Skip to main content
Log in

Investigation of the 121Sb(α,γ)125I reaction cross-section calculations at astrophysical energies

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Proton-rich nuclei are synthesized via photodisintegration and reverse reactions. To examine this mechanism and reproduce the observed p-nucleus abundances, it is crucial to know the reaction rates and thereby the reaction cross sections of many isotopes. Given that the number of experiments on the reactions in astrophysical energy regions is very rare, the reaction cross sections are determined by theoretical methods whose accuracy should be tested. In this study, given that \(^{121}\)Sb is a stable seed isotope located in the region of medium-mass p-nuclei, we investigated the cross sections and reaction rates of the \(^{121}\)Sb(\(\alpha\),\(\gamma\))\(^{125}\)I reaction using the TALYS computer code with 432 different combinations of input parameters (OMP, LDM, and SFM). The optimal model combinations were determined using the threshold logic unit method. The theoretical reaction cross-sectional results were compared with the experimental results reported in the literature. The reaction rates were determined using the two input parameter sets most compatible with the measurements, and they were compared with the reaction rate databases: STARLIB and REACLIB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.E. Woosley, W.M. Howard, The p-processes in supernovae. Astrophys. J. Suppl. S. 36, 285 (1978). https://doi.org/10.1086/190501

    Article  ADS  Google Scholar 

  2. M. Arnould, S. Goriely, Astronuclear physics: a tale of the atomic nuclei in the skies. Prog. Part. Nucl. Phys. 112, 103766 (2020). https://doi.org/10.1016/j.ppnp.2020.103766

    Article  Google Scholar 

  3. R. Reifarth, C. Lederer, F. Käppeler, Neutron reactions in astrophysics. J. Phys. G Nucl. Partic. 41, 053101 (2014). https://doi.org/10.1088/0954-3899/41/5/053101

    Article  ADS  Google Scholar 

  4. T. Rauscher, N. Dauphas, I. Dillmann et al., Constraining the astrophysical origin of the p-nuclei through nuclear physics and meteoritic data. Rep. Prog. Phys. 76, 066201 (2013). https://doi.org/10.1088/0034-4885/76/6/066201

    Article  ADS  Google Scholar 

  5. T. Rauscher, F.K. Thielemann, Astrophysical reaction rates from statistical model calculations. Atom. Data Nucl. Data 75, 1 (2000). https://doi.org/10.1006/adnd.2000.0834

    Article  ADS  Google Scholar 

  6. T. Rauscher, F.K. Thielemann, Tables of nuclear cross sections and reaction rates: an addendum to the paper “astrophysical reaction rates from statistical model calculations. Atom. Data Nucl. Data 79, 47 (2001). https://doi.org/10.1006/adnd.2001.0863

  7. T. Rauscher, Branchings in the \(\gamma\) process path revisited. Phys. Rev. C 73, 015804 (2006). https://doi.org/10.1103/PhysRevC.73.015804

    Article  ADS  Google Scholar 

  8. Gy. Gyürky, Z. Halasz, G.G. Kiss et al., Measurement of the \(^{91}\)Zr(p,\(\gamma\))\(^{92m}\) Nb cross section motivated by type Ia supernova nucleosynthesis. J. Phys. G Nucl. Partic. 48, 105202 (2021). https://doi.org/10.1088/1361-6471/ac2132

  9. A. Palmisano-Kyle, A. Spyrou, P.A. DeYoung et al., Constraining the astrophysical p process: cross section measurement of the \(^{84}\)Kr(p,\(\gamma\))\(^{85}\)Rb reaction in inverse kinematics. Phys. Rev. C 105, 065804 (2022). https://doi.org/10.1103/PhysRevC.105.065804

    Article  ADS  Google Scholar 

  10. O.O. Gomez, A. Simon, O. Gorton et al., Measurements of proton capture in the A=100-110 mass region: constraints on the \(^{111}\)In(\(\gamma\), p)/(\(\gamma\), n) branching point relevant to the \(\gamma\) process. Phys. Rev. C 102, 055806 (2020). https://doi.org/10.1103/PhysRevC.102.055806

    Article  ADS  Google Scholar 

  11. V. Foteinou, S. Harissopulos, M. Axiotis et al., Cross section measurements of proton capture reactions on Se isotopes relevant to the astrophysical p process. Phys. Rev. C 97, 035806 (2018). https://doi.org/10.1103/PhysRevC.97.035806

