui Chen is an editorial board member for Nuclear Science and Techniques; they were not involved in the editorial review or the decision to publish this article. All authors declare that there are no competing interests.

Additional information

This work is supported in part by the National Key Research and Development Program of China (Nos. 2022YFA1604900), the Guangdong Major Project of Basic and Applied Basic Research (No. 2020B0301030008), the National Natural Science Foundation of China (Nos. 12275053, 12025501, 11890710, 11890714, 12147101, 12075061, and 12225502), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB34030000), Shanghai National Science Foundation (No. 20ZR1404100), and STCSM (No. 23590780100).

Appendix

Appendix

The probability of a UPC event associated with neutron emission (\(P_{x\text{n},x\text{n}}^\textrm{UPC}\)) is calculated as follows:

$$\begin{aligned} P_{x\text{n},x\text{n}}^\textrm{UPC} = P_{0H}(b)\times P_{x\text{n},x\text{n}}(b), \end{aligned}$$
(9)

where \(P_{0H}(b)\) denotes the probability of having no hadronic interactions and \(P_{x\text{n},x\text{n}}(b)\) represents the probability of nuclear breakup with neutron emission in both colliding nuclei [12, 15, 37]. \(P_{0H}(b)\) is given by:

$$\begin{aligned} \begin{aligned}&P_{0H}(b) = \exp [-T_{AA}(b)\sigma _\text{NN}], \\&T_{AA}(b) = \int \mathrm{d}^{2}{\varvec{r}}_\perp T_{A}({\varvec{r}}_\perp )T_{A}({\varvec{r}}_\perp -{\varvec{b}}), \end{aligned} \end{aligned}$$
(10)

where \({\varvec{b}}\) is the two-dimensional impact parameter vector (with \(b=|{\varvec{b}}|\)) in the transverse plane, \(\sigma _{NN}\) is the total nucleon–nucleon interaction cross section, and \(T_{AA}\) is the overlap function. The number of nucleon–nucleon collisions follows a Poisson distribution with a mean of \(T_{AA}(b)\sigma _{NN}\). The nuclear thickness function \(T_{A}\) is calculated as follows:

$$\begin{aligned} T_{A}({\varvec{r}}_\perp ) = \int {\text{d}}z\; \rho \left( \sqrt{{\varvec{r}}_\perp ^{2}+z^{2}}\right) , \end{aligned}$$
(11)

where \(\rho\) corresponds to the Woods–Saxon functions in Eq.  (4).

Assuming an independent nuclear breakup, \(P_{x\text{n},x\text{n}}(b)\) can be factorized as

$$\begin{aligned} P_{x\text{n},x\text{n}}(b)=P_{x\text{n}}(b)\times P_{x\text{n}}(b). \end{aligned}$$
(12)

Following the methodology of STARlight [12, 15, 29, 36], the probability of nuclear breakup with neutron emission (\(P_{x\text{n}}(b)\)) is given by

$$\begin{aligned} P_{x\text{n}}(b)\varpropto \int {\text{d}}k \frac{{\text{d}}^{3}N(b,k)}{{\text{d}}k{\text{d}}^{2}b} \sigma _{\gamma A\rightarrow A^{*}+x\text{n}}(k), \end{aligned}$$
(13)

where \(\sigma _{\gamma A\rightarrow A^{*}+x\text{n}}\) is determined from experimental data [56, 57]. The photon flux is calculated using the Weizsäcker–Williams approach [12, 15, 58]

$$\begin{aligned} \frac{{\text{d}}^{3}N(r_\perp ,k)}{{\text{d}}k{\text{d}}^{2}r_\perp } = \frac{Z^{2}\alpha x^{2}}{{\pi }^{2}kr_\perp ^{2}} K_{1}^{2}(x). \end{aligned}$$
(14)

where k represents the photon energy, Z is the nuclear charge, \(K_{1}\) is the modified Bessel function, and \(x=kr_\perp /\gamma\). Figure 3 shows \(P_{0H}(b)\), \(P_{x\text{n},x\text{n}}(b)\), \(P_{x\text{n},x\text{n}}^\textrm{UPC}\) obtained from the simulation.

Fig. 3
figure 3

(Color online) The probability of a UPC event associated with neutron emission (\(P_{x\text{n},x\text{n}}^\textrm{UPC}\), black line), the probability of having no hadronic interactions (\(P_{0H}(b)\), red line), and the probability of nuclear breakup with neutron emission in both colliding nuclei (\(P_{x\text{n},x\text{n}}(b)\), blue line) as a function of the impact parameter in Au+Au collisions at \(\sqrt{s_{\text {NN}}}\) = 200 GeV

Fig. 4
figure 4

Photon energy distribution in the target frame in an UPC event with neutron emission using the Weizsäcker–Williams approach with Eqs. (14) and (8)

Figure 4 shows the calculation of the photon energy distribution in the target frame for a UPC event with neutron emissions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Chen, JH., Huang, XG. et al. Electromagnetic fields in ultra-peripheral relativistic heavy-ion collisions. NUCL SCI TECH 35, 20 (2024). https://doi.org/10.1007/s41365-024-01374-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-024-01374-9

Keywords

Navigation