Skip to main content
Log in

Review of fully coherent free-electron lasers

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Generation of intense, fully coherent radiation with wide spectral coverage has been a long-standing challenge for laser technologies. Several techniques have been developed in recent years to extend the spectral coverage in optical physics, but none of them hold the potential to produce X-ray laser pulses with very high-peak power. Urgent demands for intense X-ray light sources have prompted the development of free-electron lasers (FELs), which have been proved to be very useful tools in many scientific areas. In this paper, we give an overview of the basic principle of FELs, techniques for realizing fully coherent FELs, and the development of fully coherent FEL facilities in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P. Emma, R. Akre, J. Arthur et al., First lasing and operation of an angstrom-wavelength free-electron laser. Nat. Photonics 4, 641–647 (2010). https://doi.org/10.1038/nphoton.2010.176

    Article  Google Scholar 

  2. T. Ishikawa, H. Aoyagi, T. Asaka et al., A compact X-ray free-electron laser emitting in the sub-angstrom region. Nat. Photonics 6, 540 (2012). https://doi.org/10.1038/nphoton.2012.141

    Article  Google Scholar 

  3. H.S. Kang, C.K. Min, H. Heo et al., Hard X-ray free-electron laser with femtosecond-scale timing jitter. Nat. Photonics 11, 708 (2017). https://doi.org/10.1038/s41566-017-0029-8

    Article  Google Scholar 

  4. C. Milne, T. Schietinger, M. Aiba, SwissFEL: the Swiss X-ray free electron laser. Appl. Sci. 7, 720 (2017). https://doi.org/10.3390/app7070720

    Article  Google Scholar 

  5. M. Altarelli, R. Brinkmann, M. Chergui et al., The European X-Ray Free-electron Laser, Technical Design Report, DESY (2007)

  6. J. N. Galayda, The linac coherent light source-II project, in Proceedings of IPAC’14, Dresden, Germany, p. 935 (2014)

  7. Z. Zhu, Z. Zhao, D. Wang, et al., SCLF: An 8-GeV CW SCRF linac-based X-ray FEL facility in Shanghai, in Proceedings of FEL2017, Santa Fe, NM, USA, p. 182 (2017). https://doi.org/10.18429/JACoW-FEL2017-MOP055

  8. E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov, Terawatt-scale sub-10-fs laser technology- key to generation of GW-level attosecond pulses in X-ray free electron laser. Opt. Commun. 237, 153 (2004). https://doi.org/10.1016/j.optcom.2004.03.070

    Article  Google Scholar 

  9. A.A. Zholents, M.S. Zolotorev, Attosecond x-ray pulses produced by ultra short transverse slicing via laser electron beam interaction. New J. Phys. 10, 025005 (2008). https://doi.org/10.1088/1367-2630/10/2/025005

    Article  Google Scholar 

  10. J. Qiang, J. Wu, Generation of multi-color attosecond X-ray radiation through modulation compression. Appl. Phys. Lett. 99, 081101 (2011). https://doi.org/10.1063/1.3629769

    Article  Google Scholar 

  11. E. Prat, S. Reiche, Simple method to generate terawatt-attosecond X-ray free-electron-laser pulses. Phys. Rev. Lett. 114, 244801 (2015). https://doi.org/10.1103/PhysRevLett.114.244801

    Article  Google Scholar 

  12. J.B. Rosenzweig, D. Alesini, G. Andonian, Generation of ultra-short, high brightness electron beams for single-spike SASE FEL operation. Nucl. Instrum. Methods A 593, 39 (2008). https://doi.org/10.1016/j.nima.2008.04.083

    Article  Google Scholar 

  13. S. Huang, Y. Ding, Y. Feng, Generating single-spike hard X-ray pulses with nonlinear bunch compression in free-electron lasers. Phys. Rev. Lett. 119, 154801 (2017). https://doi.org/10.1103/PhysRevLett.119.154801

