Skip to main content
Log in

Toward real-time digital pulse process algorithms for CsI(Tl) detector array at external target facility in HIRFL-CSR

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

A fully digital data acquisition system based on a field-programmable gate array (FPGA) was developed for a CsI(Tl) array at the external target facility (ETF) in the Heavy Ion Research Facility in Lanzhou (HIRFL). To process the CsI(Tl) signals generated by \(\gamma\)-rays and light-charged ions, a scheme for digital pulse processing algorithms is proposed. Every step in the algorithms was benchmarked using standard \(\gamma\) and \(\alpha\) sources. The scheme, which included a moving average filter, baseline restoration, leading-edge discrimination, moving window deconvolution, and digital charge comparison, was subsequently implemented on the FPGA. A good energy resolution of 5.7% for 1.33-MeV \(\gamma\)-rays and excellent \(\alpha\)-\(\gamma\) identification using the digital charge comparison method were achieved, which satisfies CsI(Tl) array performance requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The data that support the findings of this study are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.j00186.00156 and https://cstr.cn/31253.11.sciencedb.j00186.00156.

References

  1. I. Tanihata, Radioactive beam science, past, present and future. Nucl. Instrum. Methods Phys. Res. B 266, 4067 (2008). https://doi.org/10.1016/j.nimb.2008.05.088

    Article  ADS  Google Scholar 

  2. A. Gade, Nuclear spectroscopy with fast exotic beams. Phys. Sci. T152, 014004 (2013). https://doi.org/10.1088/0031-8949/2013/T152/014004

    Article  ADS  Google Scholar 

  3. Y.Z. Sun, Study of Single Proton Knockout from \(^{16}\)C. Ph.D. Thesis, University of Chinese Academy of Sciences, 2019

  4. Y.Z. Sun, Z.Y. Sun, S.T. Wang et al., The charged fragment detector system of the External Target Facility. Nucl. Instrum. Methods Phys. Res. A 927, 390 (2019). https://doi.org/10.1016/j.nima.2019.02.067

    Article  ADS  Google Scholar 

  5. X.H. Zhang, S.W. Tang, P. Ma et al., A multiple sampling ionization chamber for the External Target Facility. Nucl. Instrum. Methods Phys. Res. A 795, 389 (2015). https://doi.org/10.1016/j.nima.2015.06.022

    Article  ADS  Google Scholar 

  6. Y. Sun, Z.Y. Sun, Y.H. Yu et al., Design and construction of a time-of-flight wall detector at External Target Facility of HIRFL-CSR. Nucl. Instrum. Methods Phys. Res. A 893, 68 (2018). https://doi.org/10.1016/j.nima.2018.03.030

    Article  ADS  Google Scholar 

  7. Y.Z. Sun, Z.Y. Sun, S.T. Wang et al., The drift chamber array at the External Target Facility in HIRFL-CSR. Nucl. Instrum. Methods Phys. Res. A 894, 72 (2018). https://doi.org/10.1016/j.nima.2018.03.044

    Article  ADS  Google Scholar 

  8. K. Yue, Z.Y. Sun, S.T. Wang et al., A CsI(Tl) gamma detection array at the external target hall of CSRm. Nucl. Instrum. Methods Phys. Res. B 317, 653 (2013). https://doi.org/10.1016/j.nimb.2013.07.037

    Article  ADS  Google Scholar 

  9. S. Takeuchi, T. Motobayashi, Y. Togano et al., DALI2: A NaI(Tl) detector array for measurements of \(\gamma\) rays from fast nuclei. Nucl. Instrum. Methods Phys. Res. A 763, 596 (2014). https://doi.org/10.1016/j.nima.2014.06.087

    Article  ADS  Google Scholar 

  10. P. Doornenbal, In-beam gamma-ray spectroscopy at the RIBF. Prog. Theor. Exp. Phys. 2012, 03C004 (2012). https://doi.org/10.1093/ptep/pts076

    Article  Google Scholar 

  11. H. Alvarez-Pol, J. Benlliure, E. Casarejos et al., Design studies and first crystal tests for the R\(^{3}\)B calorimeter. Nucl. Instrum. Methods Phys. Res. B 266, 4616 (2008). https://doi.org/10.1016/j.nimb.2008.05.113

