Skip to main content
Log in

Pathogen diversity in a Moroccan population of Pyrenophora teres f. teres

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

This study was conducted to investigate the virulence variability among Moroccan isolates of Pyrenophora teres f. teres, commonly known as the net form net blotch, of barley. Infection responses of 109 single spore isolates of P. teres f. teres collected in 2016 were assessed for their interaction with 12 barley genotypes after inoculation at the seedling stage under controlled conditions. One week following inoculation, each plant’s second and third leaves were rated for disease severity on a numerical reaction scale of 1–10. Plants rated < 5 and ≥ 5 were scored as resistant and susceptible to P. teres f. teres, respectively. Cluster analysis revealed three isolate clusters and five barley genotype clusters with highly variable mean infection levels. Only four isolates had the same low virulence profile, while each of the remaining 105 isolates exhibited a unique virulence spectrum displaying continuous infection reactions with no location effects. Furthermore, for the first time we document differential virulences in isolates recovered from the same leaf lesion. The barley genotypes displaying some level of resistance to the vast majority of isolates should be particularly useful as resistance sources in barley breeding programs in Morocco. However, given the necrotrophic lifestyle of this fungus and the regular cycles of sexual reproduction, complementary within-field diversification strategies for genetic resistances as well as non-host rotation should become important components of disease management strategies against this highly variable fungus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abu Qamar MA, Liu ZH, Faris JD, Chao S, Edwards MC, Lai Z, Franckowiak JD, Friesen TL (2008) A region of barley chromosome 6H harbors multiple major genes associated with net type net blotch resistance. Theor Appl Genet 117:1261–1270

    Article  CAS  PubMed  Google Scholar 

  • Afanasenko OS, Jalli M, Pinnschmidt HO, Filatova O, Platz G (2009) Development of an International standard set of barley differential genotypes for Pyrenophora teres f. teres. Plant Pathol 58:665–676

    Article  Google Scholar 

  • Afanasenko O, Rozanova I, Gofman A, Lashina N, Novakazi F, Mironenko N, Baranova O, Zubkovichet A (2022) Validation of molecular markers of barley net blotch resistance loci on chromosome 3H for marker-assisted selection. Agriculture 12:439–459

    Article  Google Scholar 

  • Akhavan A, Turkington TK, Kebede B, Tekauz A, Kutcher HR, Kirkham C, Xi K, Kumar K, Tucker JR, Strelkov SE (2015) Prevalence of mating type idiomorphs in Pyrenophora teres f. teres and P. teres f. maculata populations from the Canadian Prairies. Can J Plant Pathol 37:52–60

    Article  Google Scholar 

  • Akhavan A, Turkington TK, Askarian H, Tekauz A, Xi K, Tucker JR, Kutcher HR, Strelkov SE (2016) Virulence of Pyrenophora teres populations in western Canada. Can J Plant Pathol 38:1–14

    Article  Google Scholar 

  • Arabi MI, Barrault G, Sarrafi A, Albertini L (1992) Variation in the resistance of barley cultivars and in the pathogenicity of Drechslera teres f. sp. maculata and D. teres f. sp. teres isolates from France. Plant Pathol 41:180–186

    Article  Google Scholar 

  • Arabi MIE, Al-Safadi B, Charbaji T (2003) Pathogenic variation among isolates of Pyrenophora teres, the causal agent of barley net blotch. J Phytopathol 151:376–382

    Article  Google Scholar 

  • Bouajila A, Zoghlami N, Al Ahmed M, Baum M, Ghorbel A, Nazari K (2011) Comparative virulence of Pyrenophora teres f. teres from Syria and Tunisia and screening for resistance sources in barley: implications for breeding. Lett Appl Microbiol 53:489–502

    Article  CAS  PubMed  Google Scholar 

  • Boungab K, Belabid L, Fortas Z, Bayaa B (2012) Pathotype diversity among Algerian isolates of Pyrenophora teres f. teres. Phytopathol Mediterranea 51:577–586

    Google Scholar 

  • Cakir M, Gupta S, Li C, Hayden M, Mather D, Ablett GA, Platz GJ, Broughton S, Chalmers K, Loughman R, Jones M, Lance R (2011) Genetic mapping and QTL analysis of disease resistance traits in the barley population Baudin - AC Metcalfe. Crop Pasture Sci 62:152–161

