Skip to main content
Log in

Kinetic freeze-out temperatures in central and peripheral collisions: which one is larger?

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The kinetic freeze-out temperatures, \(T_0\), in nucleus–nucleus collisions at the Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) energies are extracted by four methods: (1) the Blast-Wave model with Boltzmann–Gibbs statistics (the BGBW model), (2) the Blast-Wave model with Tsallis statistics (the TBW model), (3) the Tsallis distribution with flow effect (the improved Tsallis distribution), and (4) the intercept in \(T=T_0+am_0\) (the alternative method), where \(m_0\) denotes the rest mass and T denotes the effective temperature which can be obtained by different distribution functions. It is found that the relative sizes of \(T_0\) in central and peripheral collisions obtained by the conventional BGBW model which uses a zero or nearly zero transverse flow velocity, \(\beta _{\text{T}}\), are contradictory in tendency with other methods. With a re-examination for \(\beta _{\text{T}}\) in the first method, in which \(\beta _{\text{T}}\) is taken to be \(\sim (0.40\pm 0.07)c\), a recalculation presents a consistent result with others. Finally, our results show that the kinetic freeze-out temperature in central collisions is larger than that in peripheral collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N. Xu, (for the STAR Collaboration), An overview of STAR experimental results. Nucl. Phys. A 931, 1 (2014). https://doi.org/10.1016/j.nuclphysa.2014.10.022

  2. S. Chatterjee, S. Das, L. Kumar et al., Freeze-out parameters in heavy-ion collisions at AGS, SPS, RHIC, and LHC energies. Adv. High Energy Phys. 2015, 349013 (2015). https://doi.org/10.1155/2015/349013

    Article  Google Scholar 

  3. S. Chatterjee, B. Mohanty, R. Singh, Freezeout hypersurface at energies available at the CERN Large Hadron Collider from particle spectra: Flavor and centrality dependence. Phys. Rev. C 92, 024917 (2015). https://doi.org/10.1103/PhysRevC.92.024917

    Article  Google Scholar 

  4. S. Chatterjee, B. Mohanty, Production of light nuclei in heavy-ion collisions within a multiple-freezeout scenario. Phys. Rev. C 90, 034908 (2014). https://doi.org/10.1103/PhysRevC.90.034908

    Article  Google Scholar 

  5. S.S. Räsänen, (for the ALICE Collaboration). ALICE overview. EPJ Web Conf. 126, 02026 (2016) https://doi.org/10.1051/epjconf/201612602026

  6. M. Floris, Hadron yields and the phase diagram of strongly interacting matter. Nucl. Phys. A 931, 103 (2014). https://doi.org/10.1016/j.nuclphysa.2014.09.002

    Article  Google Scholar 

  7. S. Das, D. Mishra, S. Chatterjee et al., Freeze-out conditions in proton-proton collisions at the highest energies available at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider. Phys. Rev. C 95, 014912 (2017). https://doi.org/10.1103/PhysRevC.95.014912

    Article  Google Scholar 

  8. P. Huovinen, Chemical freeze-out temperature in the hydrodynamical description of Au+Au collisions at \(\sqrt{s_{NN}}=\) 200 GeV. Eur. Phys. J. A 37, 121 (2008). https://doi.org/10.1140/epja/i2007-10611-3

    Article  Google Scholar 

  9. B. De, Non-extensive statistics and understanding particle production and kinetic freeze-out process from \(p_T\)-spectra at 2.76 TeV. Eur. Phys. J. A 50, 138 (2014). https://doi.org/10.1140/epja/i2014-14138-2

    Article  Google Scholar 

  10. A. Andronic, An overview of the experimental study of quark-gluon matter in high-energy nucleus-nucleus collisions. Int. J. Mod. Phys. A 29, 1430047 (2014). https://doi.org/10.1142/S0217751X14300476

    Article  Google Scholar 

  11. E. Schnedermann, J. Sollfrank, U. Heinz, Thermal phenomenology of hadrons from \(200A\) GeV S+S collisions. Phys. Rev. C 48, 2462 (1993). https://doi.org/10.1103/PhysRevC.48.2462

    Article  Google Scholar 

  12. B.I. Abelev et al., (STAR Collaboration), Systematic measurements of identified particle spectra in pp, d+Au, and Au+Au collisions at the STAR detector. Phys. Rev. C 79, 034909 (2009). https://doi.org/10.1103/PhysRevC.79.034909

