Skip to main content
Log in

The role of deformations and orientations in an alpha ternary fission of Thorium

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The alpha ternary fission half-lives of thorium isotopes have been studied using the Coulomb and proximity potential models. The role of the deformation effects and the angle of orientation were included during the evaluation of the total potential. Fragment combinations were identified using cold valley plots of the driving potential. The half-lives and yields were evaluated using the penetration probability. The dependence of the logarithmic half-lives on different angles of orientation was studied. The evaluated alpha ternary fission yield was compared with that of the available experiments with and without deformations. The half-lives obtained in the present work were compared with those of the available data. Possible alpha ternary fission fragments were identified in the isotopes of thorium. The alpha ternary fission half-lives were compared to the binary fission half-lives. The binary fission half-lives are dominant in the \({^{209-225}}\)Th nuclei, and the ternary fission half-lives are dominant in the isotopes of the \({^{226-238}}\)Th nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.T. Tsien, Z.W. HO, L. Vigneron et al., Ternary and quaternary fission of uranium nuclei. Nature 159(4049), 773–774 (1947). https://doi.org/10.1038/159773a0

    Article  ADS  Google Scholar 

  2. S.T. Tsien, Sur la bipartition et la tripartition des éléments lourds. J. Phys. Radium 9, 6–19 (1948). https://doi.org/10.1051/jphysrad:01948009010600

    Article  Google Scholar 

  3. H.C. Manjunatha, N. Sowmya, Competition between spontaneous fission ternary fission cluster decay and alpha decay in the super heavy nuclei of Z= 126. Nucl. Phys. A 969, 68–82 (2018). https://doi.org/10.1016/j.nuclphysa.2017.09.008

    Article  ADS  Google Scholar 

  4. A.V. Ramayya, J.H. Hamilton, J.K. Hwang et al., Cold (neutronless) \(\alpha\) ternary fission of \(^{252}\text{ Cf }\). Phys. Rev. C 57(5), 2370 (1998). https://doi.org/10.1103/PhysRevC.57.2370

    Article  ADS  Google Scholar 

  5. A.V. Ramayya, J.K. Hwang, J. Hamilton et al., Observation of \(^{10}\)Be emission in the cold ternary spontaneous fission of \(^{252}\text{ Cf }\). Phys. Rev. Lett. 81(5), 947 (1998). https://doi.org/10.1103/PhysRevLett.81.947

    Article  ADS  Google Scholar 

  6. Y.N. Kopatch, M. Mutterer, D. Schwalm et al., \(^{5}{\rm He},\)\(^{7}{\rm He},\) and \(^{8}{\rm Li}\)\({(E^{*}=2.26 {\rm MeV})}\) intermediate ternary particles in the spontaneous fission of \(^{252}{\rm Cf}\). Phys. Rev. C 65(4), 044614 (2002). https://doi.org/10.1103/PhysRevC.65.044614

    Article  ADS  Google Scholar 

  7. G.M. Ter-Akopian, A.V. Daniel, A.S. Fomichev et al., New data on the ternary fission of \(^{252} \text{ Cf }\) from the Gammasphere facility. Phys. Atom. Nucl. 67(10), 1860–1865 (2004). https://doi.org/10.1134/1.1811191

    Article  ADS  Google Scholar 

  8. A. Sandulescu, F. Carstoiu, S. Misicu et al., Neutronless \(^{10}Be\)-accompanied ternary fission of \(^{252}Cf\). J. Phys. G Nucl. Partic. 24(1), 181 (1998). https://iopscience.iop.org/0954-3899/24/1/022

  9. D.N. Poenaru, W. Greiner, J.H. Hamilton et al., Multicluster accompanied fission. Phys. Rev. C 59(6), 3457–346 (1999). https://doi.org/10.1103/PhysRevC.59.3457

    Article  ADS  Google Scholar 

  10. S. Missicu, P.O. Hess, W. Greiner et al., Collective spectra of \(\alpha\)-like giant trinuclear molecules. Phys. Rev. C 63(5), 054308 (2001). https://doi.org/10.1103/PhysRevC.63.054308

    Article  ADS  Google Scholar 

  11. G.M. Raisbeck, T.D. Thomas, Light nuclei emitted in the fission of \(^{252}\text{ Cf }\). Phys. Rev. 172(4), 1272 (1968). https://doi.org/10.1103/PhysRev.172.1272