    Article  ADS  Google Scholar 

  12. H. Alvarez-Pol, N. Ashwood, T. Aumann et al., Performance analysis for the CALIFA Barrel calorimeter of the R\(^{3}\)B experiment. Nucl. Instrum. Methods Phys. Res. A 767, 453 (2014). https://doi.org/10.1016/j.nima.2014.09.018

    Article  ADS  Google Scholar 

  13. L. Zhao, L.-F. Kang, J.-W. Zhou et al., A 16-Channel high-resolution time and charge measurement module for the external target experiment in the CSR of HIRFL. Nucl. Sci. Tech. 25, 010401 (2014). https://doi.org/10.13538/j.1001-8042/nst.25.010401

    Article  Google Scholar 

  14. X.-W. Zhao, Y. Qian, J. Kong et al., Readout electronics for CSR-ETF silicon strip array detector system. Nucl. Sci. Tech. 25, 040402 (2014). https://doi.org/10.13538/j.1001-8042/nst.25.040402

    Article  Google Scholar 

  15. H.-B. Yang, X.-Q. Li, Y.-H. Yu et al., Design and evaluation of prototype readout electronics for nuclide detector in detector in Very Large Area Space Telescope. Nucl. Sci. Tech. 33, 65 (2022). https://doi.org/10.1007/s41365-022-01047-5

    Article  Google Scholar 

  16. Y.-Y. Li, C.-Y. Li, K. Hu, Design and development of multi-channel front end electronics based on dual-polarity charge-to-digital converter for SiPM detector applications. Nucl. Sci. Tech. 34, 18 (2023). https://doi.org/10.1007/s41365-023-01168-5

    Article  Google Scholar 

  17. J. Kong, Y. Qian, H. Zhao et al., Development of the readout electronics for the HIRFL-CSR array detectors. J. Instrum. 14, P02012 (2019). https://doi.org/10.1088/1748-0221/14/02/P02012

    Article  Google Scholar 

  18. S.W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, 2nd edn. (California Technical Publishing, 1999)

  19. H.N. Liu, Study of Neutron-Proton Correlations and 3N Forces in \(^{12}\)C. Ph.D. Thesis, Peking University (2015)

  20. A. Syntfeld-Każuch, M. Moszyński, Ł. Świderski et al., Light pulse shape dependence on \(\gamma\)-ray Energy in CsI(Tl). IEEE Trans. Nucl. Sci. 55, 1246 (2008). https://doi.org/10.1109/TNS.2008.922805

    Article  ADS  Google Scholar 

  21. X. Lu, S. Gridin, R.T. Williams et al., Energy-dependent scintillation pulse shape and proportionality of decay components for CsI:Tl: modeling with transport and rate equations. Phys. Rev. Appl. 7, 014007 (2017). https://doi.org/10.1103/PhysRevApplied.7.014007

    Article  ADS  Google Scholar 

  22. R.S. Storey, W. Jack, A. Ward, The fluorescent decay of CsI(Tl) for particles of different ionization density. Proc. Phys. Soc. 72, 1 (1958). https://doi.org/10.1088/0370-1328/72/1/302

    Article  ADS  Google Scholar 

  23. H. Grassmann, E. Lorenz, H.-G. Moser, Properties of CsI(Tl) - renaissance of an old scintillation material. Nucl. Instrum. Methods Phys. Res. A 228, 323 (1985). https://doi.org/10.1016/0168-9002(85)90276-1

    Article  ADS  Google Scholar 

  24. P. Schotanus, R. Kamermans, P. Dorenbos, Scintillation characteristics of pure and Tl-doped CsI crystals. IEEE Trans. Nucl. Sci. 37, 177 (1990). https://doi.org/10.1109/23.106614

    Article  ADS  Google Scholar 

  25. S. Carboni, S. Barlini, L. Bardelli et al., Particle identification using the \(\Delta\)E-E technique and pulse shape discrimination with the silicon detectors of the FAZIA project. Nucl. Instrum. Methods Phys. Res. A 664, 251 (2012). https://doi.org/10.1016/j.nima.2011.10.061