    Article  ADS  Google Scholar 

  12. S. Harissopulos, A. Spyrou, V. Foteinou et al., Systematic study of proton capture reactions in medium-mass nuclei relevant to the p process: the case of \(^{103}\)Rh and \(^{113,115}\)In. Phys. Rev. C 93, 025804 (2016). https://doi.org/10.1103/PhysRevC.93.025804

    Article  ADS  Google Scholar 

  13. N. Özkan, R.T. Güray, C. Yalçın et al., Proton capture reaction cross section measurements on \(^{162}\)Er as a probe of statistical model calculations. Phys. Rev. C 96, 045805 (2017). https://doi.org/10.1103/PhysRevC.96.045805

    Article  ADS  Google Scholar 

  14. J. Fallis, C. Akers, A.M. Laird et al., First measurement in the Gamow window of a reaction for the \(\gamma\)-process in inverse kinematics: \(^{76}\)Se(\(\alpha\),\(\gamma\))\(^{80}\)Kr. Phys. Lett. B 807, 135575 (2020). https://doi.org/10.1016/j.physletb.2020.135575

    Article  Google Scholar 

  15. T. Szuecs, P. Mohr, Gy. Gyürky et al., Cross section of \(\alpha\)-induced reactions on \(^{197}\)Au at sub-Coulomb energies. Phys. Rev. C 100, 065803 (2019). https://doi.org/10.1103/PhysRevC.100.065803

    Article  ADS  Google Scholar 

  16. G.G. Kiss, T. Szuecs, P. Mohr et al., \(\alpha\)-induced reactions on \(^{115}\)In: Cross section measurements and statistical model analysis. Phys. Rev. C 97, 055803 (2018). https://doi.org/10.1103/PhysRevC.97.055803

    Article  ADS  Google Scholar 

  17. T. Szuecs, G.G. Kiss, Gy. Gyürky et al., Cross section of \(\alpha\)-induced reactions on iridium isotopes obtained from thick target yield measurement for the astrophysical \(\gamma\) process. Phys. Lett. B 776, 396–401 (2018). https://doi.org/10.1016/j.physletb.2017.11.072

    Article  ADS  Google Scholar 

  18. Z. Korkulu, N. Özkan, G.G. Kiss et al., Investigation of \(\alpha\)-induced reactions on Sb isotopes relevant to the astrophysical \(\gamma\) process. Phys. Rev. C 97, 045803 (2018). https://doi.org/10.1103/PhysRevC.97.045803

    Article  ADS  Google Scholar 

  19. M. Arnould, S. Goriely, The p-process of stellar nucleosynthesis: astrophysics and nuclear physics status. Phys. Rep. 384, 1 (2003). https://doi.org/10.1016/S0370-1573(03)00242-4

    Article  ADS  Google Scholar 

  20. C. Yalçın, The cross section calculation of \(^{112}\)Sn(\(\alpha\),\(\gamma\))\(^{116}\)Te reaction with different nuclear models at the astrophysical energy range. Nucl. Sci. Tech. 28, 113 (2017). https://doi.org/10.1007/s41365-017-0267-y

    Article  Google Scholar 

  21. P. Mohr, Gy. Gyürky, Zs. Fülöp, Statistical model analysis of \(\gamma\)-induced reaction cross sections of \(^{64}\)Zn at low energies. Phys. Rev. C 95, 015807 (2017). https://doi.org/10.1103/PhysRevC.95.015807

    Article  ADS  Google Scholar 

  22. R. Baldık, A. Yılmaz, A study on the excitation functions of \(^{60,62}\)Ni(\(\alpha\), n), \(^{60,61}\)Ni(\(\alpha\),2n), \(^{58,64}\)Ni(\(\alpha\), p), \(^{nat}\)Ni(\(\alpha\), x) reactions. Nucl. Sci. Tech. 29, 156 (2018). https://doi.org/10.1007/s41365-018-0500-3

    Article  Google Scholar 

  23. J.H. Luo, J.C. Liang, L. Jiang et al., Measurement of \(^{134}\)Xe(n,2n)\(^{133m, g}\)Xe reaction cross sections in 14-MeV region with detailed uncertainty quantification. Nucl. Sci. Tech. 34, 4 (2023). https://doi.org/10.1007/s41365-022-01158-z