    Article  Google Scholar 

  • Cromey MG, Parks RA (2003) Pathogenic variation in Dreschlera teres in New Zealand. N Z Plant Prot 56:251–256

    Google Scholar 

  • Döring TF, Knapp S, Kovacs G, Murphy K, Wolfe MS (2011) Evolutionary plant breeding in cereals—into a new era. Sustainability 3:1944–1971

    Article  Google Scholar 

  • Douiyssi A, Rasmusson DC, Roelfs AP (1998) Responses of barley cultivars and lines to isolates of Pyrenophora teres. Plant Dis 82:316–321

    Article  CAS  PubMed  Google Scholar 

  • Finckh MR (2008) Integration of breeding and technology into diversification strategies for disease control in modern agriculture. In: Collinge DB, Munk L, Cooke BM (eds) Sustainable disease management in a European context, Springer, Dordrecht, pp 399–409

  • Fowler RA, Platz GJ, Bell KL, Fletcher SEH, Franckowiak JD, Hickey LT (2017) Pathogenic variation of Pyrenophora teres f. teres in Australia. Australas Plant Pathol 46:115–128

    Article  Google Scholar 

  • Gamba F, Tekauz A (2011) Especialización fisiológica de una población local de Pyrenophora teres f. sp. teres. Agrociencia 15:50–54

    Article  Google Scholar 

  • Gamba FM, Finckh MR, Backes G (2020) Pathogenic variability of a Uruguayan population of Bipolaris sorokiniana in barley suggests a mix of quantitative and qualitative interactions. J Plant Dis Prot 127:25–33

    Article  Google Scholar 

  • Gamba FM, Šišić A, Finckh MR (2021) Continuous variation and specific interactions in the Pyrenophora teres f. teres–barley pathosystem in Uruguay. J Plant Dis Prot 128:421–429

    Article  CAS  Google Scholar 

  • Ghazvini H, Tekauz A (2007) Virulence diversity in the population of Bipolaris sorokiniana. Plant Dis 91:814–821

    Article  CAS  PubMed  Google Scholar 

  • Grewal TS, Rossnagel BG, Scoles GJ (2012) Mapping quantitative trait loci associated with spot blotch and net blotch resistance in a double-haploid barley population. Mol Breed 30:267–279

    Article  CAS  Google Scholar 

  • Gupta S, Loughman R (2001) Current virulence of Pyrenophora teres on barley in Western Australia. Plant Dis 85:960–966

    Article  PubMed  Google Scholar 

  • Gupta S, Loughman R, Cakir M, Platz JG, Westcott S, Bradley J, Broughton S, Lance R (2010) Quantitative trait loci and epistatic interactions in barley conferring resistance to net type net blotch (Pyrenophora teres f. teres) isolates. Plant Breed 129:362–368

    CAS  Google Scholar 

  • Gupta S, Li C, Loughman R, Cakir M, Westcott S, Lance R (2011) Identifying genetic complexity of 6H locus in barley conferring resistance to Pyrenophora teres f. teres. Plant Breed 130:423–429

    Article  CAS  Google Scholar 

  • Harrabi M, Kamel A (1990) Virulence spectrum to barley in some isolates of Pyrenophora teres from Mediterranean region. Plant Dis 74:230–232

    Article  Google Scholar 

  • Ho KM, Kolander TM, Tekauz A, Martin RA (1996) Genetic studies on net blotch resistance in a barley cross. Can J Plant Sci 76:715–719

    Article  Google Scholar 

  • Jonsson R, Bryngelsson T, Gustafsson M (1997) Virulence studies of Swedish net blotch isolates (Drechslera teres) and identification of resistant barley lines. Euphytica 94:209–218

    Article  Google Scholar 

  • Khan TN, Boyd WJR (1969) Physiologic specialization in Drechslera teres. Aust J Biol Sci 22:1229–1235

    Article  Google Scholar 

  • König J, Perovic D, KopahnkeD OF (2013) Development of an efficient method for assessing resistance to the net type of net blotch (Pyrenophora teres f. teres) in Winter Barley and Mapping of Quantitative Trait Loci for Resistance. Mol Breed 32:641–650

