Skip to main content
Log in

Progress of photonuclear cross sections for medical radioisotope production at the SLEGS energy domain

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Photonuclear reactions using a laser Compton scattering (LCS) gamma source provide a new method for producing radioisotopes for medical applications. Compared with the conventional method, this method has the advantages of a high specific activity and less heat. Initiated by the Shanghai Laser Electron Gamma Source (SLEGS), we conducted a survey of potential photonuclear reactions, \((\upgamma ,\text {n})\), \((\upgamma ,\text {p})\), and \((\upgamma ,\upgamma \prime )\) whose cross sections can be measured at SLEGS by summarising the experimental progress. In general, the data are rare and occasionally inconsistent. Therefore, theoretical calculations are often used to evaluate the production of medical radioisotopes. Subsequently, we verified the model uncertainties of the widely used reaction code TALYS\(-\)1.96, using the experimental data of the \({{}^{100}\hbox {Mo}}(\upgamma ,\text {n})\)\({{}^{99}\hbox {Mo}}\), \({{}^{65}\hbox {Cu}}(\upgamma ,\text {n}){{}^{64}\hbox {Cu}}\), and \({{}^{68}\hbox {Zn}}(\upgamma ,\text {p}){{}^{67}\hbox {Cu}}\) reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://www.doi.org/10.57760/sciencedb.12006 and https://cstr.cn/31253.11.sciencedb.12006.

References

  1. Ch. Schiepers(ed.) Diagnostic Nuclear Medicine (Springer & Berlin 2006)

  2. G.J.R. Cook (ed.), Clinical Nuclear Medicine (Hodder Arnold, London, 2006)

    Google Scholar 

  3. R. Nutt, The history of positron emission tomography. Mol. Imaging Biol. 4, 11–26 (2002). https://doi.org/10.1016/S1095-0397(00)00051-0

    Article  Google Scholar 

  4. G.T. Gullberg, G.L. Zeng, F.L. Datz et al., Review of convergent beam tomography in single photon emission computed tomography. Phys. Med. Biol. 37, 507–534 (1992). https://doi.org/10.1088/0031-9155/37/3/002

    Article  Google Scholar 

  5. J.L. Alberini, V. Edeline, A.L. Giraudet et al., Single photon emission tomography/computed tomography (SPET/CT) and positron emission tomography/computed tomography (PET/CT) to image cancer. J. Surg. Oncol. 103, 602–606 (2011). https://doi.org/10.1002/jso.21695

    Article  Google Scholar 

  6. World Nuclear Association, Radioisotopes in Medicine, https://world-nuclear.org/information-library/non-power-nuclear-applications/radioisotopes-research/radioisotopes-in-medicine.aspx. Accessed 7 Feb 2023

  7. IAEA: IAEA Annual Report for 2021, https://www.iaea.org/opic/annual-report-2021

  8. D. Habs, U. Köster, Production of medical radioisotopes with high specific activity in photonuclear reactions with \(\upgamma \)-beams of high intensity and large brilliance. Appl. Phys. B 103, 501–519 (2011). https://doi.org/10.1007/s00340-010-4278-1

    Article  ADS  Google Scholar 

  9. B. Szpunar, C. Rangacharyulu, S. Date et al., Estimates of production of medical isotopes by photo-neutron reaction at the Canadian Light Source. Nucl. Instrum. Methods A 729, 41–50 (2013). https://doi.org/10.1016/j.nima.2013.06.106

    Article  ADS  Google Scholar 

  10. W. Luo, D.L. Balabanski, D. Filipescu, A data-based photonuclear simulation algorithm for determining specific activity of medical radioisotopes. Nucl. Sci. Tech. 27, 5 (2016). https://doi.org/10.1007/s41365-016-0111-9

    Article  Google Scholar 

  11. W. Luo, M. Bobeica, I. Gheorghe et al., Estimates for production of radioisotopes of medical interest at extreme light infrastructure-Nuclear physics facility. Appl. Phys. B 122, 8 (2016). https://doi.org/10.1007/s00340-015-6292-9

    Article  ADS  Google Scholar 

  12. W. Luo, Production of medical radioisotope \({{}^{64}\text{ Cu }}\) by photoneutron reaction using ELI-NP \(\upgamma \)-ray beam. Nucl. Sci. Tech. 27, 96 (2016). https://doi.org/10.1007/s41365-016-0094-6

    Article  Google Scholar 

  13. W.T. Pan, T. Song, H.Y. Lan et al., Photo-excitation production of medically interesting isomers using intense \(\upgamma \)-ray source. Appl. Radiat. Isot. 168, 109534 (2021). https://doi.org/10.1016/j.apradiso.2020.109534

    Article  Google Scholar 

  14. H. Ejiri, T. Shima, S. Miyamoto et al., Resonant photonuclear reactions for isotope transmutation. J. Phys. Soc. Japan 80, 094202 (2011). https://doi.org/10.1143/JPSJ.80.094202

