Skip to main content
Log in

Resolution analysis of thermal neutron radiography based on accelerator-driven compact neutron source

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Owing to the immobility of traditional reactors and spallation neutron sources, the demand for compact thermal neutron radiography (CTNR) based on accelerator neutron sources has rapidly increased in industrial applications. Recently, thermal neutron radiography experiments based on a D-T neutron generator performed by Hefei Institutes of Physical Science indicated a significant resolution deviation between the experimental results and the values calculated using the traditional resolution model. The experimental result was up to 23% lower than the calculated result, which hinders the achievement of the design goal of a compact neutron radiography system. A GEANT4 Monte Carlo code was developed to simulate the CTNR process, aiming to identify the key factors leading to resolution deviation. The effects of a low collimation ratio and high-energy neutrons were analyzed based on the neutron beam environment of the CTNR system. The results showed that the deviation was primarily caused by geometric distortion at low collimation ratios and radiation noise induced by high-energy neutrons. Additionally, the theoretical model was modified by considering the imaging position and radiation noise factors. The modified theoretical model was in good agreement with the experimental results, and the maximum deviation was reduced to 4.22%. This can be useful for the high-precision design of CTNR systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://www.doi.org/10.57760/sciencedb.j00186.00071 and http://resolve.pid21.cn/31253.11.sciencedb.j00186.00071.

References

  1. M.W. Johnson, The industrial uses of neutrons. Appl. Radiat. Isot. 46(6–7), 673–680 (1995)

    Article  Google Scholar 

  2. Y.P. Cheng, R. Han, Z.W. Li et al., Imaging internal density structure of the Laoheishan volcanic cone with cosmic ray muon radiography. Nucl. Sci. Tech. 33(7), 88 (2022). https://doi.org/10.1007/s41365-022-01072-4

    Article  Google Scholar 

  3. F.C. De Beer, M. Coetzer, D. Fendeis et al., Neutron radiography and other NDE tests of main rotor helicopter blades. Appl. Radiat. Isotopes. 61(4), 609–616 (2004). https://doi.org/10.1016/j.apradiso.2004.03.088

    Article  Google Scholar 

  4. J.G. Fantidis, The use of electron linac for high quality thermal neutron radiography unit. Nucl. Instrum. Meth. A. 908, 361–366 (2018). https://doi.org/10.1016/j.nima.2018.08.114

    Article  ADS  Google Scholar 

  5. P. Hardt, H. Röttger, Neutron radiography handbook: nuclear science and technology. Springer Sci. Bus. Med. 21, 1–30 (2012)

    Google Scholar 

  6. Z.Y. Guo, Y. Zou, Y. Lu et al., Neutron radiography with compact accelerator at Peking University: problems and solutions. Physcs. Proc. 26, 70–78 (2012). https://doi.org/10.1016/j.phpro.2012.03.011

    Article  ADS  Google Scholar 

  7. S.R. Malkawi, N. Ahmad, Prediction and measurement of neutron energy spectrum in a material test research reactor. Ann. Nucl. Energy. 27(4), 311–327 (2000). https://doi.org/10.1016/s0306-4549(99)00057-2

    Article  Google Scholar 

  8. D.P. Kozlenko, S.E. Kichanov, E.V. Lukin et al., Neutron radiography facility at IBR-2 high flux pulsed reactor: first results. Physcs. Proc. 69, 87–91 (2015). https://doi.org/10.1016/j.phpro.2015.07.012

    Article  ADS  Google Scholar 

  9. K.M. Nazarov, B. Muhametuly, E.A. Kenzhin et al., New neutron radiography and tomography facility TITAN at the WWR-K reactor. Nucl. Instrum. Meth. A. 982, 164572 (2020). https://doi.org/10.1016/j.nima.2020.164572

    Article  Google Scholar 

  10. K.K. Mishra, A.I. Hawari, V.H. Gillette, Design and performance of a thermal neutron imaging facility at the North Carolina State University PULSTAR reactor. IEEE Trans. Nucl. Sci. 53(6), 3904–3911 (2006). https://doi.org/10.1109/tns.2006.884323

    Article  ADS  Google Scholar 

  11. Y. Kiyanagi, Neutron imaging at compact accelerator-driven neutron sources in Japan. J. Imag. 4(4), 55 (2018). https://doi.org/10.3390/jimaging4040055

    Article  Google Scholar 

  12. S. Bishnoi, P.S. Sarkar, R.G. Thomas et al., Preliminary experimentation of fast neutron radiography with DT neutron generator at BARC. J. Nondestruct. Eval. 38(1), 1–9 (2019). https://doi.org/10.1007/s10921-018-0550-9

    Article  Google Scholar 

  13. Z.Y. Guo, Y. Lu, Y. Zou et al., Progress of PKUNIFTY–a RFQ accelerator based neutron imaging facility at Peking University. Physcs. Proc. 43, 79–85 (2013). https://doi.org/10.1016/j.phpro.2013.03.010

    Article  ADS  Google Scholar 

  14. S. Wang, W. Bin, B. Liu et al., A moveable neutron imaging facility using DT neutron source based on a compact accelerator. Appl. Radiat. Isotopes. 169, 109564 (2021). https://doi.org/10.1016/j.apradiso.2020

    Article  Google Scholar 

  15. H.Z. Bilheux, R. McGreevy, I.S. Anderson (ed.), Neutron imaging and applications (2009). https://doi.org/10.1007/978-0-387-78693-3

