Skip to main content
Log in

Identification and control potential of entomopathogenic nematodes against the black cutworm, Agrotis ipsilon (Fabricius) (Lepidoptera: Noctuidae), in potato-growing areas of Turkey

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

The black cutworm (BCW), Agrotis ipsilon (Hufnagel, 1766) (Lepidoptera: Noctuidae), is one of the major pests of potato, and its outbreaks frequently occur in potato-growing areas of Turkey. Entomopathogenic nematodes (EPNs) in the families of Steinernematidae and Heterorhabditidae are known as an important biocontrol agent to many insects including BCW. In 2020 and 2021, surveys of EPNs were conducted in major potato-growing areas of seven provinces of Turkey, including Afyonkarahisar, Konya, İzmir, Sivas, Bolu, Kayseri, and Niğde, in the sake to find a new sustainable biological control option for BCW. Out of the 400 collected soil samples, 48 samples (12%) consisted of EPNs. Based on the morphological, morphometric, and sequence analysis of the internal transcribed spacer (ITS), 34 isolates were identified as Steinernema feltiae Filipjev, 1934 (Rhabditida: Steinernematidae), 13 isolates as Heterorhabditis bacteriophora Poinar, 1976 (Rhabditida: Heterorhabditidae), 1 one isolate as Oscheius tipulae Lam and Webster, 1971 (Rhabditida: Rhabditidae). The virulence of EPN isolates was assessed on the larvae of Galleria mellonella L. (Lepidoptera: Pyralidae), and the most pathogenic isolates were further tested for their biocontrol potential against the 3rd/4th larval instar of BCW larvae at two concentrations of 50 and 100 IJs/cm2 under laboratory conditions. All selected isolates were highly effective against the larvae of BCW, and larval mortality ranged between 70 and 100% for both concentrations after 3 days of exposure time. The maximum mortality (100%) was achieved only by two isolates (H. bacteriophora AF-12 and S. feltiae KAY-4) at the higher concentration of 100 IJs/cm2. The results indicate that EPNs are abundantly present in potato-growing areas of Turkey and have the potential to be used in the biocontrol of BCW. To our knowledge, this is the first report of the presence of Oscheius tipulae in Turkey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams BJ, Nguyen KB (2002) Taxonomy and systematics. In: Gaugler R (ed) Entomopathogenic nematology. CABI Publishing, New York, pp 1–33

    Google Scholar 

  • Akhurst RJ, Boemare NE (2018) Biology and taxonomy of Xenorhabdus. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, pp 75–90

    Chapter  Google Scholar 

  • Athanassiou CG, Kavallieratos NG, Menti H, Karanastasi E (2010) Mortality of four stored product pests in stored wheat when exposed to doses of three entomopathogenic nematodes. J Econ Entomol 103(3):977–984. https://doi.org/10.1603/EC09202

    Article  PubMed  Google Scholar 

  • Atlıhan R, Özgökçe MS (2003) Van ili şekerpancarı alanlarındaki zararlı ve yararlı türlerin saptanması. YYÜ TAR Bil DERG 13(1):9–14

    Google Scholar 

  • Baïlle D, Barrière A, Félix MA (2008) Oscheius tipulae, a widespread hermaphroditic soil nematode, displays a higher genetic diversity and geographical structure than Caenorhabditis elegans. Mol Ecol 17(6):1523–1534

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya B, Pujari D, Bhuyan U, Baruah AALH (2014) Management of potato cutworm, Agrotis ipsilon (Hufnagel) in Assam. Pestic Res J 26(1):82–85

    CAS  Google Scholar 

  • Bhairavi KS, Bhattacharyya B, Devi G, Bhagawati S, Das PPG, Devi EB, Manpoong NS (2021) Evaluation of two native entomopathogenic nematodes against Odontotermes obesus (Rambur)(Isoptera: Termitidae) and Agrotis ipsilon (Hufnagel)(Lepidoptera: Noctuidae). Egypt J Biol Pest Control 31(1):1–8. https://doi.org/10.1186/s41938-021-00457-8