    Article  ADS  Google Scholar 

  15. J. Lee, H. Rehman, Y. Kim, A feasibility study on the transmutation of \({{}^{100}\text{ Mo }}\) to \({^{99m}\text{ Tc }}\) with laser-compton scattering photons. Nucl. Technol. 201, 41–51 (2018). https://doi.org/10.1080/00295450.2017.1392397

    Article  ADS  Google Scholar 

  16. H.Y. Lan, D. Wu, J.X. Liu et al., Photonuclear production of nuclear isomers using bremsstrahlung induced by laser-wakefield electrons. Nucl. Sci. Tech. 34, 74 (2023). https://doi.org/10.1007/s41365-023-01219-x

    Article  Google Scholar 

  17. IAEA(ed.) Non-HEU Production Technologies for Molybdenum-99 and Technetium-99m (IAEA, Vienna, 2013)

  18. H.W. Wang, G.T. Fan, L.X. Liu et al., Commissioning of laser electron gamma beamline SLEGS at SSRF. Nucl. Sci. Tech. 33, 87 (2022). https://doi.org/10.1007/s41365-022-01076-0

    Article  Google Scholar 

  19. Z.R. Hao, G.T. Fan, H.W. Wang et al., Collimator system of SLEGS beamline at Shanghai Light Source. Nucl. Instr. Meth. A 1013, 165638 (2021). https://doi.org/10.1016/j.nima.2021.165638

    Article  Google Scholar 

  20. H.W. Wang, G.T. Fan, L.X. Liu et al., Development and prospect of Shanghai laser compton scattering gamma source. Nucl. Phys. Rev. 37, 53–63 (2020)

    Google Scholar 

  21. Z.R. Hao, G.T. Fan, L.X. Liu et al., Design and simulation of a 4\(\pi \) fat efciency \({^{3}\text{ He }}\) neutron detector array. Nucl. Techn. 43, 110501 (2020)

    Google Scholar 

  22. K.J. Chen, L.X. Liu, Z.R. Hao et al., Simulation and test of the SLEGS TOF spectrometer at SSRF. Nucl. Sci. Tech. 34, 47 (2023). https://doi.org/10.1007/s41365-023-01194-3

    Article  Google Scholar 

  23. P. Kuang, L.L. Song, K.J. Chen et al., Nuclear resonance fluorescence spectrometer design and detector performance analysis of Shanghai laser electron gamma source(SLEGS). Nucl. Phys. Rev. 40, 58–65 (2023)

    Google Scholar 

  24. Y.X. Yang, Y. Zhang, W.J. Zhao et al., Construction of gamma activation experimental platform for Shanghai laser electron gamma source. Nucl. Phys. Rev. 31, 1–6 (2023)

    ADS  Google Scholar 

  25. K. Goeke, J. Speth, Theory of giant resonances. Ann. Rev. Nucl. Part. Sci. 32, 65–115 (1982). https://doi.org/10.1146/ANNUREV.NS.32.120182.000433

    Article  ADS  Google Scholar 

  26. H. Feshbach, Unified Theory of Nuclear Reactions. Rev. Mod. Phys. 36, 1076 (1964). https://doi.org/10.1103/RevModPhys.36.1076

    Article  MathSciNet  ADS  Google Scholar 

  27. M. Herman, G. Reffo, H.A. Weidenmüller, Multistep-compound contribution to precompound reaction cross section. Nucl. Phys. A 536, 124–140 (1992). https://doi.org/10.1016/0375-9474(92)90249-J

    Article  ADS  Google Scholar 

  28. L.Z. Dzhilavyan, A.I. Karev, V.G. Raevsky, Possibilities for the production of radioisotopes for nuclear-medicine problems by means of photonuclear reactions. Phys. Atom. Nuclei 74, 1690–1696 (2011). https://doi.org/10.1134/S1063778811120040

    Article  Google Scholar 

  29. M. Bobeica, D. Niculae, D. Balabanski et al., Radioisotopes production for medical applications at ELI-NP. Rom. Rep. Phys. 68, S847–S883 (2016)

    Google Scholar 

  30. A. Zilges, D.L. Balabanski, J. Isaak et al., Photonuclear reactions-From basic research to applications. Prog. Part. Nucl. Phys. 122, 103903 (2022). https://doi.org/10.1016/j.ppnp.2021.103903

    Article  Google Scholar 

  31. D. Budker, J.C. Berengut, V.V. Flambaum et al., Expanding nuclear physics horizons with the gamma factory. Ann. Phys. 534, 2100284 (2022). https://doi.org/10.1002/andp.202100284

    Article  Google Scholar 

  32. Experimental Nuclear Reaction Data (EXFOR), https://www-nds.iaea.org/exfor/. Accessed 13 Feb 2023

  33. NuDat 3 database, https://www.nndc.bnl.gov/nudat3/. Accessed 13 Feb 2023

  34. R. Schwarzbach, K. Zimmermann, P. Bläuenstein et al., Development of a simple and selective separation of \({{}^{67}\text{ Cu }}\)from irradiated zinc for use in antibody labelling: A comparison of methods. Appl. Radiat. Isot. 46, 329–336 (1995). https://doi.org/10.1016/0969-8043(95)00010-B