    Article  Google Scholar 

  14. A.S. Hernandez, E. Prat, S. Bettoni, Generation of large-bandwidth x-ray free-electron-laser pulses. Phys. Rev. Lett. 19, 090702 (2016). https://doi.org/10.1103/PhysRevAccelBeams.19.090702

    Article  Google Scholar 

  15. I. Zagorodnov, G. Feng, T. Limberg, Corrugated structure insertion for extending the SASE bandwidth up to 3% at the European XFEL. Nucl. Instrum. Methods 837, 69–79 (2016). https://doi.org/10.1016/j.nima.2016.09.001

    Article  Google Scholar 

  16. S. Serkez, V. Kocharyan, E. Saldin, et al., Report No. DESY 13-109. Deutsches Elektronen-Synchrotron, Hamburg, Germany (2013)

  17. E. Prat, M. Calvi, S. Reiche, Generation of ultra-large-bandwidth X-ray free-electron-laser pulses with a transverse-gradient undulator. J. Synchrotron Radiat. 23, 874–879 (2016). https://doi.org/10.1107/S1600577516007177

    Article  Google Scholar 

  18. M. Song, J. Yan, K. Li, C. Feng et al., Bandwidth broadening of X-ray free electron laser pulses with the natural gradient of planar undulator. Nucl. Instrum. Methods 884, 11–17 (2018). https://doi.org/10.1016/j.nima.2017.12.005

    Article  Google Scholar 

  19. R. Neutze, R. Wouts, D. van der Spoel et al., Potential for biomolecular imaging with femtosecond X-ray pulses. Nature (London) 406, 752 (2000). https://doi.org/10.1038/35021099

    Article  Google Scholar 

  20. M. Fuchs, M. Trigo, J. Chen, Anomalous nonlinear X-ray compton scattering. Nat. Phys. 11, 964 (2015). https://doi.org/10.1038/nphys3452

    Article  Google Scholar 

  21. N.M. Kroll, P.L. Morton, M. Rosenbluth, Free-electron lasers with variable parameter wigglers. IEEE J. Quantum Electron. 17, 1436 (1981). https://doi.org/10.1109/JQE.1981.1071285

    Article  Google Scholar 

  22. W.M. Fawley, Z. Huang, K.J. Kim, Tapered undulators for SASE FELs. Nucl. Instrum. Methods A 483, 537–541 (2002). https://doi.org/10.1016/S0168-9002(02)00377-7

    Article  Google Scholar 

  23. W.M. Fawley, J. Frisch, Z. Huang, et al., Toward TW-level, hard X-ray pulses at LCLS, in Proceedings of FEL2011, Shanghai, China, pp. 160–163 (2011)

  24. Y. Jiao, Y. Cai, A.W. Chao et al., Modeling and multi-dimensional optimization of a tapered free electron laser. Phys. Rev. ST Accel. Beams 15, 050704 (2012). https://doi.org/10.1103/PhysRevSTAB.15.050704

    Article  Google Scholar 

  25. N. Sudar, P. Musumeci, J. Duris, High efficiency energy extraction from a relativistic electron beam in a strongly tapered undulator. Phys. Rev. Lett. 117, 174801 (2016). https://doi.org/10.1103/PhysRevLett.117.174801

    Article  Google Scholar 

  26. J. Faure, Y. Glinec, A. Pukhov et al., A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541–544 (2004). https://doi.org/10.1038/nature02963

    Article  Google Scholar 

  27. V.N. Litvinenko, B. Burnham, M. Emamian, Gamma-ray production in a storage ring free-electron laser. Phys. Rev. Lett 78, 4569 (1997). https://doi.org/10.1103/PhysRevLett.78.4569

    Article  Google Scholar 

  28. N.B. Aetukuri, A.X. Gray, M. Drouard et al., Control of the metal-insulator transition in vanadium dioxide by modifying orbital occupancy. Nat. Phys. 9, 661 (2013). https://doi.org/10.1038/nphys2733