  13. B.I. Abelev et al., (STAR Collaboration), Identified particle production, azimuthal anisotropy, and interferometry measurements in Au+Au collisions at \(\sqrt{s_{NN}}=\) 9.2 GeV. Phys. Rev. C 81, 024911 (2010). https://doi.org/10.1103/PhysRevC.81.024911

  14. Z.B. Tang, Y.C. Xu, L.J. Ruan et al., Spectra and radial flow in relativistic heavy ion collisions with Tsallis statistics in a blast-wave description. Phys. Rev. C 79, 051901(R) (2009). https://doi.org/10.1103/PhysRevC.79.051901

    Article  Google Scholar 

  15. T. Bhattacharyya, J. Cleymans, A. Khuntia et al., Radial flow in non-extensive thermodynamics and study of particle spectra at LHC in the limit of small (\(q-1\)). Eur. Phys. J. A 52, 30 (2016). https://doi.org/10.1140/epja/i2016-16030-5

    Article  Google Scholar 

  16. D. Thakur, S. Tripathy, P. Garg et al., Indication of a differential freeze-out in proton-proton and heavy-ion collisions at RHIC and LHC energies. Adv. High Energy Phys. 2016, 4149352 (2016). https://doi.org/10.1155/2016/4149352

    Article  Google Scholar 

  17. S. Takeuchi, K. Murase, T. Hirano, P. Huovinen, Y. Nara, Effects of hadronic rescattering on multistrange hadrons in high-energy nuclear collisions. Phys. Rev. C 92, 044907 (2015). https://doi.org/10.1103/PhysRevC.92.044907

    Article  Google Scholar 

  18. H. Heiselberg, A.-M. Levy, Elliptic flow and Hanbury–Brown–Twiss correlations in noncentral nuclear collisions. Phys. Rev. C 59, 2716 (1999). https://doi.org/10.1103/PhysRevC.59.2716

    Article  Google Scholar 

  19. U.W. Heinz, Lecture Notes for lectures presented at the 2nd CERN–Latin-American School of High-Energy Physics, June 1–14, 2003, San Miguel Regla, Mexico (2004), arXiv:hep-ph/0407360

  20. R. Russo, Measurement of \(D^+\) meson production in p-Pb collisions with the ALICE detector, Ph.D. Thesis, Universita degli Studi di Torino, Italy (2015), arXiv:1511.04380 [nucl-ex]

  21. F.-H. Liu, Y.-Q. Gao, H.-R. Wei, On descriptions of particle transverse momentum spectra in high energy collisions. Adv. High Energy Phys. 2014, 293873 (2014). https://doi.org/10.1155/2014/293873

    Google Scholar 

  22. H.-R. Wei, F.-H. Liu, R.A. Lacey, Kinetic freeze-out temperature and flow velocity extracted from transverse momentum spectra of final-state light flavor particles produced in collisions at RHIC and LHC. Eur. Phys. J. A 52, 102 (2016). https://doi.org/10.1140/epja/i2016-16102-6

    Article  Google Scholar 

  23. H.-L. Lao, H.-R. Wei, F.-H. Liu et al., An evidence of mass-dependent differential kinetic freeze-out scenario observed in Pb-Pb collisions at 2.76 TeV. Eur. Phys. J. A 52, 203 (2016). https://doi.org/10.1140/epja/i2016-16203-2

    Article  Google Scholar 

  24. H.-R. Wei, F.-H. Liu, R.A. Lacey, Disentangling random thermal motion of particles and collective expansion of source from transverse momentum spectra in high energy collisions. J. Phys. G 43, 125102 (2016). https://doi.org/10.1088/0954-3899/43/12/125102

    Article  Google Scholar 

  25. S.S. Adler et al., (PHENIX Collaboration), Identified charged particle spectra and yields in Au+Au collisions at \(\sqrt{s_{NN}}= 200\) GeV. Phys. Rev. C 69, 034909 (2004). https://doi.org/10.1103/PhysRevC.69.034909

  26. B.I. Abelev et al., (STAR Collaboration), Identified baryon and meson distributions at large transverse momenta from Au+Au collisions at \(\sqrt{s_{NN}}= 200\) GeV. Phys. Rev. Lett. 97, 152301 (2006). https://doi.org/10.1103/PhysRevLett.97.152301