    Article  Google Scholar 

  16. Y. Wang, S.B. Han, L.F. He et al., Calculation methods for neutron radiography spatial resolution. Nucl. Tech. 354, 275–280 (2012). https://doi.org/10.11889/j.0253-3219.2014.hjs.37.040502. (in Chinese)

    Article  Google Scholar 

  17. L.F. He, S.B. Han, Y. Wang et al., Calculation and analysis of the neutron radiography spatial resolution. Nucl. Tech. 37, 040502 (2014). https://doi.org/10.11889/j.0253-3219.2014.hjs.37.040502. (in Chinese)

    Article  Google Scholar 

  18. S. Agostinelli, J. Allison, K. Amako et al., GEANT4—a simulation toolkit. Nucl. Instrum. Meth. A. 506, 250–303 (2003). https://doi.org/10.1016/s0168-9002(03)01368-8

    Article  ADS  Google Scholar 

  19. J. Allison, K. Amako, J. Apostolakis et al., Recent developments in Geant4. Nucl. Instrum. Meth. A. 835, 186–225 (2016). https://doi.org/10.1016/j.nima.2016.06.125

    Article  ADS  Google Scholar 

  20. Y. Lu, Z. Xu, L.X. Zhang et al., GEANT4 simulations of the neutron beam characteristics for 9be/7li targets bombarded by the low energy protons. Nucl. Instrum. Meth. B. 506, 8–14 (2021). https://doi.org/10.1016/j.nimb.2021.09.005

    Article  ADS  Google Scholar 

  21. A. Datta, A.I. Hawari, Geant4 analysis of a thermal neutron real-time imaging system. IEEE. T. Nucl. Sci. 64(7), 1652–1658 (2017). https://doi.org/10.1109/tns.2017.2708031

    Article  ADS  Google Scholar 

  22. J. Guo, T. Bucherl, Y. Zou et al., Comparison of the performance of different converters for neutron radiography and tomography using fission neutrons. Nucl. Instrum. Meth. A. 605, 69–72 (2009). https://doi.org/10.1016/j.nima.2009.01.129

    Article  ADS  Google Scholar 

  23. S.Y. Luo, Y.H. Huang, X.T. Ji et al., Hybrid model for muon tomography and quantitative analysis of image quality. Nucl. Sci. Tech. 33(7), 81 (2022). https://doi.org/10.1007/s41365-022-01070-6

    Article  Google Scholar 

  24. A.A. Harms, B.K. Garside, P.S.W. Chan et al., Edge-spread function in neutron radiography. J. Appl. Phys. 43(9), 3863–3867 (1972). https://doi.org/10.1063/1.1661825

    Article  ADS  Google Scholar 

  25. S. Steven, Digital Signal Processing: A Practical Guide for Engineers and Scientists (Elsevier, Amsterdam, 2013)

    Google Scholar 

  26. E. Gronenschild, Correction for geometric image distortion in the x-ray imaging chain: Local technique versus global technique. Med. Phys. 26(12), 2602–2616 (1999). https://doi.org/10.1118/1.598800

    Article  Google Scholar 

  27. J. Qin, J.Y. Ni, L.F. Ye et al., Thin-film approximate point scattered function and its application to neutron radiography. Nucl. Sci. Tech. 33(9), 109 (2022). https://doi.org/10.1007/s41365-022-01094-y

    Article  Google Scholar 

  28. A. Khorshidi, H. Ghafoori-Fard, M. Sadeghi, Epithermal neutron formation for boron neutron capture therapy by adiabatic resonance crossing concept. Int. J. Mod. Phys. E. 23(05), 1450032 (2014). https://doi.org/10.1142/s0218301314500323

    Article  ADS  Google Scholar 

  29. A. Khorshidi, M. Sadeghi, A. Pazirandeh et al., Radioanalytical prediction of radiative capture in 99Mo production via transmutation adiabatic resonance crossing by cyclotron. J. Radioanal. Nucl. Ch. 299(1), 303–310 (2014). https://doi.org/10.1007/s10967-013-2749-7

    Article  Google Scholar 

  30. F. James, F. Ziegler, J.P. Biersack et al., SRIM, the stopping and range of ions in matter. Nucl. Instrum. Meth. B. 268, 1818–1823 (2008). https://doi.org/10.1016/j.nimb.2010.02.091

    Article  Google Scholar 

  31. X.N. Cao, Z.D. Zhang, S.Z. Chen et al., Application of improved self-adaptive weighted median filtering algorithm in neutron radiography, in 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP). IEEE, pp. 50–55 (2021). https://doi.org/10.1109/icsp51882.2021.9408883

  32. J. Yu, S.Z. Chen, L.X. Zhang et al., Influence of CCD camera transient noise on imaging resolution and shielding requirement in neutron radiography. Atomic Energy Sci. Technol. 55, 7 (2021). https://doi.org/10.7538/yzk.2020.youxian.0855 (in Chinese)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Lian-Xin Zhang, Si-Ze Chen and Zao-Di Zhang. The first draft of the manuscript was written by Lian-Xin Zhang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Si-Ze Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

This work was supported by the Nuclear Energy Development Project of China (No. [2019]1342) and the Presidential Foundation of HFIPS (No. YZJJ2022QN40).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, LX., Chen, SZ., Zhang, ZD. et al. Resolution analysis of thermal neutron radiography based on accelerator-driven compact neutron source. NUCL SCI TECH 34, 76 (2023). https://doi.org/10.1007/s41365-023-01227-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01227-x

Keywords

Navigation