Skip to main content
Log in

Influence of He ion irradiation on the microstructure and hardness of Ni–TiCNP composites

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

In the present study, samples of a titanium carbide nanoparticle-reinforced nickel alloy (Ni–TiCNP composite) were irradiated with 1 MeV He ions at 700 °C. The evolution of He bubbles and nanohardness was characterized using transmission electron microscopy (TEM) and nanoindentation, respectively. TEM images showed that the size and number density of He bubbles in the grains were affected by the He ion fluence. The number density first increased significantly and then decreased with increasing ion dose, while the size exhibited an inverse trend. Moreover, the swelling induced by He bubbles continuously increased with increasing ion dose. He bubbles also formed in the grain boundaries, interior of the TiC nanoparticles, and interfaces between the TiC nanoparticles and Ni matrix. Nanoindentation measurements indicated a decrease in nanohardness after irradiation, which is attributed to the disappearance of intrinsic dislocation lines caused by He ion irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.M. Chen, Carbon neutrality: toward a sustainable future. Innov. 2(3), 100127 (2021). https://doi.org/10.1016/j.xinn.2021.100127

    Article  Google Scholar 

  2. G. Chen, Q. Wang, X. Chu, Accelerated spread of Fukushima’s waste water by ocean circulation. Innov. 2(2), 100119 (2021). https://doi.org/10.1016/j.xinn.2021.100119

    Article  Google Scholar 

  3. M.W. Rosenthal, P.N. Haubenreich, R.B. Briggs, The Development Status of Molten-Salt Breeder Reactors. ORNL-4812 (Oak Ridge National Lab, USA, 1972), pp. 195–218

    Google Scholar 

  4. Y. Zou, X. Wang, P. Lyu et al., Microstructural characteristics of pure nickel foils under argon ion irradiation. Nucl. Tech. 44(8), 080203 (2021). https://doi.org/10.11889/j.0253-3219.2021.hjs.44.080203 (in Chinese)

    Article  Google Scholar 

  5. H.E. McCoy, Status of Materials Development for Molten Salt Reactors. ORNL-TM-5920 (Oak Ridge National Lab, USA, 1978), pp. 1–30

    Book  Google Scholar 

  6. C.-T. Fu, W. Yinling, X.-W. Chu et al., Grain boundary engineering for control of tellurium diffusion in GH3535 alloy. J. Nucl. Mater. 497, 76–83 (2017). https://doi.org/10.1016/j.jnucmat.2017.10.052

    Article  ADS  Google Scholar 

  7. G. Lei, S. Yang, R. Liu et al., The effect of He bubbles on the corrosion properties of nickel-based alloy in molten salt environment. Nucl. Tech. 42(4), 040602 (2019). https://doi.org/10.11889/j.0253-3219.2019.hjs.42.040602 (in Chinese)

    Article  Google Scholar 

  8. H.-S. Bao, Z.-H. Gong, Z.-Z. Chen et al., Evolution of precipitates in Ni–Co–Cr–W–Mo superalloys with different tungsten contents. Rare Met. 39(6), 716–724 (2020). https://doi.org/10.1007/s12598-020-01400-w

    Article  Google Scholar 

  9. M. Liu, J. Hou, F. Han et al., Effects of He ion irradiation on the corrosion performance of alloy GH3535 welded joint in molten FLiNaK. Corros. Sci. 146, 172–178 (2019). https://doi.org/10.1016/j.corsci.2018.10.038

    Article  ADS  Google Scholar 

  10. G. Lei, R. Xie, H. Huang et al., The effect of He bubbles on the swelling and hardening of UNS N10003 alloy. J. Alloys Comp. 746, 153–158 (2018). https://doi.org/10.1016/j.jallcom.2018.02.291

    Article  Google Scholar 

  11. H.F. Huang, W. Zhang, M. De Los Reyes et al., Mitigation of He embrittlement and swelling in nickel by dispersed SiC nanoparticles. Mater. Des. 90, 359–363 (2016). https://doi.org/10.1016/j.matdes.2015.10.147

    Article  Google Scholar 

  12. Z. Zhu, H. Huang, J. Liu et al., Helium-induced damage behavior in high temperature nickel-based alloys with different chemical composition. J. Nucl. Mater. 541, 152419 (2020). https://doi.org/10.1016/j.jnucmat.2020.152419