    Article  Google Scholar 

  29. C. von Korff Schmising, B. Pfau, M. Schneider, Imaging ultrafast demagnetization dynamics after a spatially localized optical excitation. Phys. Rev. Lett 112, 217203 (2014). https://doi.org/10.1103/PhysRevLett.112.217203

    Article  Google Scholar 

  30. K.J. Kim, Circular polarization with crossed-planar undulators in high-gain FELs. Nucl. Instrum. Methods A 445, 329–332 (2000). https://doi.org/10.1016/S0168-9002(00)00137-6

    Article  Google Scholar 

  31. H. Deng, T. Zhang, L. Feng, Polarization switching demonstration using crossed-planar undulators in a seeded free-electron laser. Phys. Rev. ST Accel. Beams 17, 020704 (2014). https://doi.org/10.1103/PhysRevSTAB.17.020704

    Article  Google Scholar 

  32. E. Ferrari, E. Allaria, J. Buck, Single shot polarization characterization of XUV FEL pulses from crossed polarized undulators. Sci. Rep. 5, 13531 (2015). https://doi.org/10.1038/srep13531

    Article  Google Scholar 

  33. E. Allaria, B. Diviacco, C. Callegari et al., Control of the polarization of a vacuum-ultraviolet, high-gain, free-electron laser. Phys. Rev. X 4, 41040 (2014). https://doi.org/10.1103/PhysRevX.4.041040

    Article  Google Scholar 

  34. A.A. Lutman, J.P. Macarthur, M. Ilchen et al., Polarization control in an X-ray free-electron laser. Nat. Photonics 10, 468–472 (2016). https://doi.org/10.1038/nphoton.2016.79

    Article  Google Scholar 

  35. J.M.J. Madey, Stimulated emission of bremsstrahlung in a periodic magnetic field. J. Appl. Phys. 42, 1906 (1971). https://doi.org/10.1063/1.1660466

    Article  Google Scholar 

  36. D. Deacon, L. Elias, J. Madey, First operation of a free-electron laser. Phys. Rev. Lett. 38, 892 (1977). https://doi.org/10.1103/PhysRevLett.38.892

    Article  Google Scholar 

  37. D. Oepts, A.F.G. Van der Meer, P.W. Van Amersfoort, The free-electron-laser user facility FELIX. Infrared Phys. Techn. 36, 297–308 (1995). https://doi.org/10.1016/1350-4495(94)00074-U

    Article  Google Scholar 

  38. A.M. Kondratenko, E.L. Saldin, Generating of coherent radiation by a relativistic electron beam in an ondulator. Part. Accel. 10, 207–216 (1980)

    Google Scholar 

  39. R. Bonifacio, C. Pellegrini, L.M. Narducci, Collective instabilities and high-gain regime in a free electron laser. Opt. Commun. 50, 373–378 (1984). https://doi.org/10.1016/0030-4018(84)90105-6

    Article  Google Scholar 

  40. B.D. Patterson, R. Abela, Novel opportunities for time-resolved absorption spectroscopy at the X-ray free electron laser. Phys. Chem. Chem. Phys. 12, 5647–5652 (2010). https://doi.org/10.1039/C003406A

    Article  Google Scholar 

  41. J.B. Murphy, C. Pellegrini, Generation of high-intensity coherent radiation in the soft-x-ray and vacuum-ultraviolet region. J. Opt. Soc. Am. B 2, 259 (1985). https://doi.org/10.1364/JOSAB.2.000259

    Article  Google Scholar 

  42. M.J. Hogan, C. Pellegrini, J. Rosenzweig, Measurements of high gain and intensity fluctuations in a self-amplified, spontaneous-emission free-electron laser. Phys. Rev. Lett. 80, 289 (1998). https://doi.org/10.1103/PhysRevLett.80.289

    Article  Google Scholar 

  43. W. Ackermann, G. Asova, V. Ayvazyan et al., Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photonics 1, 336–342 (2007). https://doi.org/10.1038/nphoton.2007.76

