Skip to main content
Log in

Chemical composition and insecticidal activity of Nepeta italica L. extracts against Sitophilus granarius (L. Linnaeus, 1758) (Coleoptera: Curculionidae) and Tribolium confusum Jacquelin du Val, 1863 (Coleoptera: Tenebrionidae)

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

This study was carried out to determine the insecticidal activities of Nepeta italica L. (Lamiaceae) extracts against Sitophilus granarius (Linnaeus, 1758) (Coleoptera: Curculionidae) and Tribolium confusum Jacquelin du Val, 1863 (Coleoptera: Tenebrionidae) pests along with chemical composition of the active extract. Topical and contact activity of three different extracts (hexane, n-butanol, water) of N. italica were evaluated against adults of the two pests. Chemical constituents of the active (hexane) extract were identified by gas chromatography-mass spectrometry (GC/MS) apparatus. The major compounds were determined as 2-tert-Butyl-6-methyl-phenol (4.94%), nonadecane (4.78%), 1,9-diepipresilphiperfolane-9,15-epoxide (4.47%), neophytadiene (3.49%) and palmitic acid (3.36%). It was found out that the concentration required to kill S. granarius adults (LC50: 758.343 ppm) after 96 h in topical application using hexane extracts was higher than the concentration required to kill T. confusum adults (LC50: 509.988 ppm). Likewise, when mortality times at the highest concentration were compared, the time required to kill S. granarius adults (LT50: 34.07 h) was found to be longer than the time required to kill T. confusum adults (LT50: 26.15 h). The results showed that N. italica hexane extract was highly effective in both application methods and it could be suggested to use as an alternative natural bioinsecticide in the management of these pests.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abay G, Altun M, Karakoc OC, Gul F, Demirtas I (2013) Insecticidal activity of fatty acid-rich Turkish bryophyte extracts against Sitophilus granarius (Coleoptera: Curculionidae). Comb Chem High Throughput Screen 16:806–816

    Article  CAS  PubMed  Google Scholar 

  • Abbott WS (1925) A Method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    Article  CAS  Google Scholar 

  • Abdellaoui K, Miladi M, Boughattas I, Acheuk F, Chaira N, Halima-Kamel MB (2017) Chemical composition, toxicity and acetylcholinesterase inhibitory activity of Salvia officinalis essential oils against Tribolium confusum. J Entomol Zool Stud 5:1761–1768

    Google Scholar 

  • Abdulhay HS (2012) Insecticidal activity of aqueous and methanol extracts of apricot (Prunus armeniaca L.) kernels in the control of Tribolium confusum duval (Coleoptera: Tenebrionidae). MJS 23:7–18

    Google Scholar 

  • Adarkwah C, Obeng-Ofori D, Hörmann V, Ulrichs C, Schöller M (2017) Bioefficacy of enhanced diatomaceous earth and botanical powders on the mortality and progeny production of Acanthoscelides obtectus (Coleoptera: Chrysomelidae), Sitophilus granarius (Coleoptera: Dryophthoridae) and Tribolium castaneum (Coleoptera: Tenebrionidae) in stored grain cereals. Int J Trop Insect Sci 37:243–258

    Article  Google Scholar 

  • Akinbuluma M, Ewete F, Yeye E (2017) Phytochemical investigations of Piper guineense seed extract and their effects on Sitophilus zeamais (Coleoptera: Curculionidae) on stored maize. J Crop Prod 6:45–52

    Google Scholar 

  • Amini S, Nohooji MG, Khani M, Labbafi MR, Khalighi-Sigaroodi F (2019) Biological activity of some essential oil constituents in four Nepeta L. species against Sitophilus oryzae L. Biodiversitas 20:338–343

    Article  Google Scholar 

  • Athanassiou CG, Kavallieratos NG, Sciarretta A, Palyvos NE, Trematerra P (2011) Spatial associations of insects and mites in stored wheat. J Econ Entomol 104:1752–1764

    Article  PubMed  Google Scholar 

  • Balabanidou V, Grigoraki L, Vontas J (2018) Insect cuticle: a critical determinant of insecticide resistance. Curr Opin Insect Sci 27:68–74