    Article  Google Scholar 

  13. Z. Zhu, H. Huang, O. Muránsky et al., On the irradiation tolerance of nano-grained Ni–Mo–Cr alloy: 1 MeV He+ irradiation experiment. J. Nucl. Mater. 544, 152694 (2021). https://doi.org/10.1016/j.jnucmat.2020.152694

    Article  Google Scholar 

  14. Fluoride-salt-cooled high temperature reactor (FHR) materials, fuels and components white paper. UCBTH-12-003. pp 1–163 (2013)

  15. S. Liu, X.-X. Ye, L. Jiang et al., Effect of tungsten content on the microstructure and tensile properties of Ni–xW–6Cr alloys. Mater. Sci. Eng. A 655, 269–276 (2016). https://doi.org/10.1016/j.msea.2016.01.010

    Article  Google Scholar 

  16. C. Yang, T. Wei, G. Zhu et al., Synergistic effect of Mo2C micro-particles and SiC nanoparticles on irradiation-induced hardening in dispersion-precipitation strengthened NiMo alloys. Scr. Mater. 189, 1–6 (2020). https://doi.org/10.1016/j.scriptamat.2020.07.058

    Article  ADS  Google Scholar 

  17. C. Yang, H.-F. Huang, M. De Los Reyes et al., Microstructures and tensile properties of ultrafine-grained Ni–(1–3.5) wt% SiCNP composites prepared by a powder metallurgy route. Acta. Metall. Sin. (Engl. Lett.) 28(7), 809–816 (2015). https://doi.org/10.1007/s40195-015-0261-5

    Article  Google Scholar 

  18. Y. Li, J. Li, C. Fu et al., Damage characteristics of selective laser melted 304L stainless steel under Xe ion irradiation. Nucl. Tech. 44(7), 9–16 (2021). https://doi.org/10.11889/j.0253-3219.2021.hjs.44.080203 (in Chinese)

    Article  Google Scholar 

  19. X. Zhou, H. Huang, R. Xie et al., The key role of ball milling time in the microstructure and mechanical property of Ni-TiCNP composites. J. Mater. Eng. Perform. 25(12), 5280–5288 (2016). https://doi.org/10.1007/s11665-016-2403-y

    Article  Google Scholar 

  20. Q. Xu, H.Y. Chen, L.M. Luo et al., Microstructural evolution in W-1%TiC alloy irradiated He ions at high temperatures. Tungsten 1(3), 229–235 (2019). https://doi.org/10.1007/s42864-019-00026-5

    Article  Google Scholar 

  21. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM—the stopping and range of ions in matter (2010). Nucl. Instrum. Methods B 268(11), 1818–1823 (2010). https://doi.org/10.1016/j.nimb.2010.02.091

    Article  ADS  Google Scholar 

  22. W. Kesternich, Helium trapping at dislocations, precipitates and grain boundaries. Radiat. Eff. 78(1–4), 261–273 (1983). https://doi.org/10.1080/00337578308207376

    Article  Google Scholar 

  23. A. Liu, H. Huang, J. Liu et al., Improvement of helium swelling resistance of nickel-based alloy via proper SiCNP dispersion. Mater. Today Commun. 26, 102011 (2021). https://doi.org/10.1016/j.mtcomm.2021.102011

    Article  Google Scholar 

  24. X.L. Zhou, H.F. Huang, R. Xie et al., Helium ion irradiation behavior of Ni-1wt.%SiCNP composite and the effect of ion flux. J. Nucl. Mater. 467, 848–854 (2015). https://doi.org/10.1016/j.jnucmat.2015.11.004

    Article  ADS  Google Scholar 

  25. L.K. Mansur, Theory and experimental background on dimensional changes in irradiated alloys. J. Nucl. Mater. 216, 97–123 (1994). https://doi.org/10.1016/0022-3115(94)90009-4

    Article  ADS  Google Scholar 

  26. J. Gao, H. Huang, X. Liu et al., A special coarsening mechanism for intergranular helium bubbles upon heating: a combined experimental and numerical study. Scr. Mater. 147, 93–97 (2018). https://doi.org/10.1016/j.scriptamat.2018.01.006

    Article  Google Scholar 

  27. J. Gao, L. Bao, H. Huang et al., Evolution law of helium bubbles in hastelloy N alloy on post-irradiation annealing conditions. Materials 9(10), 832 (2016). https://doi.org/10.3390/ma9100832