    Article  Google Scholar 

  44. C. Bostedt, S. Boutet, D.M. Fritz, Linac coherent light source: the first five years. Rev. Mod. Phys. 88, 015007 (2016). https://doi.org/10.1103/RevModPhys.88.015007

    Article  Google Scholar 

  45. J. Feldhaus, E.L. Saldin, Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL. Opt. Commun. 140, 341 (1997). https://doi.org/10.1016/S0030-4018(97)00163-6

    Article  Google Scholar 

  46. G. Geloni, V. Kocharyan, E. Saldin, A novel self-seeding scheme for hard X-ray FELs. J. Mod. Opt. 58, 1391 (2011). https://doi.org/10.1080/09500340.2011.586473

    Article  Google Scholar 

  47. C. Feng, Theoretical and Experimental Studies on Novel High-Gain Seeded Free-Electron Laser Schemes (Springer, Berlin, 2016)

    Book  Google Scholar 

  48. D. Ratner, R. Abela, J. Amann, Experimental demonstration of a soft X-ray self-seeded free-electron laser. Phys. Rev. Lett. 114, 054801 (2015). https://doi.org/10.1103/PhysRevLett.114.054801

    Article  Google Scholar 

  49. J. Amann, W. Berg, V. Blank et al., Demonstration of self-seeding in a hard-X-ray free-electron laser. Nat. Photonics 6, 693 (2012). https://doi.org/10.1038/nphoton.2012.180

    Article  Google Scholar 

  50. K. Zhang, Z. Qi, C. Feng, Extending the photon energy coverage of an x-ray self-seeding FEL via the reverse taper enhanced harmonic generation technique. Nucl. Instrum. Methods A 854, 3–10 (2017). https://doi.org/10.1016/j.nima.2017.02.039

    Article  Google Scholar 

  51. K. Zhang, L. Zeng, Z. Qi, Eliminating the microbunching-instability-induced sideband in a soft X-ray self-seeding free-electron laser. Nucl. Instrum. Methods A 882, 22–29 (2017). https://doi.org/10.1016/j.nima.2017.10.060

    Article  Google Scholar 

  52. H. Zhang, K. Li, J. Yan, Atomic inner-shell radiation seeded free-electron lasers. Phys. Rev. ST Accel. Beams 21, 070701 (2018). https://doi.org/10.1103/PhysRevAccelBeams.21.070701

    Article  Google Scholar 

  53. B.W.J. McNeil, N.R. Thompson, D.J. Dunning, Transform-limited X-ray pulse generation from a high-brightness self-amplified spontaneous-emission free-electron laser. Phys. Rev. Lett. 110, 134802 (2013). https://doi.org/10.1103/PhysRevLett.110.134802

    Article  Google Scholar 

  54. J. Wu, F.-J. Decker, Y. Feng, et. al. X-ray Spectra and Peak Power Control with iSASE, in Proceedings of IPAC13 (Shanghai, China), p. 2068 (2013)

  55. D. Xiang, Y. Ding, Z. Huang et al., Purified self-amplified spontaneous emission free-electron lasers with slippage-boosted filtering. Phys. Rev. ST Accel. Beams 16, 010703 (2013). https://doi.org/10.1103/PhysRevSTAB.16.010703

    Article  Google Scholar 

  56. E.A. Schneidmiller, M.V. Yurkov, Harmonic lasing in X-ray free electron lasers. Phys. Rev. ST Accel. Beams 15, 080702 (2012). https://doi.org/10.1103/PhysRevSTAB.15.080702

    Article  Google Scholar 

  57. E.A. Schneidmiller, B. Faatz, M. Kuhlmann, First operation of a harmonic lasing self-seeded free electron laser. Phys. Rev. ST Accel. Beams 20, 020705 (2017). https://doi.org/10.1103/PhysRevAccelBeams.20.020705

    Article  Google Scholar 

  58. G. Lambert, T. Hara, D. Garzella et al., Injection of harmonics generated in gas in a free-electron laser providing intense and coherent extreme-ultraviolet light. Nat. Phys. 4, 296 (2008). https://doi.org/10.1038/nphys889