    Article  Google Scholar 

  35. M. Yagi, K. Kondo, Preparation of carrier-free \({^{47}\text{ Sc }}\) by the \({^{48}\text{ Ti }}(\upgamma , p)\). Int. J. Appl. Radiat. Isot. 28, 463–468 (1977). https://doi.org/10.1016/0020-708X(77)90178-8

    Article  Google Scholar 

  36. S.A. Kandil, B. Scholten, Z.A. Saleh et al., A comparative study on the separation of radiozirconium via ion-exchange and solvent extraction techniques, with particular reference to the production of \({^{88}\text{ Zr }}\) and \({^{89}\text{ Zr }}\) in proton induced reactions on yttrium. J. Radioanal. Nucl. Chem. 274, 45–52 (2007). https://doi.org/10.1007/s10967-006-6892-2

    Article  Google Scholar 

  37. B.L. Fèvre, C. Pin, A straightforward separation scheme for concomitant Lu-Hf and Sm-Nd isotope ratio and isotope dilution analysis. Anal. Chim. Acta 543, 209–221 (2005). https://doi.org/10.1016/j.aca.2005.04.044

    Article  Google Scholar 

  38. V.N. Starovoitova, L. Tchelidze, D.P. Wells, Production of medical radioisotopes with linear accelerators. Appl. Radiat. Isot. 85, 39–44 (2014). https://doi.org/10.1016/j.apradiso.2013.11.122

    Article  Google Scholar 

  39. M. Inagaki, S. Sekimoto, W. Tanaka et al., Production of \({^{47}\text{ Sc }}\), \({{}^{67}\text{ Cu }}\), \({^{68}\text{ Ga }}\), \({^{105}\text{ Rh }}\), \({^{177}\text{ Lu }}\), and \({^{188}\text{ Re }}\) using electron linear accelerator. J. Radioanal. Nucl. Chem. 322, 1703–1709 (2019). https://doi.org/10.1007/s10967-019-06904-z

    Article  Google Scholar 

  40. A.G. Kazakov, T.Y. Ekatova, J.S. Babenya, Photonuclear production of medical radiometals: a review of experimental studies. J. Radioanal. Nucl. Chem. 328, 493–505 (2021). https://doi.org/10.1007/s10967-021-07683-2

    Article  Google Scholar 

  41. A. Koning, D. Rochman, Modern nuclear data evaluation with the TALYS code system. Nucl. Data Sheets 113, 2841–2934 (2012). https://doi.org/10.1016/j.nds.2012.11.002

    Article  ADS  Google Scholar 

  42. S. Stoulos, E. Vagena, Indirect measurement of bremsstrahlung photons and photoneutrons cross sections of \({^{204}\text{ Pb }}\) and Sb isotopes compared with TALYS simulations. Nucl. Phys. A 980, 1–14 (2018). https://doi.org/10.1016/j.nuclphysa.2018.09.081

    Article  ADS  Google Scholar 

  43. P.V. Cuong, T.D. Thiep, L.T. Anh et al., Theoretical calculation by Talys code in combination with Geant4 simulation for consideration of \((\upgamma , n)\) reactions of Eu isotopes in the giant dipole resonance region. Nucl. Instrum. Methods B 479, 68–73 (2020). https://doi.org/10.1016/j.nimb.2020.06.011

    Article  ADS  Google Scholar 

  44. H. Cheng, B.H. Sun, L.H. Zhu et al., Measurements of \({^{160}\text{ Dy }}\)\((p,\upgamma )\) at energies relevant for the astrophysical \(\upgamma \) process. Astrophys. J. 915, 78 (2021). https://doi.org/10.3847/1538-4357/ac00b1

    Article  ADS  Google Scholar 

  45. W. Hauser, H. Feshbach, The inelastic scattering of neutrons. Phys. Rev. 87, 366–373 (1952). https://doi.org/10.1103/PhysRev.87.366

    Article  ADS  Google Scholar 

  46. A. Bockisch, Matched pairs for radionuclide-based imaging and therapy. Eur. J. Nucl. Med. Mol. Imaging 38, 1–3 (2011). https://doi.org/10.1007/s00259-011-1780-6

    Article  Google Scholar 

  47. S.M. Qaim, B. Scholten, B. Neumaier, New developments in the production of theranostic pairs of radionuclides. J. Radioanal. Nucl. Chem. 318, 1493–1509 (2018). https://doi.org/10.1007/s10967-018-6238-x

    Article  Google Scholar 

  48. H. Utsunomiya, S. Goriely, T. Kondo et al., Photoneutron cross sections for Mo isotopes: a step toward a unified understanding of \((\upgamma , n)\) and \((n,\upgamma )\) reactions. Phys. Rev. C 88, 015805 (2013). https://doi.org/10.1103/PhysRevC.88.015805

    Article  ADS  Google Scholar 

  49. R. Crasta, H. Naik, S.V. Suryanarayana et al., Photo-neutron cross-section of \({{}^{100}\text{ Mo }}\). J. Radioanal. Nucl. Chem. 290, 367–373 (2011). https://doi.org/10.1007/s10967-011-1247-z