    Article  PubMed  Google Scholar 

  • Bendifallah L, Tabli R, Khelladi H, Hamoudi-Belarbi L, Hamoudi S (2020) Biological activity of the Mentha spicata L. and Salvia officinalis L.(Lamiaceae) essential oils on Sytophilus granarius L. and Tribolium confusum Jac. Du Val. infested stored wheat. In: Biology and life sciences forum, vol 4, Multidisciplinary Digital Publishing Institute, p 108

  • Bicchi C, Mashaly M, Sandra P (1984) Constituents of essential oil of Nepeta nepetella. Planta Med 50:96–98

    Article  CAS  PubMed  Google Scholar 

  • Boutjagualt I, Hmimid F, Errami A, Bouharroud R, Qessaoui R, Etahiri S, Benba J (2022) Chemical composition and insecticidal effects of brown algae (Fucus spiralis) essential oil against Ceratitis capitata Wiedemann (Diptera: Tephritidae) pupae and adults. Biocatal Agric Biotechnol 40:102308

    Article  CAS  Google Scholar 

  • Çalmaşur O, Aslan I, Şahin F (2006) Insecticidal and acaricidal effect of three Lamiaceae plant essential oils against Tetranychus urticae Koch and Bemisia tabaci Genn. Ind Crop Prod 23:140–146

    Article  Google Scholar 

  • Davis PH (1982) Flora of Turkey and the Aegean islands. Edinburgh University Press

  • Demiray H, Estep AS, Tabanca N, Becnel JJ, Demirci B (2022) Chemical constituents from rheum ribes shoots and its insecticidal activity against Aedes aegypti. Rev Bras Farmacogn 32:81–85

    Article  CAS  Google Scholar 

  • Demirci S, Ozhatay N (2012) An ethnobotanical study in Kahramanmaraş (Turkey); wild plants used for medicinal purpose in Andirin, Kahramanmaraş. Turk J Pharm Sci 9:75–92

    Google Scholar 

  • Eccles K, Powder-George YL, Mohammed FK, Khan A (2019) Efficacy of Artocarpus altilis (Parkinson) fosberg extracts on contact mortality, repellency, oviposition deterrency and fumigant toxicity of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Int J Pest Manag 65:72–78

    Article  Google Scholar 

  • Emsen B, Yildirim E, Aslan A, Anar M, Ercisli S (2012) Insecticidal effect of the extracts of Cladonia foliacea (Huds.) Willd. and Flavoparmelia caperata (L.) hale against adults of the grain weevil, Sitophilus granarius (L.)(Coleoptera: Curculionidae). Egypt J Pest Control 22:145–149

    Google Scholar 

  • Emsen B, Yildirim E, Aslan A (2015) Insecticidal activities of extracts of three lichen species on Sitophilus granarius (L.)(Coleoptera: Curculionidae). Plant Prot Sci 51:155–161

    Article  Google Scholar 

  • Fang L, Subramanyam B, Arthur FH (2002) Effectiveness of spinosad on four classes of wheat against five stored-product insects. J Econ Entomol 95:640–650

    Article  CAS  PubMed  Google Scholar 

  • Hamada HM, Awad M, El-Hefny M, Moustafa MAM (2018) Insecticidal activity of garlic (Allium sativum) and ginger (Zingiber officinale) oils on the cotton leafworm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Afr Entomol 26:84–94

    Article  Google Scholar 

  • Hamza AF, El-Orabi MN, Gharieb OH, El-Saeady AHA, Hussein ARE (2016) Response of Sitophilus granarius L. to fumigant toxicity of some plant volatile oils. J Radiat Res Appl Sci 9:8–14

    CAS  Google Scholar 

  • Hassan RS, Sileem TM, Mikhaiel AA, Gizawy KK (2022) Impact of some plant powders on Sitophilus granarius (L.) and Rhizopertha dominica (Fab.) for protecting wheat grain. Int J Trop Insect Sci 42:565–571

    Article  Google Scholar 

  • Ibrahim SI (2011) Repellent and insecticidal activity of derived plant oils against some stored grain insects. J Plant Prot Pathol 2:893–903

    Google Scholar 

  • Jamwal N, Bhatia S, Sharma A (2022) Biodiversity of some economically significant stored grain pests in Jammu, Jammu and Kashmir. Biosci Biotechnol Res Asia 19:281

    Article  Google Scholar 

  • Kamel A, El Monairy O (2014) Efficacy of two plants leaves powders on adults of Tribolium confusum (Coleoptera: Tenebrionidae) and Sitophilus zeamais (Coleoptera: Curculionidae). Catrina Int J Environ Sci 10:1–7