    Article  Google Scholar 

  59. T. Togashi, K. Fukami, S. Matsubara, et al., First Observation of the 61.5 nm Seeded FEL at the SCSS Test Accelerator, in Proceedings of the 2010 FEL Conference, Malmoö, Sweden (2010)

  60. S. Ackermann, A. Azima, J. Bödewadt, et al., sFLASH - Present Status and Commissioning Results, in Proceedings of IPAC2011, San Sebastián, Spain, pp. 923–927 (2011)

  61. L.H. Yu, Generation of intense uv radiation by subharmonically seeded single-pass free-electron lasers. Phys. Rev. A 44, 5178 (1991). https://doi.org/10.1103/PhysRevA.44.5178

    Article  Google Scholar 

  62. L.H. Yu, M. Babzien, I. Ben-Zvil et al., High-gain harmonic-generation free-electron laser. Science 289, 932 (2000). https://doi.org/10.1126/science.289.5481.932

    Article  Google Scholar 

  63. L.-H. Yu, I. Ben-Zvi, High-gain harmonic generation of soft X-rays with the “fresh bunch” technique. Nucl. Instrum. Methods A 393, 96–99 (1997). https://doi.org/10.1016/S0168-9002(97)00435-X

    Article  Google Scholar 

  64. J. Wu, L.H. Yu, Coherent hard X-ray production by cascading stages of high gain harmonic generation. Nucl. Instrum. Methods A 475, 104–111 (2001). https://doi.org/10.1016/S0168-9002(01)01552-2

    Article  Google Scholar 

  65. E. Allaria, D. Castronovo, P. Cinquegrana et al., Two-stage seeded soft-X-ray free-electron laser. Nat. Photonics 7, 913–918 (2013). https://doi.org/10.1038/nphoton.2013.277

    Article  Google Scholar 

  66. Z. Zhao, D. Wang, Q. Gu, SXFEL: a soft X-ray fee electron laser in China. Synchrotron Radiat News 30, 29–33 (2017). https://doi.org/10.1080/08940886.2017.1386997

    Article  Google Scholar 

  67. G. Stupakov, Using the beam-echo effect for generation of short-wavelength radiation. Phys. Rev. Lett. 102, 074801 (2009). https://doi.org/10.1103/PhysRevLett.102.074801

    Article  Google Scholar 

  68. D. Xiang, G. Stupakov, Echo-enabled harmonic generation free electron laser. Phys. Rev. ST Accel. Beams 12, 030702 (2009). https://doi.org/10.1103/PhysRevSTAB.12.030702

    Article  Google Scholar 

  69. D. Xiang, E. Colby, M. Dunning, Demonstration of the echo-enabled harmonic generation technique for short-wavelength seeded free electron lasers. Phys. Rev. Lett. 105, 114801 (2010). https://doi.org/10.1103/PhysRevLett.105.114801

    Article  Google Scholar 

  70. D. Xiang, E. Colby, M. Dunning, Evidence of high harmonics from echo-enabled harmonic generation for seeding X-ray free electron lasers. Phys. Rev. Lett. 108, 024802 (2012). https://doi.org/10.1103/PhysRevLett.108.024802

    Article  Google Scholar 

  71. Z. Zhao, D. Wang, J. Chen et al., First lasing of an echo-enabled harmonic generation free-electron laser. Nat. Photonics 6, 360–363 (2012). https://doi.org/10.1038/nphoton.2012.105

    Article  Google Scholar 

  72. E. Hemsing, M. Dunning, B. Garcia et al., Echo-enabled harmonics up to the 75th order from precisely tailored electron beams. Nat. Photonics 10, 512–515 (2016). https://doi.org/10.1038/nphoton.2016.101

