Skip to main content
Log in

Multi-modality measurement and comprehensive analysis of hepatocellular carcinoma using synchrotron-based microscopy and spectroscopy

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The visualization and data mining of tumor multidimensional information may play a major role in the analysis of the growth, metastasis, and microenvironmental changes of tumors while challenging traditional imaging and data processing techniques. In this study, a general trans-scale and multi-modality measurement method was developed for the quantitative diagnosis of hepatocellular carcinoma (HCC) using a combination of propagation-based phase-contrast computed tomography (PPCT), scanning transmission soft X-ray microscopy (STXM), and Fourier transform infrared micro-spectroscopy (FTIR). Our experimental results reveal the trans-scale micro-morphological HCC pathology and facilitate quantitative data analysis and comprehensive assessment. These results include some visualization features of PPCT-based tissue microenvironments, STXM-based cellular fine structures, and FTIR-based bio-macromolecular spectral characteristics during HCC tumor differentiation and proliferation. The proposed method provides multidimensional feature data support for constructing a high-accuracy machine learning algorithm based on a gray-level histogram, gray-gradient co-occurrence matrix, gray-level co-occurrence matrix, and back-propagation neural network model. Multi-dimensional information analysis and diagnosis revealed the morphological pathways of HCC pathological evolution and we explored the relationships between HCC-related feature changes in inflammatory microenvironments, cellular metabolism, and the stretching vibration peaks of biomolecules of lipids, proteins, and nucleic acids. Therefore, the proposed methodology has strong potential for the visualization of complex tumors and assessing the risks of tumor differentiation and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Liu, X. Ji, Y. Ma et al., Quantitative characterization and diagnosis via hard X-ray phase- contrast microtomography. Micro. Res. Tech. 81, 1173 (2018). https://doi.org/10.1002/jemt.23114

    Article  Google Scholar 

  2. P. Wang, Z. Chen, D. Xing et al., Multi-parameter characterization of atherosclerotic plaques based on optical coherence tomography, photoacoustic and viscoelasticity imaging. Opt. Express 28, 13761 (2020). https://doi.org/10.1364/OE.390874

    Article  ADS  Google Scholar 

  3. X. Ji, H. Liu, Y. Xing et al., Quantitative evaluation on 3D fetus morphology via X-ray grating based imaging technique. Int. J. Imaging Syst. Technol. 29, 677 (2019). https://doi.org/10.1002/ima.22354

    Article  Google Scholar 

  4. H. Tan, D. Wang, R. Li et al., A robust method for high-precision quantification of the complex three-dimensional vasculatures acquired by X-ray microtomography. J. Synchrotron Radiat. 23, 1216 (2016). https://doi.org/10.1107/S1600577516011498

    Article  Google Scholar 

  5. Y. Zhao, S. Yang, Y. Wang et al., In vivo blood viscosity characterization based on frequency-resolved photoacoustic measurement. Appl. Phys. Lett. 113, 143703 (2018). https://doi.org/10.1063/1.5039538

    Article  ADS  Google Scholar 

  6. C. Kamezawa, T. Numano, Y. Kawabata et al., X-ray elastography by visualizing propagating shear waves. Appl. Phys. Express (2020). https://doi.org/10.35848/1882-0786/ab7e06

    Article  Google Scholar 

  7. S. Yao, J. Fan, Z. Chen et al., Three-dimensional ultrastructural imaging reveals the nanoscale architecture of mammalian cells. IUCrJ 5, 141–149 (2018). https://doi.org/10.1107/S2052252517017912

    Article  Google Scholar 

  8. J.Z. Hu, T.D. Wu, Z. Lei et al., Visualization of microvasculature by x-ray in-line phase contrast imaging in rat spinal cord. Phys. Med. Biol. 57, N55 (2012). https://doi.org/10.1088/0031-9155/57/5/N55

    Article  Google Scholar 

  9. F. Wang, P. Zhou, K. Li et al., Sensitive imaging of intact micro-vessels in vivo with synchrotron radiation. IUCrJ 7, 793 (2020). https://doi.org/10.1107/S2052252520008234