    Article  Google Scholar 

  50. C.J. Anderson, R. Ferdani, Copper-64 radiopharmaceuticals for PET imaging of cancer: advances in preclinical and clinical research. Cancer Biother. Radiopharm. 24, 379–393 (2009). https://doi.org/10.1089/cbr.2009.0674

    Article  Google Scholar 

  51. J.Y. Kim, H. Park, J.C. Lee et al., A simple Cu-64 production and its application of Cu-64 ATSM. Appl. Radiat. Isot. 67, 1190–1194 (2009). https://doi.org/10.1016/j.apradiso.2009.02.060

    Article  Google Scholar 

  52. Q.H. Xie, H. Zhu, F. Wang et al., Establishing reliable Cu-64 production process: From target plating to molecular specific tumor micro-PET imaging. Molecules 22, 641 (2017). https://doi.org/10.3390/molecules22040641

    Article  Google Scholar 

  53. M. Jauregui-Osoro, S.D. Robertis, P. Halsted et al., Production of copper-64 using a hospital cyclotron: targetry, purification and quality analysis. Nucl. Med. Commun. 42, 1024–1038 (2021). https://doi.org/10.1097/MNM.0000000000001422

    Article  Google Scholar 

  54. L. Isolan, M. Malinconico, W. Tieu et al., A digital twin for \({{}^{64}\text{ Cu }}\) production with cyclotron and solid target system. Sci. Rep. 12, 19379 (2022). https://doi.org/10.1038/s41598-022-23048-5

    Article  ADS  Google Scholar 

  55. L. Katz, A.G.W. Cameron, The solution of x-ray activation curves for photonuclear cross sections. Can. J. Phys. 29, 518–544 (1951). https://doi.org/10.1139/p51-056

    Article  ADS  Google Scholar 

  56. A.D. Antonov, N.P. Balabanov, Yu.P. Gangrsky et al., studied photonuclear reactions with the emission of \(\upalpha \) particles in the region of the Giant Dipole Resonance. Yad. Fiz. 51, 305 (1990)

    Google Scholar 

  57. G.E. Coote, W.E. Turchinetz, I.F. Wright, Cross sections for the \((\upgamma , n)\) reaction in \({\text{ Cu}^{63}}\), \({\text{ Cu}^{65}}\), \({\text{ Zn}^{64}}\), \({\text{ Sb}^{121}}\) and \({\text{ Pr}^{141}}\), measured with monochromatic gamma rays. Nucl. Phys. 23, 468–480 (1961). https://doi.org/10.1016/0029-5582(61)90273-5

    Article  Google Scholar 

  58. S.M. Qaim, Therapeutic radionuclides and nuclear data. Radiochim. Acta 89, 297–302 (2001). https://doi.org/10.1524/ract.2001.89.4-5.297

    Article  Google Scholar 

  59. V. Starovoitova, D. Foote, J. Harris et al., Cu-67 photonuclear production. AIP Conf. Proc. 1336, 502–504 (2011). https://doi.org/10.1063/1.3586150

    Article  ADS  Google Scholar 

  60. D.A. Ehst, N.A. Smith, D.L. Bowers et al., Copper-67 production on electron linacs-Photonuclear technology development. AIP Conf. Proc. 1509, 157–161 (2012). https://doi.org/10.1063/1.4773959

    Article  ADS  Google Scholar 

  61. N.A. Smith, D.L. Bowers, D.A. Ehst, The production, separation, and use of \({{}^{67}\text{ Cu }}\)for radioimmunotherapy: A review. Appl. Radiat. Isot. 70, 2377–2383 (2012). https://doi.org/10.1016/j.apradiso.2012.07.009

    Article  Google Scholar 

  62. R.A. Aliev, S.S. Belyshev, A.A. Kuznetsov et al., Photonuclear production and radiochemical separation of medically relevant radionuclides: \({{}^{67}\text{ Cu }}\). J. Radioanal. Nucl. Chem. 321, 125–132 (2019). https://doi.org/10.1007/s10967-019-06576-9

    Article  Google Scholar 

  63. G.H. Hovhannisyan, T.M. Bakhshiyan, R.K. Dallakyan, Photonuclear production of the medical isotope \({{}^{67}\text{ Cu }}\). Nucl. Instrum. Methods B 498, 48–51 (2021). https://doi.org/10.1016/j.nimb.2021.04.016

    Article  ADS  Google Scholar 

  64. N. Marceau, T.P.A. Kruck, D.B. McConnell et al., The production of copper 67 from natural zinc using a linear accelerator. Int. J. Appl. Radiat. Isot. 21, 667–669 (1970). https://doi.org/10.1016/0020-708X(70)90121-3

    Article  Google Scholar 

  65. A.K. Dasgupta, L.F. Mausner, S.C. Srivastava, A new separation procedure for \({{}^{67}\text{ Cu }}\)from proton irradiated Zn. Appl. Radiat. Isot. 42, 371–376 (1991). https://doi.org/10.1016/0883-2889(91)90140-V