    Article  Google Scholar 

  73. C. Feng, D. Huang, H. Deng et al., A single stage EEHG at SXFEL for narrow-bandwidth soft X-ray generation. Sci. Bull. 61, 1202 (2016). https://doi.org/10.1007/s1143

    Article  Google Scholar 

  74. C. Feng, Z.T. Zhao, Hard X-ray free-electron laser based on echo-enabled staged harmonic generation scheme. Chin. Sci. Bull. 55, 221–227 (2010). https://doi.org/10.1007/s11434-010-0002-0

    Article  Google Scholar 

  75. Z. Zhao, C. Feng, J. Chen et al., Two-beam based two-stage EEHG-FEL for coherent hard X-ray generation. Sci. Bull. 61, 720–727 (2016). https://doi.org/10.1007/s11434-016-1060-8

    Article  Google Scholar 

  76. Z. Zhao, C. Feng, K.Q. Zhang, Two-stage EEHG for coherent hard X-ray generation based on a superconducting linac. Nucl. Sci. Tech. 28, 117 (2017). https://doi.org/10.1007/s41365-017-0258-z

    Article  Google Scholar 

  77. H. Deng, C. Feng, Using off-resonance laser modulation for beam-energy-spread cooling in generation of short-wavelength radiation. Phys. Rev. Lett. 111, 084801 (2013). https://doi.org/10.1103/PhysRevLett.111.084801

    Article  Google Scholar 

  78. C. Feng, H. Deng, D. Wang, Phase-merging enhanced harmonic generation free-electron laser. New J. Phys. 16, 043021 (2014). https://doi.org/10.1088/1367-2630/16/4/043021

    Article  Google Scholar 

  79. C. Feng, T. Zhang, H. Deng, Three-dimensional manipulation of electron beam phase space for seeding soft X-ray free-electron lasers. Phys. Rev. ST Accel. Beams 17, 070701 (2014). https://doi.org/10.1103/PhysRevSTAB.17.070701

    Article  Google Scholar 

  80. W. Liu, Y. Jiao, IPAC 2018, TUPMF051 (Vancouver, BC, Canada, 2018)

  81. Q. Jia, H. Li, Normal planar undulators doubling as transverse gradient undulators. Phys. Rev. ST Accel. Beams 20, 020707 (2017). https://doi.org/10.1103/PhysRevAccelBeams.20.020707

    Article  Google Scholar 

  82. Z. Zhao, H. Li, Q. Jia, Phase-merging enhanced harmonic generation free-electron laser with a normal modulator. J. Synchrotron Radiat. 24, 906–911 (2017). https://doi.org/10.1107/S1600577517008402

    Article  Google Scholar 

  83. Z. Qi, C. Feng, H. Deng, Parameter optimization and start-to-end simulation for the phase-merging enhanced harmonic generation free electron laser. Nucl. Instrum. Methods A 875, 119–124 (2017). https://doi.org/10.1016/j.nima.2017.08.059

    Article  Google Scholar 

  84. Y.V. Shvyd’ko, S. Stoupin, A. Cunsolo et al., High-reflectivity high-resolution X-ray crystal optics with diamonds. Nat. Phys. 6, 196 (2010). https://doi.org/10.1038/nphys1506

    Article  Google Scholar 

  85. K.J. Kim, Y.V. Shvyd’ko, S. Reiche, A proposal for an X-ray free-electron laser oscillator with an energy-recovery linac. Phys. Rev. Lett. 100, 244802 (2008). https://doi.org/10.1103/PhysRevLett.100.244802

    Article  Google Scholar 

  86. K. J. Kim, T. Maxwell, R. Lindberg, et al., An oscillator configuration for full realization of hard X-ray free electron laser, in Proceedings of IPAC2016, Busan, Korea, pp. 801–804 (2016). https://doi.org/10.18429/JACoW-IPAC2016-MOPOW039

  87. Y.V. Shvyd’ko, R. Lindberg, Spatiotemporal response of crystals in X-ray Bragg diffraction. Phys. Rev. ST Accel. Beams 15, 100702 (2012). https://doi.org/10.1103/PhysRevSTAB.15.100702