    Article  ADS  Google Scholar 

  12. M. Balasubramaniam, C. Karthikraj, S. Selvaraj et al., Ternary-fission mass distribution of \(^{252}\text{ Cf }\): a level-density approach. Phys. Rev. C 90(5), 054611 (2014). https://doi.org/10.1103/PhysRevC.90.054611

    Article  ADS  Google Scholar 

  13. K. Manimaran, M. Balasubramaniam, Ternary fission fragmentation of \(^{252}\text{ Cf }\) for all possible third fragments. Europ. Phys. J. A 45(3), 293–300 (2010). https://doi.org/10.1140/epja/i2010-11000-7

    Article  ADS  Google Scholar 

  14. P. Jesinger, A. Kötzle, A.M. Gagarski et al., Observation of a triple correlation in ternary fission: is time reversal invariance violated? Nucl. Instrum. Meth. A 440(3), 618–625 (2000). https://doi.org/10.1016/S0168-9002(99)01051-7

    Article  ADS  Google Scholar 

  15. H.C. Manjunatha, N. Sowmya, K.N. Sidhar et al., A study of probable alpha-ternary fission fragments of \(^{257}\text{ Fm }\). J. Radio. Nucl. Chem 314(2), 991–999 (2017). https://doi.org/10.1007/s10967-017-5450-4

    Article  Google Scholar 

  16. H.C. Manjunatha, K.N. Sridhar, N. Sowmya et al., Investigations of the synthesis of the superheavy element \(Z=122\). Phys. Rev. C 98(2), 024308 (2018). https://doi.org/10.1103/PhysRevC.98.024308

    Article  ADS  Google Scholar 

  17. H.C. Manjunatha, N. Sowmya, Decay modes of superheavy nuclei \(Z=124\). Intern. J. Mod. Phys. E 27(05), 1850041 (2018). https://doi.org/10.1142/S0218301318500416

    Article  ADS  Google Scholar 

  18. E. Cheifetz, B. Eylon, E. Fraenkel et al., Emission of the \(^{5}{\rm He}\) in the Spontaneous Fission of \(^{252}{\rm Cf}\). Phys. Rev. Lett. 29(12), 805–808 (1972). https://doi.org/10.1103/PhysRevLett.29.805

    Article  ADS  Google Scholar 

  19. A.M. Nagaraja, H.C. Manjunatha, N. Sowmya et al., Heavy particle radioactivity of superheavy element \(Z= 126\). Nucl. Phys. A 1015, 122306 (2021). https://doi.org/10.1103/PhysRevLett.29.805

    Article  Google Scholar 

  20. N. Sowmya, H.C. Manjunatha, Competition between different decay modes of superheavy element \(Z= 116\) and synthesis of possible isotopes. Braz. J. Phys. 49(6), 874–886 (2019). https://doi.org/10.1007/s13538-019-00710-4

    Article  ADS  Google Scholar 

  21. G.R. Sridhar, H.C. Manjunatha, N. Sowmya et al., Atlas of cluster radioactivity in actinide nuclei. Eur. Phys. J. Plus 135(3), 1–28 (2020). https://doi.org/10.1140/epjp/s13360-020-00302-1

    Article  Google Scholar 

  22. N. Sowmya, H.C. Manjunatha, P.S. Damodara Gupta et al., Competition between cluster and alpha decay in odd Z superheavy nuclei \(111\le Z \le 125\). Braz. J. Phys. 51(1), 99–135 (2021). https://doi.org/10.1007/s13538-020-00801-7

    Article  ADS  Google Scholar 

  23. H. Cheng, R.L. Edwards, J. Hoffa et al., The half-lives of uranium-234 and thorium-230. Chem. Geo. 169(1–2), 17–33 (2000). https://doi.org/10.1016/S0009-2541(99)00157-6

    Article  ADS  Google Scholar 

  24. O. Häusser, W. Witthuhn, T.K. Alexander et al., Short-lived \(\alpha\) emitters of thorium: new isotopes \(^{218-220}{\rm Th}\). Phys. Rev. Lett. 31(5), 323–326 (1973). https://doi.org/10.1103/PhysRevLett.31.323