    Article  Google Scholar 

  66. M.A. Hassanein, H. El-Said, M.A. El-Amir, Separation of carrier-free \({^{64,67}\text{ Cu }}\) radionuclides from irradiated zinc targets using 6-tungstocerate(IV) gel matrix. J. Radioanal. Nucl. Chem. 269, 75–80 (2006). https://doi.org/10.1007/s10967-006-0232-4

    Article  Google Scholar 

  67. A.E. Sioufi, P. Erdos, P. Stoll, \((\upgamma , np)\) - Process in Mo-92 and Zn-66. Helv. Phys. Acta 30, 264 (1957)

    Google Scholar 

  68. Y.W. Wang, D.Y. Chen, R.S. Augusto et al., Production review of accelerator-based medical isotopes. Molecules 27, 5294 (2022). https://doi.org/10.3390/molecules27165294

    Article  Google Scholar 

  69. P. Schaffer, F. Bénard, A. Bernstein et al., Direct production of \({^{99m}\text{ Tc }}\) via \({{}^{100}\text{ Mo }}(p,2n)\) on small medical cyclotrons. Phys. Procedia 66, 383–395 (2015). https://doi.org/10.1016/j.phpro.2015.05.048

    Article  ADS  Google Scholar 

  70. H.H. Xiong, Q.S. Zeng, Y.C. Han et al., Neutronics analysis of a subcritical blanket system driven by a gas dynamic trap-based fusion neutron source for \({{}^{99}\text{ Mo }}\) production. Nucl. Sci. Tech. 34, 49 (2023). https://doi.org/10.1007/s41365-023-01206-2

    Article  Google Scholar 

  71. S. Sekimoto, K. Tatenuma, Y. Suzuki et al., Separation and purification of \({^{99m}\text{ Tc }}\) from \({{}^{99}\text{ Mo }}\) produced by electron linear accelerator. J. Radioanal. Nucl. Chem. 311, 1361–1366 (2017). https://doi.org/10.1007/s10967-016-4959-2

    Article  Google Scholar 

  72. NorthStar Medical Radioisotopes: Accelerator Mo-99 Production, https://www.northstarnm.com/development/accelerator-mo-99/. Accessed 15 Aug 2023

  73. J.T. Harvey, G.H. Isensee, G.P. Messina et al., Domestic production of Mo99(2011), https://mo99.ne.anl.gov/2011/pdfs/Mo99/S7-P3_Harvey.pdf. Accessed 15 Aug 2023

  74. B. Hesse, K. Tägil, A. Cuocolo et al., EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology. Eur. J. Nucl. Med. Mol. Imaging 32, 855–897 (2005). https://doi.org/10.1007/s00259-005-1779-y

    Article  Google Scholar 

  75. B.C. Cook, A.S. Penfold, V.L. Telegdi, Photodisintegration of \({\text{ C}^{13}}\). Phys. Rev. 106, 300–314 (1957). https://doi.org/10.1103/PhysRev.106.300

    Article  ADS  Google Scholar 

  76. L.D. Cohen, W.E. Stephens, Gamma-ray activation of carbon. Phys. Rev. Lett. 2, 263–264 (1959). https://doi.org/10.1103/PhysRevLett.2.263

    Article  ADS  Google Scholar 

  77. J.P. Roalsvig, I.C. Gupta, R.N.H. Haslam, Photoneutron reactions in \({\text{ C}^{12}}\) and \({\text{ O}^{16}}\). Can. J. Phys. 39, 643–656 (1961). https://doi.org/10.1139/p61-075

    Article  ADS  Google Scholar 

  78. W.E.D. Bianco, W.E. Stephens, Photonuclear activation by 20.5-MeV gamma rays. Phys. Rev. 126, 709–717 (1962). https://doi.org/10.1103/PhysRev.126.709

    Article  ADS  Google Scholar 

  79. E.B. Bazhanov, A.P. Komar, A.V. Kulikov et al., Photodisintegration of \({\text{ C}^{12}}\). Yad. Fiz. 3, 711 (1966)

    Google Scholar 

  80. B.C. Cook, J.E.E. Baglin, J.N. Bradford et al., \({\text{ C}^{12}}(\upgamma , n){\text{ C}^{11}}\) cross section to 65 MeV. Phys. Rev. 143, 724–729 (1966). https://doi.org/10.1103/PhysRev.143.724

    Article  ADS  Google Scholar 

  81. W.A. Lochstet, W.E. Stephens, \({^{12}\text{ C }}(\upgamma , n){^{11}\text{ C }}\) giant resonance with gamma rays. Phys. Rev. 141, 1002–1006 (1966). https://doi.org/10.1103/PhysRev.141.1002

    Article  ADS  Google Scholar 

  82. J.D. King, R.N.H. Haslam, R.W. Parsons, The gamma-neutron cross section for \({\text{ N}^{14}}\). Can. J. Phys. 38, 231–239 (1960). https://doi.org/10.1139/p60-023