    Article  ADS  Google Scholar 

  28. H. Trinkaus, B.N. Singh, Helium accumulation in metals during irradiation—where do we stand? J. Nucl. Mater. 323(2), 229–242 (2003). https://doi.org/10.1016/j.jnucmat.2003.09.001

    Article  ADS  Google Scholar 

  29. M. Klimenkov, R. Lindau, U. Jäntsch et al., Effect of irradiation temperature on microstructure of ferritic-martensitic ODS steel. J. Nucl. Mater. 493, 426–435 (2017). https://doi.org/10.1016/j.jnucmat.2017.06.024

    Article  ADS  Google Scholar 

  30. L.M. Luo, Z.H. Zhao, G. Yao et al., Recent progress on preparation routes and performance evaluation of ODS/CDS-W alloys for plasma facing materials in fusion devices. J. Nucl. Mater. 548, 152857 (2021). https://doi.org/10.1016/j.jnucmat.2021.152857

    Article  Google Scholar 

  31. J. Chen, P. Jung, W. Hoffelner et al., Dislocation loops and bubbles in oxide dispersion strengthened ferritic steel after helium implantation under stress. Acta Mater. 56(2), 250–258 (2008). https://doi.org/10.1016/j.actamat.2007.09.016

    Article  ADS  Google Scholar 

  32. A. Hasegawa, M. Ejiri, S. Nogami et al., Effects of helium on ductile-brittle transition behavior of reduced-activation ferritic steels after high-concentration helium implantation at high temperature. J. Nucl. Mater. 386–388, 241–244 (2009). https://doi.org/10.1016/j.jnucmat.2008.12.102

    Article  ADS  Google Scholar 

  33. W.D. Nix, H. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46(3), 411–425 (1998). https://doi.org/10.1016/S0022-5096(97)00086-0

    Article  ADS  MATH  Google Scholar 

  34. G.M. Pharr, E.G. Herbert, Y. Gao, The indentation size effect: a critical examination of experimental observations and mechanistic interpretations. Ann. Rev. Mater. Res. 40(1), 271–292 (2010). https://doi.org/10.1146/annurev-matsci-070909-104456

    Article  ADS  Google Scholar 

  35. J. Wang, Z. Ma, C. Liu et al., Helium bubble evolution and deformation of single crystal α-Fe. J. Mater. Sci. 54(2), 1785–1796 (2019). https://doi.org/10.1007/s10853-018-2915-y

    Article  ADS  Google Scholar 

  36. H.C. Chen, D.H. Li, R.D. Lui et al., Ion irradiation induced disappearance of dislocations in a nickel-based alloy. Nucl. Instrum. Methods Phys. Res. Sect. B 377, 94–98 (2016). https://doi.org/10.1016/j.nimb.2016.04.030

    Article  ADS  Google Scholar 

  37. Q. Han, Y. Li, G. Ran et al., In-situ TEM observation of the evolution of helium bubbles & dislocation loops and their interaction in Pd during He+ irradiation. J. Mater. Sci. Technol. 87, 108–119 (2021). https://doi.org/10.1016/j.jmst.2021.01.069

    Article  Google Scholar 

  38. Y. Li, G. Ran, Y. Guo et al., The evolution of dislocation loop and its interaction with pre-existing dislocation in He+-irradiated molybdenum: in-situ TEM observation and molecular dynamics simulation. Acta Mater. 201, 462–476 (2020). https://doi.org/10.1016/j.actamat.2020.10.022

    Article  ADS  Google Scholar 

  39. Y. Li, L. Wang, G. Ran et al., In-situ TEM investigation of 30 keV he+ irradiated tungsten: Effects of temperature, fluence, and sample thickness on dislocation loop evolution. Acta Mater. 206, 116618 (2021). https://doi.org/10.1016/j.actamat.2020.116618

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Min Liu, Yong-Feng Yan, Zhen-Bo Zhu and He-Fei Huang. The first draft of the manuscript was written by Min Liu and He-Fei Huang commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to He-Fei Huang.

Additional information

This work was suported by the National Natural Science Foundation of China (Nos. 11705264, 11975304, 12022515, and 12175323).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Yan, YF., Zhu, ZB. et al. Influence of He ion irradiation on the microstructure and hardness of Ni–TiCNP composites. NUCL SCI TECH 32, 121 (2021). https://doi.org/10.1007/s41365-021-00961-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-021-00961-4

Keywords

Navigation