    Article  Google Scholar 

  88. K.J. Kim, Y.V. Shvyd’ko, Tunable optical cavity for an X-ray free-electron-laser oscillator. Phys. Rev. ST Accel. Beams 12, 030703 (2009). https://doi.org/10.1103/PhysRevSTAB.12.030703

    Article  Google Scholar 

  89. K. Li, H. Deng, Systematic design and three-dimensional simulation of X-ray FEL oscillator for Shanghai coherent light facility. Nucl. Instrum. Methods A 895, 40 (2018). https://doi.org/10.1016/j.nima.2018.03.072

    Article  Google Scholar 

  90. K. Li, M. Song, H. Deng, Simplified model for fast optimization of a free-electron laser oscillator. Phys. Rev. ST Accel. Beams 20, 030702 (2017). https://doi.org/10.1103/PhysRevAccelBeams.20.030702

    Article  Google Scholar 

  91. K. Li, H. Deng, Gain cascading scheme of a free-electron-laser oscillator. Phys. Rev. ST Accel. Beams 20, 110703 (2017). https://doi.org/10.1103/PhysRevAccelBeams.20.110703

    Article  Google Scholar 

  92. K. Li, J. Yan, C. Feng, High brightness fully coherent X-ray amplifier seeded by a free-electron laser oscillator. Phys. Rev. ST Accel. Beams 21, 040702 (2018). https://doi.org/10.1103/PhysRevAccelBeams.21.040702

    Article  Google Scholar 

  93. J. Dai, H. Deng, Z. Dai, Proposal for an X-ray free electron laser oscillator with intermediate energy electron beam. Phys. Rev. Lett. 108, 034802 (2012). https://doi.org/10.1103/PhysRevLett.108.034802

    Article  Google Scholar 

  94. B.W. Adams, K.J. Kim, X-ray comb generation from nuclear-resonance-stabilized X-ray free-electron laser oscillator for fundamental physics and precision metrology. Phys. Rev. ST Accel. Beams 18, 030711 (2015). https://doi.org/10.1103/PhysRevSTAB.18.030711

    Article  Google Scholar 

  95. K. Li, H. Deng, Gain-guided X-ray free-electron laser oscillator. Appl. Phys. Lett. 113, 061106 (2018). https://doi.org/10.1063/1.5037180

    Article  Google Scholar 

  96. T. Kolodziej, Y. Shvyd’ko, D. Shu, Efficiency and coherence preservation studies of Be refractive lenses for XFELO application. J. Synchrotron Radiat. 25, 354–360 (2018). https://doi.org/10.1107/S160057751701699X

    Article  Google Scholar 

  97. J. Xie, J. Zhuang, Y. Huang, First lasing of the Beijing FEL. Nucl. Instrum. Methods A 341, p34–38 (1994). https://doi.org/10.1016/0168-9002(94)90312-3

    Article  Google Scholar 

  98. M. Li, X. Jin, Z. Xu, First Lasing of the CAEP FIR-FEL, in Proceeding of FEL2005, Palo Alto, CA, USA, pp. e-proc. MOOB005 (2005)

  99. X. Jin, M. Li, Z. Xu, Experiment study on the CAEP FIR-FEL. Chin. Phys. C 30, 96–98 (2006)

    Google Scholar 

  100. Z. Xu, X. Yang, M. Li, Design of a high average power terahertz-FEL facility. J. Terahertz Sci. Electron. Inf. Technol. 11, p1–6 (2013)

    Google Scholar 

  101. M. Li, X. Yang, Z. Xu, et al., First lasing of CAEP THz free electron laser. High Power Laser Part. Beam. 29(10), p1–2 (2017). https://doi.org/10.11884/HPLPB201729.170363

    Article  Google Scholar 

  102. M. Li, X. Yang, Z. Xu et al., Experimental study on the stimulated saturation of terahertz free electron laser. Acta Phys. Sin. 67(8), 084102 (2018). https://doi.org/10.7498/aps.67.20172413