    Article  ADS  Google Scholar 

  26. J. Alarja, A. Dauchy, A. Giorni et al., Charged particles identification with a CsI(Tl) scintillator. Nucl. Instrum. Methods Phys. Res. A 242, 352 (1986). https://doi.org/10.1016/0168-9002(86)90232-9

    Article  ADS  Google Scholar 

  27. S. Aiello, A. Anzalone, G. Cardella et al., Light response and particle identification with large CsI(Tl) crystals coupled to photodiodes. Nucl. Instrum. Methods Phys. Res. A 369, 50 (1996). https://doi.org/10.1016/0168-9002(95)00763-6

    Article  ADS  Google Scholar 

  28. W. Skulski, M. Momayezi, Particle identification in CsI(Tl) using digital pulse shape analysis. Nucl. Instrum. Methods Phys. Res. A 458, 759 (2001). https://doi.org/10.1016/S0168-9002(00)00938-4

    Article  ADS  Google Scholar 

  29. A. Savitzky, M.J.E. Golay, Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627 (1964). https://doi.org/10.1021/ac60214a047

    Article  ADS  Google Scholar 

  30. P. Marchand, L. Marmet, Binomial smoothing filter: a way to avoid some pitfalls of least-squares polynomial smoothing. Rev. Sci. Instrum. 54, 1034 (1983). https://doi.org/10.1063/1.1137498

    Article  ADS  Google Scholar 

  31. P.H.C. Eilers, A perfect smoother. Anal. Chem. 75, 3631 (2003). https://doi.org/10.1021/ac034173t7

    Article  Google Scholar 

  32. É. Barat, T. Dautremer, T. Montagu et al., A bimodal Kalman smoother for nuclear spectrometry. Nucl. Instrum. Methods Phys. Res. A 567, 350 (2006). https://doi.org/10.1016/j.nima.2006.05.243

    Article  ADS  Google Scholar 

  33. D.G. Abrecht, J.M. Schwantes, R.K. Kukkadapu et al., Real-time noise reduction for Mössbauer spectroscopy through online implementation of a modified Kalman filter. Nucl. Instrum. Methods Phys. Res. A 773, 66 (2015). https://doi.org/10.1016/j.nima.2014.10.053

    Article  ADS  Google Scholar 

  34. A. Geraci, I. Rech, E. Gatti et al., Shared baseline restoration at minimum noise for high resolution spectroscopy. Nucl. Instrum. Methods Phys. Res. A 482, 441 (2002). https://doi.org/10.1016/S0168-9002(01)01509-1

    Article  ADS  Google Scholar 

  35. E.M. Khilkevitch, A.E. Shevelev, I.N. Chugunov et al., Advanced algorithms for signal processing scintillation gamma ray detectors at high counting rates. Nucl. Instrum. Methods Phys. Res. A 977, 164309 (2020). https://doi.org/10.1016/j.nima.2020.164309

    Article  Google Scholar 

  36. J. Zhou, S. Liu, L. Kang et al., Research on the trigger system of readout electronics in HIRFL-CSR. Nucl. Electron. Detect. Technol. 33, 152 (2013)

    Google Scholar 

  37. M.A. Nelson, B.D. Rooney, D.R. Dinwiddie et al., Analysis of digital timing methods with BaF\(_{2}\) scintillators. Nucl. Instrum. Methods Phys. Res. A 505, 324 (2003). https://doi.org/10.1016/S0168-9002(03)01078-7

    Article  ADS  Google Scholar 

  38. A. Fallu-Labruyere, H. Tan, W. Henning et al., Time resolution studies using digital constant fraction discrimination. Nucl. Instrum. Methods Phys. Res. A 579, 247 (2007). https://doi.org/10.1016/j.nima.2007.04.048

    Article  ADS  Google Scholar 

  39. L. Bardelli, G. Poggi, M. Bini et al., Time measurements by means of digital sampling techniques: a study case of 100 ps FWHM time resolution with a 100 MSample/s, 12 bit digitizer. Nucl. Instrum. Methods Phys. Res. A 521, 480 (2004). https://doi.org/10.1016/j.nima.2003.10.106

    Article  ADS  Google Scholar 

  40. K. Wang, S. Samaranayake, A. Estrade, Investigation of a digitizer for the plastic scintillation detectors of time-of-flight mass measurements. Nucl. Instrum. Methods Phys. Res. A 1027, 166050 (2022). https://doi.org/10.1016/j.nima.2021.166050