    Article  ADS  Google Scholar 

  25. W.A. Yahya, B.J. Falaye, Alpha decay study of Th isotopes using a double-folding model with NN interactions derived from relativistic mean field theory. Nucl. Phys. A 1015, 122311 (2021). https://doi.org/10.1016/j.nuclphysa.2021.122311

    Article  Google Scholar 

  26. M.R. Pahlavani, N. Karamzadeh, Partial \(\alpha\)-decay half-lives of ground to ground and ground to excited states of Thorium family. Chin. J. Phys. 56(4), 1727–1733 (2018). https://doi.org/10.1016/j.cjph.2018.05.014

    Article  Google Scholar 

  27. F. Ghorbani, S.A. Alavi, V. Dehghani, Temperature dependence of the alpha decay half-lives of even-even Th isotopes. Nucl. Phys. A 1002, 121947 (2020). https://doi.org/10.1016/j.nuclphysa.2020.121947

    Article  Google Scholar 

  28. J.B. Roberto, C.W. Alexander, R.A. Boll et al., Actinide targets for the synthesis of super-heavy elements. Nucl. Phys. A 944, 99–116 (2015). https://doi.org/10.1016/j.nuclphysa.2015.06.009

    Article  ADS  Google Scholar 

  29. S. Hofmann, Synthesis of superheavy elements using radioactive beams and targets. Prog. Part. Nucl. Phys. 46(1), 293–302 (2001). https://doi.org/10.1016/S0146-6410(01)00134-X

    Article  ADS  Google Scholar 

  30. M. Wang, W.J. Huang, F.G. Kondev et al., The AME 2020 atomic mass evaluation (II). Tables, graphs, and References. Chin. Phys. C 45(3), 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf

    Article  ADS  Google Scholar 

  31. N. Sowmya, H.C. Manjunatha, Investigations on different decay modes of darmstadtium. Phys. Part. Nucl. Lett. 17(3), 370–378 (2020). https://doi.org/10.1134/S1547477120030140

    Article  Google Scholar 

  32. N. Sowmya, H.C. Manjunatha, N. Dhananjaya et al., Competition between binary fission, ternary fission, cluster radioactivity and alpha decay of \(^{281}\text{ Ds }\). J. Radio. Nucl. Chem. 323(3), 1347–1351 (2020). https://doi.org/10.1007/s10967-019-06706-3

    Article  Google Scholar 

  33. G.R. Sridhara, H.C. Manjunatha, K.N. Sridhar et al., Systematic study of the \(\alpha\) decay properties of actinides. Pramana 93(5), 1–14 (2019). https://doi.org/10.1007/s12043-019-1845-9

    Article  Google Scholar 

  34. H.C. Manjunatha, S. Alfred Cecil Raj, A.M. Nagaraja et al., Cluster radioactivity in superheavy nuclei 299-306122. J. Nucl. Phys. Mater. Sci. Radiat. Appl. 8(1), 55–63 (2020). https://doi.org/10.15415/jnp.2020.81007

    Article  ADS  Google Scholar 

  35. N. Sowmya, H.C. Manjunatha, P.S. DamodaraGupta, Competition between decay modes of superheavy nuclei \(^{281-310}\)Og. Int. J. Mod. Phys. E 29(10), 2050087 (2020). https://doi.org/10.1142/S0218301320500871

    Article  ADS  Google Scholar 

  36. G.L. Zhang, Y.J. Yao, M.F. Guo et al., Comparative studies for different proximity potentials applied to large cluster radioactivity of nuclei. Nucl. Phys. A 951, 86–96 (2016). https://doi.org/10.1103/PhysRevC.81.044608

    Article  ADS  Google Scholar 

  37. D.N. Poenaru, W. Greiner, J.H. Hamilton et al., Nuclear molecules in ternary fission. Acta Phys. Hung. A 14(1), 285–295 (2001). https://doi.org/10.1556/APH.14.2001.1-4.27

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Sowmya or H. C. Manjunatha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahesh Babu, A.V., Sowmya, N., Manjunatha, H.C. et al. The role of deformations and orientations in an alpha ternary fission of Thorium. NUCL SCI TECH 33, 67 (2022). https://doi.org/10.1007/s41365-022-01060-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-022-01060-8

Keywords

Navigation