    Article  Google Scholar 

  103. H. Li, Q. Jia, S. Zhang et al., Design of FELiChEM, the first infrared free-electron laser user facility in China. Chin. Phys. C 41(1), 018102 (2017). https://doi.org/10.1088/1674-1137/41/1/018102

    Article  Google Scholar 

  104. H. Li, Z. He, Q. Jia, et al., Status of FELiCHEM, a new IR-FEL in China, in Proceedings of IPAC2016, Busan, Korea, pp. P774–776 (2016). https://doi.org/10.18429/JACoW-IPAC2016-MOPOW026

  105. Z. Zhao, H. Li, Q. Jia, Effect of cavity length detuning on the output characteristics for the middle infrared FEL oscillator of FELiChEM. Chin. Phys. C 41(10), 108101 (2017). https://doi.org/10.1088/1674-1137/41/10/108101

    Article  Google Scholar 

  106. Z. Zhao, The Shanghai high-gain harmonic generation DUV free-electron laser. Nucl. Instrum. Methods A 393, 96–99 (2004). https://doi.org/10.1016/j.nima.2004.04.108

    Article  Google Scholar 

  107. Z. Zhao, D. Wang, Seeded FEL experiments at the SDUV–FEL test facility. IEEE T. Nucl. Sci. 63, 930–938 (2016). https://doi.org/10.1016/B978-0-444-51727-2.50129-2

    Article  Google Scholar 

  108. C. Feng, T. Zhang, J. Chen et al., Measurement of the average local energy spread of electron beam via coherent harmonic generation. Phys. Rev. ST Accel. Beams 14, 090701 (2011). https://doi.org/10.1103/PhysRevSTAB.14.090701

    Article  Google Scholar 

  109. H. Deng, M. Zhang, C. Feng, Experimental demonstration of longitudinal beam phase-space linearizer in a free-electron laser facility by corrugated structures. Phys. Rev. Lett. 113, 254802 (2014). https://doi.org/10.1103/PhysRevLett.113.254802

    Article  Google Scholar 

  110. B. Liu, W.B. Li, J.H. Chen et al., Demonstration of a widely-tunable and fully-coherent high-gain harmonic-generation free-electron laser. Phys. Rev. ST Accel. Beams 16, 020704 (2013). https://doi.org/10.1103/PhysRevSTAB.16.020704

    Article  Google Scholar 

  111. H. Wang, Y. Yu, Y. Chang et al., Photodissociation dynamics of H\(_2\)O at 111.5 nm by a vacuum ultraviolet free electron laser. J. Chem. Phys. 148, 124301 (2018). https://doi.org/10.1063/1.5022108

    Article  Google Scholar 

  112. Z. Zhao, D. Wang, Q. Gu, Status of the SXFEL facility. Appl. Sci. 7, 607 (2017). https://doi.org/10.3390/app7060607

    Article  Google Scholar 

  113. Z. Zhao, D. Wang, Q. Gu, SXFEL: a soft X-ray free electron laser in China. Synchrotron Radiat. News 30, 29 (2017). https://doi.org/10.1080/08940886.2017.1386997

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Li Zeng, Kai Li, Bo Liu, Dong Wang, and Zhen-Tang Zhao from SINAP; Wei-Qing Zhang from DICP; Dai Wu from CAEP; Yi Jiao from IHEP; and He-Ting Li from USTC for helpful suggestions and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Xiao Deng.

Additional information

This work was supported by the National Key Research and Development Program of China (No. 2016YFA0401900), the National Natural Science Foundation of China (Nos. 11475250 and 11775293), the Young Elite Scientist Sponsorship Program of CAST (2015QNRC001), and the Ten Thousand Talent Program.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, C., Deng, HX. Review of fully coherent free-electron lasers. NUCL SCI TECH 29, 160 (2018). https://doi.org/10.1007/s41365-018-0490-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0490-1

Keywords

Navigation