    Article  Google Scholar 

  41. S. Saxena, A.I. Hawari, Investigation of FPGA-based real-time adaptive digital pulse shaping for high-count-rate applications. IEEE Trans. Nucl. Sci. 64, 1733 (2017). https://doi.org/10.1109/TNS.2017.2692219

    Article  ADS  Google Scholar 

  42. V. Radeka, Optimum signal-processing for pulse-amplitude spectrometry in the presence of high-rate effects and noise. IEEE Trans. Nucl. Sci. 15, 455 (1968). https://doi.org/10.1109/TNS.1968.4324970

    Article  ADS  Google Scholar 

  43. Y. Qian, H. Zhang, L. Fenhua et al., Parameter optimization and pile-up identification of cusp shaping for nuclear pulse signal. Nucl. Techn. 44(11), 110402 (2021). https://doi.org/10.11889/j.0253-3219.2021.hjs.44.110402

    Article  Google Scholar 

  44. M. Bogovac, C. Csato, Implementation of a truncated cusp filter for real-time digital pulse processing in nuclear spectrometry. Nucl. Instrum. Methods Phys. Res. A 694, 101 (2012). https://doi.org/10.1016/j.nima.2012.07.042

    Article  ADS  Google Scholar 

  45. V. Radeka, Trapezoidal filter of signals from large germanium detectors at high rates. Nucl. Instrum. Methods 99, 525 (1972). https://doi.org/10.1016/0029-554X(72)90666-0

    Article  ADS  Google Scholar 

  46. V.T. Jordanov, G.F. Knoll, Digital synthesis of pulse shapes in real time for high resolution radiation spectroscopy. Nucl. Instrum. Methods Phys. Res. A 345, 337 (1994). https://doi.org/10.1016/0168-9002(94)91011-1

    Article  ADS  Google Scholar 

  47. C. Imperiale, A. Imperiale, On nuclear spectrometry pulses digital shaping and processing. Measurement 30, 49 (2001). https://doi.org/10.1016/S0263-2241(00)00057-9

    Article  ADS  Google Scholar 

  48. H.-Q. Zhang, L.-Q. Ge, B. Tang et al., Optimal choice of trapezoidal shaping parameters in digital nuclear spectrometer system. Nucl. Sci. Tech. 24, 060407 (2013). https://doi.org/10.13538/j.1001-8042/nst.2013.06.011

    Article  Google Scholar 

  49. A. Georgiev, W. Gast, Digital pulse processing in high resolution, high throughput gamma-ray spectroscopy. IEEE Trans. Nucl. Sci. 40, 770 (1993). https://doi.org/10.1109/23.256659

    Article  ADS  Google Scholar 

  50. J. Stein, F. Scheuer, W. Gast et al., X-ray detectors with digitized preamplifiers. Nucl. Instrum. Methods Phys. Res. B 113, 141 (1996). https://doi.org/10.1016/0168-583X(95)01417-9

    Article  ADS  Google Scholar 

  51. M. Bendel, R. Gernhäuser, W.F. Henning et al., RPID—A new digital particle identification algorithm for CsI(Tl) scintillators. Eur. Phys. J. A 49, 69 (2013). https://doi.org/10.1140/epja/i2013-13069-8

    Article  ADS  Google Scholar 

  52. M. Nakhostin, Recursive algorithms for real-time digital CR-(RC)\(^{n}\) pulse shaping. IEEE Trans. Nucl. Sci. 58, 2378 (2011). https://doi.org/10.1109/TNS.2011.2164556

    Article  ADS  Google Scholar 

  53. Y. Liu, J. Zhang, L. Liu et al., Implementation of real-time digital CR-RC\(^{m}\) shaping filter on FPGA for gamma-ray spectroscopy. Nucl. Instrum. Methods Phys. Res. A 906, 1 (2018). https://doi.org/10.1016/j.nima.2018.05.020

    Article  ADS  Google Scholar 

  54. H.-Q. Zhang, Z.-D. Li, B. Tang et al., Optimal parameter choice of CR-RC\(^{m}\) digital filter in nuclear pulse processing. Nucl. Sci. Tech. 30, 108 (2019). https://doi.org/10.1007/s41365-019-0638-7