    Article  Google Scholar 

  • Blanco-Pérez R, Bueno-Pallero FÁ, Vicente-Díez I, Marco-Mancebón VS, Pérez-Moreno I, Campos-Herrera R (2019) Scavenging behavior and interspecific competition decrease offspring fitness of the entomopathogenic nematode Steinernema feltiae. J Invertebr Pathol 164:5–15

    Article  PubMed  Google Scholar 

  • Boemare N (2002) Biology, taxonomy and systematics of Photorhabdus and Xenorhabdus. In: Gaugler R (ed) Entomopathogenic Nematology. CABI Publishing, New York, pp 35–56

    Chapter  Google Scholar 

  • Capinera JL (2001) Handbook of vegetable pests. Academic Press, New York

    Google Scholar 

  • Canhilal R (2011) Comparison of the virulence of heterorhabdit nematodes on Galleria mellonella L. (Lepidoptera: Pyralidae). JAFAG 28(2):43–52

    Google Scholar 

  • Canhilal R, Waeyenberge L, Toktay H, Bozbuga R, Çetintas R, Imren M (2016) Distribution of Steinernematids and Heterorhabditids (Rhabditida: Steinernematidae and Heterorhabditidae) in the Southern Anatolia Region of Turkey. Egypt J Biol Pest Control 26(4)

  • Canhilal R, Waeyenberge L, Yüksel E, Koca A S, Deniz Y, Imren M (2017) Assessment of the natural presence of entomopathogenic nematodes in Kayseri soils, Turkey. Egypt J Biol Pest Control 27(2)

  • Devi G (2020) Management of Cutworm by Entomopathogenic Nematodes-A Review. Int J Curr Microbiol App Sci 9(6):2520–2526. https://doi.org/10.20546/ijcmas.2020.906.306

    Article  Google Scholar 

  • Dillon AB, Rolston AN, Meade CV, Downes MJ, Griffin CT (2008) Establishment, persistence, and introgression of entomopathogenic nematodes in a forest ecosystem. Ecol Appl 18(3):735–747. https://doi.org/10.1890/07-1009.1

    Article  CAS  PubMed  Google Scholar 

  • Ebssa L, Koppenhöfer AM (2012) Entomopathogenic nematodes for the management of Agrotis ipsilon: effect of instar, nematode species and nematode production method. Pest Manag Sci 68(6):947–957. https://doi.org/10.1002/ps.3259

    Article  CAS  PubMed  Google Scholar 

  • Erbaş Z, Demir İ, Demirbağ Z (2017) Isolation and characterization of a parasitic nematode, Oscheius myriophila (Nematoda: Rhabditida), associated with European Mole Cricket, Gryllotalpa gryllotalpa (Orthoptera: Gryllotalpidae). Hacettepe J Biol Chem 45(2):197–203

    Article  Google Scholar 

  • FAOSTAT (Food and Agriculture Organization of the United Nations) (2020) Online database. http://www.fao.org/faostat/en/#data/QC. Accessed 17 June 2020

  • Ferris VR (1993) Variation in spacer ribosomal DNA in some cyst-forming species of plant parasitic nematodes. Fundam Appl Nematol 16:177–184

    Google Scholar 

  • Gayen S, Hossain MA, Sen SK (2012) Identification of the bioactive core component of the insecticidal Vip3A toxin peptide of Bacillus thuringiensis. J Plant Biochem Biotechnol 21(1):128–135

    Article  CAS  Google Scholar 

  • Gözüaçık C (2016) The determination of lepidopterous pest species and their distributions, densities, and damages in corn fields of ığdır province in Turkey. JIST 6(1):45–52

    Article  Google Scholar 

  • Grewal PS, Ehlers RU, Shapiro-Ilan DI (2005) Nematodes as biocontrol agents. CABI, Wallingford

    Book  Google Scholar 

  • Gupta S, Kaul V, Sharma D, Ahmad H (2009) Virulence and Reproductive potential of Local isolate of Steinernema carpocapsae against Galleria mellonella. Ann Plant Sci 17(2):418–421