    Article  Google Scholar 

  24. R. Kruse, C. Borgelt, F. Klawonn et al., Computational Intelligence (Springer-Verlag, London, 2013), p.15

    Book  MATH  Google Scholar 

  25. R.H. Cyburt, A.M. Amthor, R. Ferguson et al., The JINA REACLIB Database: Its Recent Updates and Impact on Type-i X-ray Bursts. Astrophys. J. Suppl. S. 189, 240 (2010). https://doi.org/10.1088/0067-0049/189/1/240

    Article  ADS  Google Scholar 

  26. A.L. Sallaska, C. Iliadis, A.E. Champange et al., STARLIB: a next-generation reaction-rate library for nuclear astrophysics. Astrophys. J. Suppl. S. 207, 18 (2013). https://doi.org/10.1088/0067-0049/207/1/18

    Article  ADS  Google Scholar 

  27. C.E. Rolfs, W.S. Rodney, Cauldrons in the Cosmos (The University of Chicago Press, Chicago, 1988), pp.156–159

    Google Scholar 

  28. A.J. Koning, S. Hilaire, M.C. Duijvestijn, in Proceedings of the International Conference on Nuclear Data for Science and Technology, ed. by O. Bersillon, F. Gunsing, E. Bauge, et al. Nice, April 2008. EDP Sciences, Vol. 1

  29. S. Watanabe, High energy scattering of deuterons by complex nuclei. Nucl. Phys. 8, 484 (1958). https://doi.org/10.1016/0029-5582(58)90180-9

    Article  Google Scholar 

  30. L. McFadden, G.R. Satchler, Optical-model analysis of the scattering of 24.7 MeV alpha particles. Nucl. Phys. 84, 177 (1966). https://doi.org/10.1016/0029-5582(66)90441-X

    Article  Google Scholar 

  31. P. Demetriou, C. Grama, S. Goriely, Improved global \(\alpha\)-optical model potentials at low energies. Nucl. Phys. A 707, 253 (2002). https://doi.org/10.1016/S0375-9474(02)00756-X

    Article  ADS  Google Scholar 

  32. V. Avrigeanu, M. Avrigeanu, C. Manailescu, Further explorations of the \(\alpha\)-particle optical model potential at low energies for the mass range A\(\approx\)45-209. Phys. Rev. C 90, 044612 (2014). https://doi.org/10.1103/PhysRevC.90.044612

    Article  ADS  Google Scholar 

  33. M. Nolte, H. Machner, J. Bojowald, Global optical potential for \(\alpha\) particles with energies above 80 MeV. Phys. Rev. C 36, 1312 (1987). https://doi.org/10.1103/PhysRevC.36.1312

    Article  ADS  Google Scholar 

  34. V. Avrigeanu, P.E. Hodgson, M. Avrigeanu, Global optical potentials for emitted alpha particles. Phys. Rev. C 49, 2136 (1994). https://doi.org/10.1103/PhysRevC.49.2136

    Article  ADS  MATH  Google Scholar 

  35. A. Gilbert, A.G.W. Cameron, A composite nuclear-level density formula with shell corrections. Can. J. Phys. 43, 1446 (1965). https://doi.org/10.1139/p65-139

    Article  ADS  Google Scholar 

  36. W. Dilg, W. Schantl, H. Vonach et al., Level density parameters for the back-shifted fermi gas model in the mass range 40 \(<\) A \(<\) 250. Nucl. Phys. A 217, 269 (1973). https://doi.org/10.1016/0375-9474(73)90196-6

    Article  ADS  Google Scholar 

  37. P. Demetriou, S. Goriely, Microscopic nuclear level densities for practical applications. Nucl. Phys. A 695, 95 (2001). https://doi.org/10.1016/S0375-9474(01)01095-8

    Article  ADS  Google Scholar 

  38. A.V. Ignatyuk, K.K. Istekov, G.N. Smirenkin, Sov. J. Nucl. Phys. 29, 450 (1979)

    Google Scholar 

  39. A.V. Ignatyuk, J.L. Weil, S. Raman et al., Density of discrete levels in 116Sn. Phys. Rev. C 47, 1504 (1993). https://doi.org/10.1103/PhysRevC.47.1504