    Article  ADS  Google Scholar 

  83. M.J. Facci, M.N. Thompson, The absolute \({^{14}\text{ N }}(\upgamma , n)\) reaction cross section. Nucl. Phys. A 465, 77–82 (1987). https://doi.org/10.1016/0375-9474(87)90299-5

    Article  ADS  Google Scholar 

  84. B.C. Cook, J.E.E. Baglin, J.N. Bradford et al., \({\text{ O}^{16}}(\upgamma , n){\text{ O}^{15}}\) cross section from threshold to 65 MeV. Phys. Rev. 143, 712–723 (1966). https://doi.org/10.1103/PhysRev.143.712

    Article  ADS  Google Scholar 

  85. B.S. Ishkhanov, I.M. Kapitonov, E.V. Lazutin et al., Fine structure of giant dipole resonance of the \({\text{ O}^{16}}\) nucleus. Yad. Fiz. 12, 892 (1970)

    Google Scholar 

  86. S.N. Belyaev, A.B. Kozin, A.A. Nechkin et al., Photoabsorption cross sections of Pb, Bi, and Ta isotopes in the energy region \(E_{\upgamma }\le 12\) MeV. Yad. Fiz. 42, 1050 (1985)

    Google Scholar 

  87. S.N. Belyaev, V.A. Semenov, Intermediate structure in \((\upgamma , n)\) cross sections at nuclei with N = 82. Bull. Russ. Acad. Sci. Phys. 55, 66 (1991)

    Google Scholar 

  88. P.R. Byerly, W.E. Stephens et al., Photodisintegration of copper. Phys. Rev. 83, 54–62 (1951). https://doi.org/10.1103/PhysRev.83.54

    Article  ADS  Google Scholar 

  89. A.I. Berman, K.L. Brown, Absolute cross section versus energy of the \({\text{ Cu}^{63}}(\upgamma , n)\) and \({\text{ Cu}^{63}}(\upgamma ,2n)\) reactions. Phys. Rev. 96, 83–89 (1954). https://doi.org/10.1103/PhysRev.96.83

    Article  ADS  Google Scholar 

  90. M.B. Scott, A.O. Hanson, D.W. Kerst, Electro- and photodisintegration cross sections of \({\text{ Cu}^{63}}\). Phys. Rev. 100, 209–214 (1954). https://doi.org/10.1103/PhysRev.100.209

    Article  ADS  Google Scholar 

  91. T. Nakamura, K. Takamatsu, K. Fukunaga et al., Absolute cross sections of the \((\upgamma , n)\) reaction for \({\text{ Cu}^{63}}\), \({\text{ Zn}^{64}}\), and \({\text{ Ag}^{109}}\). J. Phys. Soc. Japan 14, 693–698 (1959). https://doi.org/10.1143/JPSJ.14.693

    Article  ADS  Google Scholar 

  92. S. Yasumi, M. Yata, K. Takamatsu et al., Absolute cross section of the reaction \({\text{ Cu}^{63}}(\upgamma , n){\text{ Cu}^{62}}\) for Lithium gamma rays. J. Phys. Soc. Japan 15, 1913–1919 (1960). https://doi.org/10.1143/JPSJ.15.1913

    Article  ADS  Google Scholar 

  93. R.E. Sund, M.P. Baker, L.A. Kull et al., Measurements of the \({^{63}\text{ Cu }}(\upgamma , n)\) and \((\upgamma ,2n)\) cross sections. Phys. Rev. 176, 1366–1376 (1968). https://doi.org/10.1103/PhysRev.176.1366

    Article  ADS  Google Scholar 

  94. D.G. Owen, E.G. Muirhead, B.M. Spicer, Structure in the giant resonance of \({^{64}\text{ Zn }}\) and \({^{63}\text{ Cu }}\). Nucl. Phys. A 122, 177–183 (1968). https://doi.org/10.1016/0375-9474(68)90711-2

    Article  ADS  Google Scholar 

  95. L.Z. Dzhilavyan, N.P. Kucher, Measurement of the cross section of the reaction \({^{63}\text{ Cu }}(\upgamma , n)\) in a beam of quasimonochromatic annihilation photons in the energy region 12–25 MeV. Yad. Fiz. 30, 294 (1979)

    Google Scholar 

  96. S.C. Jeong, J.C. Kim, B.N. Sung, Cross section measurement for the \({^{63}\text{ Cu }}(\upgamma , n){^{62}\text{ Cu }}\) reaction. J. Korean Phys. Soc. 17, 359 (1984)

    Google Scholar 

  97. M.N. Martins, E. Hayward, G. Lamaze et al., Experimental test of the bremsstrahlung cross section. Phys. Rev. C 30, 1855–1860 (1984). https://doi.org/10.1103/PhysRevC.30.1855

    Article  ADS  Google Scholar 

  98. C. Plaisir, F. Hannachi, F. Gobet et al., Measurement of the \({^{85}\text{ Rb }}(\upgamma , n){^{84m}\text{ Rb }}\) cross-section in the energy range 10–19 MeV with bremsstrahlung photons. Eur. Phys. J. A 48, 68 (2012). https://doi.org/10.1140/epja/i2012-12068-7