    Google Scholar 

  • Gulzar S, Usman M, Wakil W, Gulcu B, Hazir C, Karagoz M, Shapiro-Ilan DI (2020) Environmental tolerance of entomopathogenic nematodes differs among nematodes arising from host cadavers versus aqueous suspension. J Invertebr Pathol 175:107452. https://doi.org/10.1016/j.jip.2020.107452

    Article  CAS  PubMed  Google Scholar 

  • Gülcü B (2018) Batı Karadeniz Bölgesindeki entomopatojen nematodların (steinernematidae ve heterorhabditidae) tür çeşitliliği ve dağılımı. Anadolu Tarım Bilim Derg 33(1):6–13

    Google Scholar 

  • Hassan HA, Shairra SA, Ibrahim SS (2016) Virulence of entomopathogenic nematodes Steinernema glaseri and Heterorhabditis bacteriophora Poinar (HP88 strain) against the Black Cutworm, Agrotis ipsilon. Egypt Acad J Biol Sci 9(1):33–48. https://doi.org/10.21608/EAJBSA.2016.12853

    Article  Google Scholar 

  • Hazir S, Keskin N, Stock SP, Kaya HK, Özcan S (2003) Diversity and distribution of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) in Turkey. Biodivers Conserv 12(2):375–386. https://doi.org/10.1023/A:1021915903822

    Article  Google Scholar 

  • Hazir S, Kaya HK, Stock SP, Keskin N (2004) Entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) for biological control of soil pests. Turk J Biol 27(4):181–202

    Google Scholar 

  • Hussaini SS, Shakeela V, Dar MH (2005) Influence of temperature on infectivity of entomopathogenic nematodes against black cutworm, Agrotis ipsilon (Hufnagel) and greater wax moth, Galleria mellonella (Linnaeus) larvae. Biol Control 19(1):51–58. https://doi.org/10.1186/s41938-018-0087-3

    Article  Google Scholar 

  • Hyrsl P (2011) Pathogenicity of four entomopathogenic nematodes species to G. mellonella larvae. Karaelmas Sci Eng J 1(1):1–6

    Article  Google Scholar 

  • Hominick WM, Reid AP, Bohan DA, Briscoe BR (1996) Entomopathogenic nematodes: biodiversity, geographical distribution and the convention on biological diversity. Biocontrol Sci Technol 6(3):317–332. https://doi.org/10.1080/09583159631307

    Article  Google Scholar 

  • Hominick WM, Briscoe BR, del Pino FG, Heng J, Hunt DJ, Kozodoy E, Mracek Z, Nguyen KB, Reid AP, Spiridonov S, Stock P, Sturhan D, Waturu C, Yoshida M (1997) Biosystematics of entomopathogenic nematodes: current status, protocols and definitions. J Helminthol 71(4):271–298. https://doi.org/10.1017/S0022149X00016096

    Article  CAS  PubMed  Google Scholar 

  • Hussein AM, Mohamed HA, Hafez SFM (2005) Biological and physiological effects of the bioinsecticide Spinosad on the cutworm, Agrotis ipsilon (Hufnagel). Egypt J Biol Pest Control 15(1/2):139–145

    Google Scholar 

  • Jackson TA, Alves SB, Pereira RM (2000) Success in biological control of soil-dwelling insects by pathogens and nematodes. In: Gurr G, Wratten S (eds) Biological control: measures of success. Springer, Dordrecht, pp 271–296

    Chapter  Google Scholar 

  • Joshi MJ, Rana A, Prithiv Raj V, Kaushal S, Inamdar AG, Verma KS, Chandel RS (2020) The potency of chemical insecticides in management of cutworm, Agrotis ipsilon Hufnagel (Noctuidae: Lepidoptera): a review. J Entomol Zool Stud 8:307–311

    Google Scholar 

  • Joyce SA, Burnell AM, Powers TO (1994) Characterization of Heterorhabditis isolates by PCR amplification of segments of mtDNA and rDNA genes. J Nematol 26:260–270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karimi J, Rezaei N, Shokoohi E (2018) Addition of a new insect parasitic nematode, Oscheius tipulae, to Iranian fauna. Nematropica 48(1):82–91