    Article  Google Scholar 

  10. G. Wei, Y. Liu, X. Ji et al., Micro-morphological feature visualization auto-classification. Cancer Med. 10, 2317 (2020). https://doi.org/10.1002/cam4.3796

    Article  Google Scholar 

  11. J. Xiu, Y. Liu, B. Wang et al., Quantitative toxicological study of dose-dependent arsenic-induced cells via synchrotron-based STXM and FTIR measurement. Analyst 145, 4560 (2021). https://doi.org/10.1039/d0an00346h

    Article  ADS  Google Scholar 

  12. Q. Yang, B. Deng, G. Du et al., X-ray fluorescence computed tomography with absorption correction for biomedical samples. X-Ray Spectrom. 43, 278 (2014). https://doi.org/10.1002/xrs.2550

    Article  ADS  Google Scholar 

  13. N.S. Farrag, A.M. Amin, Preliminary evaluation of the radiotherapeutic efficacy of 131I-atorvastatin in rats with hepatocellular carcinoma. Nucl. Sci. Tech. 31(11), 106 (2020). https://doi.org/10.1007/s41365-020-00819-1

    Article  Google Scholar 

  14. Y. Yin, K. Luo, Z. Xie et al., An incompatibility problem and solution of multimodal image-guided radiotherapy based on domestic equipment. Nucl. Tech. 44, 030301 (2021). https://doi.org/10.11889/j.0253-3219.2021.hjs.44.030301 (in Chinese)

    Article  Google Scholar 

  15. Y. Zhou, X. Gao, C. Liu et al., The elements and specification of 18F-FDG PET-CT and PET-MR tumor imaging report in Shanghai. Nucl. Tech. 44, 010001 (2021). https://doi.org/10.11889/j.0253-3219.2021.hjs.44.010001 (in Chinese)

    Article  Google Scholar 

  16. Y. Yang, N. Li, Bioinformatic analysis of differentially expressed genes in tumor-associated fibroblasts after ionizing radiation. J. Radiat. Res. Radiat. Process. 38(1), 32–41 (2020). https://doi.org/10.11889/j.1000-3436.2020.rrj.38.010302 (in Chinese)

    Article  Google Scholar 

  17. B. Li, K. Hu, X. Li, Automated radiosynthesis and preliminary Micro-PET/CT imaging of [18F] AlF-NOTA-P-L-Lys6-GnRH. Nucl. Tech. 42, 080303 (2019). https://doi.org/10.11889/j.0253-3219.2019.hjs.42.080303 (in Chinese)

    Article  Google Scholar 

  18. J. Chen, Y. Fu, D.S. Day et al., VEGF amplifies transcription through ETS1 acetylation to enable angiogenesis. Nat. Commun. 8, 1 (2018). https://doi.org/10.1038/s41467-017-00405-x

    Article  ADS  Google Scholar 

  19. Y. Fu, H. Peng, X. Zhang et al., Assessment of fibrotic tissue and microvascular architecture by in-line phase-contrast imaging in a mouse model of liver fibrosis. Eur. Radiol. 26, 2947 (2016). https://doi.org/10.1007/s00330-015-4173-6

    Article  Google Scholar 

  20. J.H. Duan, C.H. Hu, H. Chen et al., High-resolution micro-CT for morphologic and quantitative assessment of the sinusoid in human cavernous hemangioma of the liver. PLoS ONE 8, e53507 (2013). https://doi.org/10.1371/journal.pone.0053507

    Article  ADS  Google Scholar 

  21. Y. Cao, Y. Zhang, X. Yin et al., 3D visualization of the lumbar facet joint after degeneration using propagation phase contrast micro-tomography. Sci. Rep. 6, 1 (2016). https://doi.org/10.1038/srep21838

    Article  Google Scholar 

  22. H. Liu, X. Ji, L. Sun et al., Visualization and pathological characteristics of hepatic alveolar echinococcosis with synchrotron-based X-ray phase sensitive micro-tomography. Sci. Rep. 6, 1 (2016). https://doi.org/10.1038/srep38085