    Article  ADS  Google Scholar 

  40. S. Goriely, S. Hilaire, A.J. Koning, Improved microscopic nuclear level densities within the Hartree-Fock-Bogoliubov plus combinatorial method. Phys. Rev. C 78, 064307 (2008). https://doi.org/10.1103/PhysRevC.78.064307

    Article  ADS  Google Scholar 

  41. S. Hilaire, S. Goriely, Global microscopic nuclear level densities within the HFB plus combinatorial method for practical applications. Nucl. Phys. A 779, 63 (2006). https://doi.org/10.1016/j.nuclphysa.2006.08.014

    Article  ADS  Google Scholar 

  42. S. Hilaire, M. Girod, S. Goriely et al., Temperature-dependent combinatorial level densities with the D1M Gogny force. Phys. Rev. C 86, 064317 (2012). https://doi.org/10.1103/PhysRevC.86.064317

    Article  ADS  Google Scholar 

  43. J. Kopecky, M. Uhl, Test of gamma-ray strength functions in nuclear reaction model calculations. Phys. Rev. C 41, 1941 (1990). https://doi.org/10.1103/PhysRevC.41.1941

    Article  ADS  Google Scholar 

  44. J. Kopecky, M. Uhl, R.E. Chrien, Radiative strength in the compound nucleus \(^{157}\)Gd. Phys. Rev. C 47, 312 (1993). https://doi.org/10.1103/PhysRevC.47.312

    Article  ADS  Google Scholar 

  45. D.M. Brink, Individual particle and collective aspects of the nuclear photoeffect. Nucl. Phys. 4, 215 (1957). https://doi.org/10.1016/0029-5582(87)90021-6

    Article  Google Scholar 

  46. P. Axel, Electric dipole ground-state transition width strength function and 7-Mev photon interactions. Phys. Rev. 126, 671 (1962). https://doi.org/10.1103/PhysRev.126.671

    Article  ADS  Google Scholar 

  47. S. Goriely, E. Khan, Large-scale QRPA calculation of E1-strength and its impact on the neutron capture cross section. Nucl. Phys. A 706, 217 (2002). https://doi.org/10.1016/S0375-9474(02)00860-6

    Article  ADS  Google Scholar 

  48. S. Goriely, E. Khan, M. Samyn, Microscopic HFB + QRPA predictions of dipole strength for astrophysics applications. Nucl. Phys. A 739, 331 (2004). https://doi.org/10.1016/j.nuclphysa.2004.04.105

    Article  ADS  Google Scholar 

  49. S. Goriely, Radiative neutron captures by neutron-rich nuclei and the r-process nucleosynthesis. Phys. Lett. B 436, 10 (1998). https://doi.org/10.1016/S0370-2693(98)00907-1

    Article  ADS  Google Scholar 

  50. S. Hilaire, M. Girod, S. Goriely et al., Temperature-dependent combinatorial level densities with the D1M Gogny force. Phys. Rev. C 86, 064317 (2012). https://doi.org/10.1103/PhysRevC.86.064317

    Article  ADS  Google Scholar 

  51. D.P. Arteaga, P. Ring, Relativistic random-phase approximation in axial symmetry. Phys. Rev. C 77, 034317 (2008). https://doi.org/10.1103/PhysRevC.77.034317

    Article  ADS  Google Scholar 

  52. M. Martini, S. Hilaire, S. Goriely et al., Improved nuclear inputs for nuclear model codes based on the Gogny interaction. Nucl. Data Sheets 118, 273 (2014). https://doi.org/10.1016/j.nds.2014.04.056

    Article  ADS  Google Scholar 

  53. V. Plujko, O. Gorbachenko, K. Solodovnyk, Description of nuclear photoexcitation by Lorentzian expressions for electric dipole photon strength function. Eur. Phys. J. A 55, 1–12 (2019). https://doi.org/10.1140/epja/i2019-12899-6

    Article  Google Scholar 

  54. T. Rauscher, Relevant energy ranges for astrophysical reaction rates. Phys. Rev. C 81, 045807 (2010). https://doi.org/10.1103/PhysRevC.81.045807

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by ME, CY, and RTG. The first draft of the manuscript was written by RTG, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to R. T. Güray.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eroğlu, M., Yalçın, C. & Güray, R.T. Investigation of the 121Sb(α,γ)125I reaction cross-section calculations at astrophysical energies. NUCL SCI TECH 34, 168 (2023). https://doi.org/10.1007/s41365-023-01301-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01301-4

Keywords

Navigation