    Article  ADS  Google Scholar 

  99. K. Masumoto, T. Kato, N. Suzuki, Activation yield curves of photonuclear reactions for multielement photon activation analysis. Nucl. Instrum. Methods 157, 567–577 (1978). https://doi.org/10.1016/0029-554X(78)90019-8

    Article  ADS  Google Scholar 

  100. A.K.M.L. Rahman, K. Kato, H. Arima et al., Study on effective average \((\upgamma , n)\) cross section for \({^{89}\text{ Y }}\), \({^{90}\text{ Zr }}\), \({^{93}\text{ Nb }}\), and \({^{133}\text{ Cs }}\) and \((\upgamma ,3n)\) cross section for \({^{99}\text{ Tc }}\). J. Nucl. Sci. Technol. 47, 618–625 (2010). https://doi.org/10.3327/jnst.47.618

    Article  Google Scholar 

  101. A. Banu, E.G. Meekins, J.A. Silano et al., Photoneutron reaction cross section measurements on \({^{94}\text{ Mo }}\) and \({^{90}\text{ Zr }}\) relevant to the p-process nucleosynthesis. Phys. Rev. C 99, 025802 (2019). https://doi.org/10.1103/PhysRevC.99.025802

    Article  ADS  Google Scholar 

  102. T. Shizuma, H. Utsunomiya, P. Mohr et al., Photodisintegration cross section measurements on \({^{186}\text{ W }}\), \({^{187}\text{ Re }}\), and \({^{188}\text{ Os }}\): Implications for the Re-Os cosmochronology. Phys. Rev. C 72, 025808 (2005). https://doi.org/10.1103/PhysRevC.72.025808

    Article  ADS  Google Scholar 

  103. V.A. Zheltonozhsky, M.V. Zheltonozhskaya, A.M. Savrasov et al., Studying the activation of \({^{177}\text{ Lu }}\) in \((\upgamma , pxn)\) reactions. Bull. Russ. Acad. Sci. Phys. 84, 923–928 (2020). https://doi.org/10.3103/S1062873820080328

    Article  Google Scholar 

  104. O.V. Bogdankevich, L.E. Lazareva, A.M. Moiseev, Inelastic scattering on \({^{103}\text{ Rh }}\) nuclei. J. Exp. Theor. Phys. 12, 853 (1961)

    Google Scholar 

  105. Z.M. Bigan, V.A. Zheltonozhsky, V.I. Kirishchuk et al., Excitation of \({^{113}\text{ In }}\), \({^{195}\text{ Pt }}\) and \({^{199}\text{ Hg }}\) isomers in reactions of inelastic gamma scattering. Bull. Russ. Acad. Sci. Phys. 70, 292 (2006)

    Google Scholar 

  106. V.G. Nedorezov, E.S. Konobeevski, S.V. Zuyev et al., Excitation of \({^{111m}\text{ Cd }}\), \({^{113m}\text{ In }}\), and \({^{115m}\text{ In }}\) isomeric states by photons of energy up to 8 MeV. Phys. Atom. Nucl. 80, 827–830 (2017). https://doi.org/10.1134/S1063778817050167

    Article  ADS  Google Scholar 

  107. O.V. Bogdankevich, L.E. Lazareva, F.A. Nikolaev, Inelastic scattering of photons by indium-115 nuclei. J. Exp. Theor. Phys. 4, 320 (1957)

    Google Scholar 

  108. V.M. Mazur, I.V. Sokolyuk, Z.M. Bigan et al., Cross section for excitation of nuclear isomers in \((\upgamma ,\upgamma ^{\prime })\)-m reactions at 4–15 MeV. Yad. Fiz. 56, 20 (1993)

    Google Scholar 

  109. N.A. Demekhina, A.S. Danagulyan, G.S. Karapetyan, Formation of isomeric states in \((\upgamma ,\upgamma ^{\prime })\) reactions at energies around the giant dipole resonance. Phys. Atom. Nucl. 64, 1796–1798 (2001). https://doi.org/10.1134/1.1414927

    Article  ADS  Google Scholar 

  110. V.S. Bokhinyuk, A.I. Guthy, A.M. Parlag et al., Study of the effective excitation cross section of the \({^{115}\text{ In }}\) isomeric state in the \((\upgamma ,\upgamma ^{\prime })\) reaction. Ukr. J. Phys. 51, 657 (2006)

    Google Scholar 

  111. W. Tornow, M. Bhike, S.W. Finch et al., Measurement of the \({^{115}\text{ In }}(\upgamma ,\upgamma ^{\prime }){^{115m}\text{ In }}\) inelastic scattering cross section in the 1.8 to 3.7 MeV energy range with monoenergetic photon beams. Phys. Rev. C 98, 064305 (2018). https://doi.org/10.1103/PhysRevC.98.064305

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Xuan Pang and Bao-Hua Sun. All authors commented on previous versions of the manuscript and read and approved the final manuscript.