    Article  Google Scholar 

  • Kepchia D, Xu P, Terryn R, Castro A, Schürer SC, Leal WS, Luetje CW (2019) Use of machine learning to identify novel, behaviorally active antagonists of the insect odorant receptor co-receptor (Orco) subunit. Sci Rep 9:4055

    Article  PubMed  PubMed Central  Google Scholar 

  • Khani M, Awang RM, Omar D, Rahmani M, Rezazadeh S (2011) Tropical medicinal plant extracts against rice weevil, Sitophilus oryzae L. J Med Plant Res 5:259–265

    CAS  Google Scholar 

  • Law-Ogbomo KE (2007) Reduction of post-harvest loss caused by Callosobruchus maculatus (F.) in three varieties of cowpea treated with plant oils. J Entomol 4:194–201

    Article  Google Scholar 

  • Leahy J, Mendelsohn M, Kough J, Jones R, Berckes N (2014) Biopesticide oversight and registration at the US environmental protection agency. In: Biopesticides: state of the art and future opportunities, pp 3–18

  • Mogale DG, Kumar M, Kumar SK, Tiwari MK (2018) Grain silo location-allocation problem with dwell time for optimization of food grain supply chain network. Transp Res E Logist Transp Rev 111:40–69

    Article  Google Scholar 

  • Morais FS, Canuto KM, Ribeiro PRV, Silva AB, Pessoa ODL, Freitas CDT, Bezerra EA, Gonçalves JFC, Souza DP, Sousa BF, Silva AFB, Ramos MV (2021) Insecticidal compound from Himatanthus drasticus Latex against cowpea infestation by Callosobruchus maculatus (Coleoptera: Chrysomelidae). J Agric Food Chem 69:5049–5058

    Article  CAS  PubMed  Google Scholar 

  • Mükemre M, Behçet L, Çakılcıoğlu U (2015) Ethnobotanical study on medicinal plants in villages of Çatak (Van-Turkey). J Ethnopharmacol 166:361–374

    Article  PubMed  Google Scholar 

  • Mumcu U, Korkmaz H (2018) Ethnobotanical uses of alien and native plant species of Yeşilırmak Delta. Acta Biol Turc 31:102–113

    Google Scholar 

  • Nenaah GE (2014) Chemical composition, toxicity and growth inhibitory activities of essential oils of three Achillea species and their nano-emulsions against Tribolium castaneum (Herbst). Ind Crop Prod 53:252–260

    Article  CAS  Google Scholar 

  • Nikolaou P, Marciniak P, Adamski Z, Ntalli N (2021) Controlling stored products’ pests with plant secondary metabolites: a review. Agriculture 11:879

    Article  CAS  Google Scholar 

  • Paul A (2021) Pesticidal properties of Anamirta cocculus, Cardiospermum halicacabum, Cocculus laurifolius and Strychnos nux-vomica against Spodoptera litura (Lepidoptera: Noctuidae). Nat Prod Radiance 11:295–306

    Google Scholar 

  • Paventi G, Rotundo G, Pistillo M, D’lsita I, Germinara GS (2021) Bioactivity of wild hop extracts against the granary weevil, Sitophilus granarius (L.). Insects 12:564

    Article  PubMed  PubMed Central  Google Scholar 

  • Poutanen KS, Kårlund AO, Gómez-Gallego C, Johansson DP, Scheers NM, Marklinder IM, Eriksen AK, Silventoinen PC, Norlund E, Sozer N, Hanhineva KJ, Kolehmainen M, Landberg R (2022) Grains–a major source of sustainable protein for health. Nutr Rev 80:1648–1663

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramful D, Aumjaud B, Neergheen VS, Soobrattee MA, Googoolye K, Aruoma OI, Bahorun T (2011) Polyphenolic content and antioxidant activity of Eugenia pollicina leaf extract in vitro and in model emulsion systems. Food Res Int 44:1190–1196

    Article  CAS  Google Scholar 

  • Ramos-López MA, González-Chávez MM, Cárdenas-Orteg NC, Zavala-Sánchez MA (2012) Activity of the main fatty acid components of the hexane leaf extract of Ricinus communis against Spodoptera frugiperda. Afr J Biotechnol 11:4274–4278