    Article  Google Scholar 

  23. J. Hu, T. Wu, L. Zeng et al., Visualization of microvasculature by X-ray in-line phase contrast imaging in rat spinal cord. Phys. Med. Biol. 57, N55 (2012). https://doi.org/10.1088/0031-9155/57/5/N55

    Article  Google Scholar 

  24. P. Coan, A. Bravin, G. Tromba et al., Phase-contrast X-ray imaging of the breast: recent developments towards clinics. J. Phys. D Appl. Phys. 46, 494007 (2013). https://doi.org/10.1088/0022-3727/46/49/494007

    Article  Google Scholar 

  25. A. Bravin, J. Keyrilainen, M. Fernandez et al., High-resolution CT by diffraction-enhanced x-ray imaging: mapping of breast tissue samples and comparison with their histo-pathology. Phys. Med. Biol. 52, 2197 (2007). https://doi.org/10.1088/0031-9155/52/8/011

    Article  Google Scholar 

  26. H.Q. Liu, C.S. Zhang, X.X. Fan et al., Robust phase-retrieval-based X-ray tomography for morphological assessment of early hepatic echinococcosis infection in rats. PLoS ONE 12, e0183396 (2017). https://doi.org/10.1371/journal.pone.0183396

    Article  Google Scholar 

  27. B. Chen, G. Feng, B. He et al., Silole-based red fluorescent organic dots for bright two-photon fluorescence in vitro cell and in vivo blood vessel imaging. Small 12, 782 (2016). https://doi.org/10.1002/smll.201502822

    Article  Google Scholar 

  28. C.P. Wang, Z.J. Xu, H.G. Liu et al., Soft X-ray ptychography method at SSRF. Nucl. Sci. Technol. 28, 74 (2017). https://doi.org/10.1007/s41365-017-0227-6

    Article  Google Scholar 

  29. T. Ji, Y. Tong, H. Zhu et al., The status of the first infrared beamline at Shanghai synchrotron radiation facility. Nucl. Instrum. Methods. A 788, 116 (2015). https://doi.org/10.1016/j.nima.2015.03.080

    Article  ADS  Google Scholar 

  30. P. Jovana, V. Danijela, R. Tatjana et al., Gray-level co-occurrence matrix analysis of chromatin architecture in periportal and perivenous hepatocytes. Histochem. Cell Biol. 151, 75 (2019). https://doi.org/10.1007/s00418-018-1714-5

    Article  Google Scholar 

  31. H.Q. Liu, T.Q. Xiao, H.L. Xie et al., Nondestructive material characterization of meteorites with synchrotron-based high energy x-ray phase micro-computed tomography. J. Phys. D Appl. Phys. 50, 055301 (2017). https://doi.org/10.1088/1361-6463/aa4f31

    Article  ADS  Google Scholar 

  32. C.P. Wang, Z.J. Xu, H.G. Liu et al., Background noise removal in x-ray ptychography. Appl. Optics 56, 2099 (2017). https://doi.org/10.1364/AO.56.002099

    Article  ADS  Google Scholar 

  33. P.D. Kumar, Feature extraction and selection of kidney ultrasound images using GLCM and PCA. Procedia Comput. Sci. 167, 1722 (2020). https://doi.org/10.1016/j.procs.2020.03.382

    Article  Google Scholar 

  34. T. Vujasinovic, J. Pribic, K. Kanjer et al., Gray-level co-occurrence matrix texture analysis of breast tumor images in prognosis of distant metastasis risk. Microsc. Microanal. 21, 646 (2015). https://doi.org/10.1017/S1431927615000379

    Article  ADS  Google Scholar 

  35. S. Kaminskyj, K. Jilkine, A. Szeghalmi et al., High spatial resolution analysis of fungal cell biochemistry—bridging the analytical gap using synchrotron FTIR spectromicroscopy. FEMS Microbiol. Lett. 284, 1 (2008). https://doi.org/10.1111/j.1574-6968.2008.01162.x