    Article  Google Scholar 

  • Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25:1–18

    Article  Google Scholar 

  • Manninen OM, Jalli M, Kalendar R, Schulman A, Afanasenko O, Robinson J (2006) mapping of major spot-type and net-type net blotch resistance genes in the Ethiopian barley line CI 9819. Genome 49:1564–1571

    Article  CAS  PubMed  Google Scholar 

  • Mathre DE (ed) (1997) 2nd edn. APS Press, St. Paul

    Google Scholar 

  • McDonald WC (1963) Heterothallism in Pyrenophora teres. Phytopathology 53:771–773

    Google Scholar 

  • McDonald BA, McDermott JM, Allard RW, Webster RK (1989) Coevolution of host and pathogen populations in the Hordeum vulgare -Rhynchosporium secalis pathosystem. PNAS 86:3924–3927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novakazi F, Göransson M, Stefánsson TS, Hokka M, Jalli M, Hallsson JH (2021) Virulence of Icelandic Pyrenophora teres f. teres populations and resistance of Icelandic spring barley lines. J Plant Pathol 104:205–213

    Article  Google Scholar 

  • O’Boyle PD, BrooksWS SBJ, Stromberg EL, Griffey CA (2011) Genetic characterization of barley net blotch resistance genes. Plant Dis 95:19–23

    Article  PubMed  Google Scholar 

  • R Development Core Team (2006) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Rau D, Rodriguez M, Leonarda Murgia M, Balmas V, Bitocchi E, Bellucci E, Nanni L, Attene G, Papa R (2015) Co-evolution in a landrace meta-population: two closely related pathogens interacting with the same host can lead to different adaptive outcomes. Sci Rep 5:12834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smedegård-Petersen V (1978) Genetics of heterothallism in Pyrenophora graminea and P. teres. Trans Br Mycol Soc 70:99–102

    Article  Google Scholar 

  • Steffenson BJ, Webster RK (1992) Pathotype diversity of Pyrenophora teres f. teres on barley. Phytopathology 82:170–177

    Article  Google Scholar 

  • Tekauz A (1985) A numerical scale to classify reaction of barley to Pyrenophora teres. Can J Plant Pathol 7:181–183

    Article  Google Scholar 

  • Tekauz A (1990) Characterization and distribution of pathogenic variation in Pyrenophora teres f. teres and P. teres f. maculata from western Canada. Can J Plant Pathol 12:141–148

    Article  Google Scholar 

  • Tekauz A, Desjardins M, Kleiber F (2011) Evaluating the Pyrenophora teres international standard barley differential set with Canadian isolates of the pathogen. In: 4th international workshop on barley leaf blights, Dundee, Scotland, p A-47

  • Wu HL, Steffenson BJ, Li Y, Oleson AE, Zhong S (2003) Genetic variation for virulence and RFLP markers in Pyrenophora teres. Can J Plant Pathol 25:82–90

    Article  CAS  Google Scholar 

  • Yousfi BEI, Ezzahiri B (2002) Net Blotch in semi-arid regions of Morocco II yield and yield-loss modeling. Field Crops Res 73:81–93

    Article  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

  • Zhong S, Steffenson BJ (2001) Virulence and molecular diversity in Cochliobolus sativus. Phytopathology 91:469–476

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda M. Gamba.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Table S1

Mean infection reaction1 of 12 barley genotypes to 109 Pyrenophora teres f. teres isolates. Locations from which isolates were collected: A: Annaceur; M: Meknes; JS: Jemaa-Shaim; KS: Kemis-Zemamra; M: Meknes; S: Sais and T: Tessaout. Each isolate was named according to the location, the first letter/s of the location from which they were collected followed by the number of surveyed field, and after the dot is the number of each conidium isolated. The number after point depicts the number of monoconidial isolates recovered from the same leaf lesion (XLSX 21 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamba, F.M., Šišić, A. & Finckh, M.R. Pathogen diversity in a Moroccan population of Pyrenophora teres f. teres. J Plant Dis Prot 130, 1007–1015 (2023). https://doi.org/10.1007/s41348-023-00749-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-023-00749-1

Keywords

Navigation