    Google Scholar 

  • Ravan S, Khani A, Veysi N (2019) GC-MS analysis and insecticidal effect of methanol extract of Pistacia khinjuk stocks leaves. Acta Agric Slov 113:231–237

    Article  CAS  Google Scholar 

  • Ravi R, Husna Zulkrnin NS, Rozhan NN, Nik Yusoff NR, Mat Rasat MS, Ahmad MI, Hamzah Z, Ishak IH, Mohd Amin MF (2018) Evaluation of two different solvents for Azolla pinnata extracts on chemical compositions and larvicidal activity against Aedes albopictus (Diptera: Culicidae). J Chem 2018

  • Seyrekoglu F, Temiz H, Eser F, Yildirim C (2022) Comparison of the antioxidant activities and major constituents of three Hypericum species (H. perforatum, H. scabrum and H. origanifolium) from Turkey. S Afr J Bot 146:723–727

    Article  CAS  Google Scholar 

  • Sharma A, Cooper R, Bhardwaj G, Cannoo DS (2021) The genus Nepeta: traditional uses, phytochemicals and pharmacological properties. J Ethnopharmacol 268:113679

    Article  CAS  PubMed  Google Scholar 

  • Singh D (2014) Advances in plant biopesticides. Springer

    Book  Google Scholar 

  • SPSS (2017) IBM Corp. Released 2017. IBM SPSS Statistics for Windows, Version 25.0. IBM Corp, Armonk, NY

  • Steglińska A, Bekhter A, Wawrzyniak P, Kunicka-Styczyńska A, Jastrząbek K, Fidler M, Śmigielski K, Gutarowska B (2022) Antimicrobial activities of plant extracts against Solanum tuberosum L. phytopathogens. Molecules 27:1579

    Article  PubMed  PubMed Central  Google Scholar 

  • Tepe B, Daferera D, Tepe AS, Polissiou M, Sokmen A (2007) Antioxidant activity of the essential oil and various extracts of Nepeta flavida Hub. Mor. from Turkey. Food Chem 103:1358–1364

    Article  CAS  Google Scholar 

  • Yildirim E, Emsen B, Kordali S (2013) Insecticidal effects of monoterpenes on Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). J Appl Bot Food Qual 86:198–204

    CAS  Google Scholar 

  • Zaka SM, Iqbal N, Saeed Q, Akrem A, Batool M, Khan AA, Anwar A, Bibi M, Azeem S, Rizvi DN, Bibi R, Khan KA, Ghramh HA, Ansari MJ, Latif S (2019) Toxic effects of some insecticides, herbicides, and plant essential oils against Tribolium confusum Jacquelin du val (Insecta: Coleoptera: Tenebrionidae). Saudi J Biol Sci 26:1767–1771

    Article  CAS  PubMed  Google Scholar 

  • Ziaee M (2014) The effects of topical application of two essential oils against Sitophilus granarius (Coleoptera: Curculionidae) and Tribolium confusum (Coleoptera: Tenebrionidae). J Crop Prod 3:589–595

    Google Scholar 

  • Ziaee M, Moharramipour S, Francikowski J (2014) The synergistic effects of Carum copticum essential oil on diatomaceous earth against Sitophilus granarius and Tribolium confusum. J Asia-Pac Entomol 17:817–822

    Article  CAS  Google Scholar 

  • Zoubiri S, Baaliouamer A (2012) GC and GC/MS analyses of the Algerian Lantana camara leaf essential oil: effect against Sitophilus granarius adults. J Saudi Chem Soc 16:291–297

    Article  CAS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

OA performed the insecticidal activity experiments, analyzed the data and wrote the initial manuscript. FE prepared the plant extracts, analyze the active extract and revised the final manuscript. CY collected the plant material, identificated the plant species and helped in designing the experiments. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Ferda Eser.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aker, O., Eser, F. & Yildirim, C. Chemical composition and insecticidal activity of Nepeta italica L. extracts against Sitophilus granarius (L. Linnaeus, 1758) (Coleoptera: Curculionidae) and Tribolium confusum Jacquelin du Val, 1863 (Coleoptera: Tenebrionidae). J Plant Dis Prot 130, 1251–1261 (2023). https://doi.org/10.1007/s41348-023-00775-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-023-00775-z

Keywords

Navigation