Corresponding author

Correspondence to Bao-Hua Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

This work was supported by the National Key R &D Program of China (No. 2022YFA1602401), the National Natural Science Foundation of China (Nos. 11961141004, U1832211, 11922501, 12325506) and the National Basic Science Data Center ‘Medical Physics DataBase’ (No. NBSDC-DB-23).

Appendix

Appendix

Experimental data for the production of medical radioisotopes by \((\upgamma ,\text {n})\), \((\upgamma ,\text {p})\), and \((\upgamma ,\upgamma \prime )\) reactions are summarised. Table 5 lists relevant information on these reactions. All the data and information were obtained from the EXFOR database [32].

Table 5 Information regarding experimental data for the production of medical radioisotopes by photonuclear reactions

1.1 \((\upgamma ,\text {n})\)

The cross-sectional data for the production of \({^{11}\hbox {C}}\), \({^{13}\hbox {N}}\), \({^{15}\hbox {O}}\), \({^{18}\hbox {F}}\), \({^{62}\hbox {Cu}}\), \({{}^{64}\hbox {Cu}}\), \({^{89}\hbox {Zr}}\), \({{}^{99}\hbox {Mo}}\), and \({^{186}\hbox {Re}}\) radioisotopes by \((\upgamma ,\text {n})\) reactions are shown in the following figures (Figs. 4, 5, 6, 7, 8, 9, 10, 11 and 12).

Fig. 4
figure 4

(Color online) \({^{12}\hbox {C}}(\upgamma ,\text {n}){^{11}\hbox {C}}\) reaction cross sections

Fig. 5
figure 5

\({^{14}\hbox {N}}(\upgamma ,\text {n}){^{13}\hbox {N}}\) reaction cross sections

Fig. 6
figure 6

(Color online) \({^{16}\hbox {O}}(\upgamma ,\text {n}){^{15}\hbox {O}}\) reaction cross sections

Fig. 7
figure 7

\({^{19}\hbox {F}}(\upgamma ,\text {n}){^{18}\hbox {F}}\) reaction cross sections

Fig. 8
figure 8

(Color online) \({^{63}\hbox {Cu}}(\upgamma ,\text {n}){^{62}\hbox {Cu}}\) reaction cross sections

Fig. 9
figure 9

\({{}^{65}\hbox {Cu}}(\upgamma ,\text {n}){{}^{64}\hbox {Cu}}\) reaction cross sections

Fig. 10
figure 10

\({^{90}\hbox {Zr}}(\upgamma ,\text {n}){^{89}\hbox {Zr}}\) reaction cross sections

Fig. 11
figure 11

\({{}^{100}\hbox {Mo}}(\upgamma ,\text {n}){{}^{99}\hbox {Mo}}\) reaction cross sections

Fig. 12
figure 12

\({^{187}\hbox {Re}}(\upgamma ,\text {n}){^{186}\hbox {Re}}\) reaction cross sections

1.2 \((\upgamma ,\text {p})\)

The cross-sectional data for the production of \({^{43}\hbox {K}}\), \({{}^{67}\hbox {Cu}}\), and \({^{177}\hbox {Lu}}\) radioisotopes by \((\upgamma ,\text {p})\) reaction are shown in the following figures (Figs. 13, 14 and 15).

Fig. 13
figure 13

\({^{44}\hbox {Ca}}(\upgamma ,\text {p}){^{43}\hbox {K}}\) reaction cross sections

Fig. 14
figure 14

\({{}^{68}\hbox {Zn}}(\upgamma ,\text {p}){{}^{67}\hbox {Cu}}\) reaction cross sections

Fig. 15
figure 15

\({^{178}\hbox {Hf}}(\upgamma ,\text {p}){^{177}\hbox {Lu}}\) reaction cross sections

1.3 \((\upgamma ,\upgamma \prime )\)

The cross-sectional data for the production of \({^\text{103m}\hbox {Rh}}\), \({^\text{113m}\hbox {In}}\), \({^\text{115m}\hbox {In}}\), and \({^\text{195m}\hbox {Pt}}\) radioisotopes by \((\upgamma ,\upgamma ')\) reaction are shown in the following figures (Figs. 16, 17, 18 and 19).

Fig. 16
figure 16

\({^{103}\hbox {Rh}}(\upgamma ,\upgamma \prime ){^\text{103m}\hbox {Rh}}\) reaction cross sections

Fig. 17
figure 17

\({^{113}\hbox {In}}(\upgamma ,\upgamma \prime ){^\text{113m}\hbox {In}}\) reaction cross sections

Fig. 18
figure 18

(Color online) \({^{115}\hbox {In}}(\upgamma ,\upgamma \prime ){^\text{115m}\hbox {In}}\) reaction cross sections

Fig. 19
figure 19

\({^{195}\hbox {Pt}}(\upgamma ,\upgamma \prime ){^\text{195m}\hbox {Pt}}\) reaction cross sections

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, X., Sun, BH., Zhu, LH. et al. Progress of photonuclear cross sections for medical radioisotope production at the SLEGS energy domain. NUCL SCI TECH 34, 187 (2023). https://doi.org/10.1007/s41365-023-01339-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01339-4

Keywords

Navigation