    Article  Google Scholar 

  36. H.Q. Liu, F. Lin, J. Lin et al., Phase-retrieval-based synchrotron X-ray micro-tomography for 3D structural characterization and quantitative analysis of agalloch eaglewood. Wood Sci. Technol. 52, 839 (2018). https://doi.org/10.1007/s00226-018-1004-3

    Article  Google Scholar 

  37. M. Fernandez, J. Keyrilainen, R. Serimaa et al., Human breast cancer in vitro: matching histo-pathology with small-angle x-ray scattering and diffraction enhanced x-ray imaging. Phys. Med. Biol. 50, 2991 (2015). https://doi.org/10.1088/0031-9155/50/13/002

    Article  Google Scholar 

  38. H.G. Liu, Z.J. Xu, C.P. Wang et al., Soft X-ray spectro-ptychography for air pollution particulates. Microsc. Microanal. 24, 44 (2018). https://doi.org/10.1017/S1431927618012655

    Article  ADS  Google Scholar 

  39. H.G. Liu, J.F. Cao, Y. Wang et al., Soft x-ray spectroscopic end-station at beamline 08U1A of Shanghai Synchrotron Radiation Facility. Rev. Sci. Instrum. 90, 043103 (2019). https://doi.org/10.1063/1.5080760

    Article  ADS  Google Scholar 

  40. Z. Liu, Y. Tang, F. Chen et al., Synchrotron FTIR micro-spectroscopy reveals early adipo-genic differentiation of human mesenchymal stem cells at single-cell level. Biochem. Biophys. Res. Commun. 478, 1286 (2016). https://doi.org/10.1016/j.bbrc.2016.08.112

    Article  Google Scholar 

  41. S. Lang, P. Schachtschneider, C. Moser et al., Dual targeting of Raf and VEGF receptor 2 reduces growth and metastasis of pancreatic cancer through direct effects on tumor cells, endothelial cells, and pericytes. Mol. Cancer Ther. 7, 3509 (2008). https://doi.org/10.1158/1535-7163.mct-08-0373

    Article  Google Scholar 

  42. J. Tan, P. Pickhardt, Y. Gao et al., 3D-GLCM CNN: a 3-dimensional gray-level co-occurrence matrix-based CNN model for polyp classification via CT colonography. IEEE T. Med. Imaging. 39, 2013 (2019). https://doi.org/10.1109/TMI.2019.2963177

    Article  Google Scholar 

  43. G.S. Hong, J.C. Lee, J.T. Robinson et al., Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat. Med. 18, 1841 (2012). https://doi.org/10.1038/nm.2995

    Article  Google Scholar 

Download references

Acknowledgements

We thank the staff from the BL13HB beamline of the X-ray Imaging and Biomedical Center, BL08U1-A beamline of the Soft X-ray Spectro-Microscopy Center, BL06B beamline of the Dynamic Beamline: IR Branch at the Shanghai Synchrotron Radiation Facility, and BL01B beamline of the National Facility for Protein Science in Shanghai for their assistance with data collection.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Gong-Xiang Wei, Sui-Xia Zhang, Fu-Li Wang, Zhao Li, Yan-Ling Xue, and Te Ji. The first draft of the manuscript was written by Gong-Xiang Wei and Hui-Qiang Liu and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hui-Qiang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Natural Science Foundation of Shandong Province, China (No. ZR2020MA088), Natural Science Foundation of Xinjiang Uygur Autonomous Region, China (No. 2019D01C188), National Key Research and Development Program of China (No. 2018YFC1200204), and National Natural Science Foundation of China (No. 12175127).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, GX., Zhang, SX., Li, Z. et al. Multi-modality measurement and comprehensive analysis of hepatocellular carcinoma using synchrotron-based microscopy and spectroscopy. NUCL SCI TECH 32, 102 (2021). https://doi.org/10.1007/s41365-021-00927-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-021-00927-6

Keywords

Navigation