    Article  Google Scholar 

  55. J. Kamleitner, S. Coda, S. Gnesin et al., Comparative analysis of digital pulse processing methods at high count rates. Nucl. Instrum. Methods Phys. Res. A 736, 88 (2014). https://doi.org/10.1016/j.nima.2013.10.023

    Article  ADS  Google Scholar 

  56. M. Moszyński, D. Wolski, T. Ludziejewski et al., Particle identification by digital charge comparison method applied to CsI(Tl) crystal coupled to photodiode. Nucl. Instrum. Methods Phys. Res. A 336, 587 (1993). https://doi.org/10.1016/0168-9002(93)91267-Q

    Article  ADS  Google Scholar 

  57. Y. Kaschuck, B. Esposito, Neutron/\(\gamma\)-ray digital pulse shape discrimination with organic scintillators. Nucl. Instrum. Methods Phys. Res. A 551, 420 (2005). https://doi.org/10.1016/j.nima.2005.05.071

    Article  ADS  Google Scholar 

  58. J.-Q. Faisal, J.-L. Lou, Z.-H. Li et al., A pulse shape discrimination of CsI(Tl) crystal with \(^{6}\)He beam. Nucl. Sci. Tech. 21, 35 (2010). https://doi.org/10.13538/j.1001-8042/nst.21.35-38

    Article  Google Scholar 

  59. C.-L. Lan, X.-C. Ruan, G. Liu et al., Particle identification using CsI(Tl) crystal with three different methods. Nucl. Sci. Tech. 19, 354 (2008). https://doi.org/10.1016/S1001-8042(09)60018-X

    Article  Google Scholar 

  60. S.D. Jastaniah, P.J. Sellin, Digital techniques for n/\(\gamma\) pulse shape discrimination and capture-gated neutron spectroscopy using liquid scintillators. Nucl. Instrum. Methods Phys. Res. A 517, 202 (2004). https://doi.org/10.1016/j.nima.2003.08.178

    Article  ADS  Google Scholar 

  61. R.A. Winyard, J.E. Lutkin, G.W. McBeth, Pulse shape discrimination in inorganic and organic scintillators. I. Nucl. Instrum. Methods 95, 141 (1971). https://doi.org/10.1016/0029-554X(71)90054-1

    Article  ADS  Google Scholar 

  62. R.A. Winyard, G.W. McBeth, Pulse shape discrimination in inorganic and organic scintillators. II. Nucl. Instrum. Methods 98, 525 (1972). https://doi.org/10.1016/0029-554X(72)90238-8

    Article  ADS  Google Scholar 

  63. J.A. Biggerstaff, R.L. Becker, M.T. Mcellistrem, Charged particle discrimination in a CsI(Tl) detector. Nucl. Instrum. Methods 10, 327 (1961). https://doi.org/10.1016/S0029-554X(61)80127-4

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Yu-Hong Yu, Zhi-Yu Sun, and Shi-Tao Wang contributed to the general study conception, financial support, and supervision of this study. Tao Liu and Duo Yan contributed to the material preparation, algorithms investigation, FPGA programming, data collection, and formal data analysis. Hai-Sheng Song supervised the results of this work and provided many helpful suggestions on the algorithms. Shu-Wen Tang, Fen-Hua Lu, and Xue-Heng Zhang contributed to the experiment design and primary data analysis. Xian-Qin Li, Hai-Bo Yang, and Cheng-Xin Zhao constructed the DAQ system and wrote the related software. Fang Fang, Yong-Jie Zhang, and Shao-Bo Ma contributed to the material preparation. Hooi-Jin Ong managed the research execution, reviewed the manuscript, and gave many useful suggestions. The first draft of the manuscript was written by Duo Yan, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hai-Sheng Song or Duo Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

This work was supported by the Open Research Project of CAS Large Research Infrastructures, CAS Key Technology Talent Program, and National Natural Science Foundations of China (Nos. U2031206 and 12273086).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Song, HS., Yu, YH. et al. Toward real-time digital pulse process algorithms for CsI(Tl) detector array at external target facility in HIRFL-CSR. NUCL SCI TECH 34, 131 (2023). https://doi.org/10.1007/s41365-023-01272-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01272-6

Keywords

Navigation