  27. G. Agakishiev et al., (STAR Collaboration), Identified hadron compositions in \(p+p\) and Au+Au collisions at high transverse momenta at \(\sqrt{s_{NN}}= 200\) GeV. Phys. Rev. Lett. 108, 072302 (2012). https://doi.org/10.1103/PhysRevLett.108.072302

  28. B. Abelev et al., (ALICE Collaboration), Centrality dependence of \(\pi \), \(K\), and \(p\) in Pb-Pb collisions at \(\sqrt{s_{NN}}= 2.76\) TeV. Phys. Rev. C 88, 044910 (2013). https://doi.org/10.1103/PhysRevC.88.044910

  29. J. Adam et al., (ALICE Collaboration), Centrality dependence of the nuclear modification factor of charged pions, kaons, and protons in Pb-Pb collisions at \(\sqrt{s_{NN}}= 2.76\) TeV. Phys. Rev. C 93, 034913 (2016). https://doi.org/10.1103/PhysRevC.93.034913

  30. E. Schnedermann, U. Heinz, Relativistic hydrodynamics in a global fashion. Phys. Rev. C 47, 1738 (1993). https://doi.org/10.1103/PhysRevC.47.1738

    Article  Google Scholar 

  31. L. Kumar, (for the STAR Collaboration), Systematics of kinetic freeze-out properties in high energy collisions from STAR. Nucl. Phys. A 931, 1114 (2014). https://doi.org/10.1016/j.nuclphysa.2014.08.085

  32. H. Zheng, L.L. Zhu, Comparing the Tsallis distribution with and without thermodynamical description in \(p+p\) collisions. Adv. High Energy Phys. 2016, 9632126 (2016). https://doi.org/10.1155/2016/9632126

    Article  Google Scholar 

  33. J. Cleymans, D. Worku, Relativistic thermodynamics: Transverse momentum distributions in high-energy physics. Eur. Phys. J. A 48, 160 (2012). https://doi.org/10.1140/epja/i2012-12160-0

    Article  Google Scholar 

  34. R. Odorico, Does a transverse energy trigger actually trigger on large-\(p_T\) jets? Phys. Lett. B 118, 151 (1982). https://doi.org/10.1016/0370-2693(82)90620-7

    Article  Google Scholar 

  35. G. Arnison et al., (UA1 Collaboration), Transverse momentum spectra for charged particles at the CERN proton-antiproton collider. Phys. Lett. B 118, 167 (1982). https://doi.org/10.1016/0370-2693(82)90623-2

  36. T. Mizoguchi, M. Biyajima, N. Suzuki, Analyses of whole transverse momentum distributions in \(p{\bar{p}}\) and \(pp\) collisions by using a modified version of Hagedorn’s formula. Int. J. Mod. Phys. A 32, 1750057 (2017). https://doi.org/10.1142/S0217751X17500579

    Article  Google Scholar 

  37. H.-L. Lao, F.-H. Liu, R.A. Lacey, Extracting kinetic freeze-out temperature and radial flow velocity from an improved Tsallis distribution. Eur. Phys. J. A 53, 44 (2017). https://doi.org/10.1140/epja/i2017-12238-1; and Erratum. Eur. Phys. J. A 53, 143 (2017). https://doi.org/10.1140/epja/i2017-12333-3

  38. F.-H. Liu, Y.-Q. Gao, B.-C. Li, Comparing two-Boltzmann distribution and Tsallis statistics of particle transverse momentums in collisions at LHC energies. Eur. Phys. J. A 50, 123 (2014). https://doi.org/10.1140/epja/i2014-14123-9

    Article  Google Scholar 

  39. H. Zheng, L.L. Zhu, Can Tsallis distribution fit all the particle spectra produced at RHIC and LHC? Adv. High Energy Phys. 2015, 180491 (2015). https://doi.org/10.1155/2015/180491

    Article  Google Scholar 

  40. H.C. Song, Y. Zhou, K. Gajdošová, Collective flow and hydrodynamics in large and small systems at the LHC. Nucl. Sci. Tech. 28, 99 (2017). https://doi.org/10.1007/s41365-017-0245-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Hu Liu.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11575103 and 11747319), the Shanxi Provincial Natural Science Foundation (No. 201701D121005), and the Fund for Shanxi “1331 Project” Key Subjects Construction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lao, HL., Liu, FH., Li, BC. et al. Kinetic freeze-out temperatures in central and peripheral collisions: which one is larger?. NUCL SCI TECH 29, 82 (2018). https://doi.org/10.1007/s41365-018-0425-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0425-x

Keywords

Navigation