    Google Scholar 

  • Kaya HK, Stock SP (1997) Techniques in insect nematology. In: Lacey LA (ed) Manual Of Techniques In Insect Pathology. Academic Press, New York, pp 281–324

    Chapter  Google Scholar 

  • Knodel JJ, Shrestha G (2018) Pulse crops: pest management of wireworms and cutworms in the Northern Great Plains of United States and Canada. Ann Entomol Soc Am. https://doi.org/10.1093/aesa/say018

    Article  Google Scholar 

  • Kurtz B, Toepfer S, Ehlers RU, Kuhlmann U (2007) Assessment of establishment and persistence of entomopathogenic nematodes for biological control of western corn rootworm. J Appl Entomol 131(6):420–425. https://doi.org/10.1111/j.1439-0418.2007.01202.x

    Article  Google Scholar 

  • Kunkel BA, Grewal PS, Quigley MF (2004) A mechanism of acquired resistance against an entomopathogenic nematode by Agrotis ipsilon feeding on perennial ryegrass harboring a fungal endophyte. Biol Control 29(1):100–108. https://doi.org/10.1016/S1049-9644(03)00119-1

    Article  Google Scholar 

  • Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41. https://doi.org/10.1016/j.jip.2015.07.009

    Article  CAS  PubMed  Google Scholar 

  • Lam AB, Webster JM (1971) Morphology and biology of Panagrolaimus tipulae n. sp. (Panagrolaimidae) and Rhabditis (Rhabditella) tipulae n. sp. (Rhabditidae), from leatherjacket larvae, Tipula paludosa (Diptera: Tipulidae). Nematologica 17(2):201–212

    Article  Google Scholar 

  • Lankin G, Castaneda-Alvarez C, Vidal-Retes G, Aballay E (2020) Biological control of the potato cutworm Agrotis deprivata (Lepidoptera: Noctuidae) with Steinernema feltiae LR (Nematoda: Steinernematidae): Influence of the temperature, host developmental stage, and application mode on its survival and infectivity. Biol Control 144:104219. https://doi.org/10.1016/j.biocontrol.2020.104219

    Article  CAS  Google Scholar 

  • Lewis EE, Campbell J, Griffin C, Kaya H, Peters A (2006) Behavioral ecology of entomopathogenic nematodes. Biol Control 38(1):66–79. https://doi.org/10.1016/j.biocontrol.2005.11.007

    Article  Google Scholar 

  • Miduturi J, Waeyenberge L, Moens M (1997) Natural distribution of entomopathogenic nematodes (Heterorhabditidae and Steinernematidae) in Belgian soils. Russ J Nematol 5:55–66

    Google Scholar 

  • Mracek Z, Becvar S, Kindlmann P (1999) Survey of entomopathogenic nematodes from the families Steinernematidae and Heterorhabditidae (Nematoda: Rhabditida) in the Czech Republic. Folia Parasitol 46(4):145–148

    Google Scholar 

  • Noosidum A, Hodson AK, Lewis EE, Chandrapatya A (2010) Characterization of new entomopathogenic nematodes from Thailand: foraging behavior and virulence to the greater wax moth, Galleria mellonella L. (Lepidoptera: Pyralidae). J Nematol (4): 281

  • Nguyen KB, Smart GC Jr (1990) Steinernema scapterisci n. sp. (Rhabditida: Steinernematidae). J Nematol 22(2):187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen KB, Smart GC Jr (1995) Morphometrics of infective juveniles of Steinernema spp. and Heterorhabditis bacteriophora (Nemata: Rhabditida). J Nematol 27(2):206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen K, Hunt D (2007) Entomopathogenic nematodes: systematics, phylogeny and bacterial symbionts. Brill, Leiden

  • Nouh GM (2021) Efficacy of the entomopathogenic nematode isolates against Spodoptera littoralis (Boisduval) and Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae). Egypt J Biol Pest Control 31(1):1–5. https://doi.org/10.1186/s41938-021-00374-w

    Article  Google Scholar 

  • Okyar Z, Abacıgil TÖ, Varlı SV, Tezcan S (2014) A short note on the noctuidae (lepidoptera) fauna collected by bait traps in pomegranate orchard of havran (Balıkesir) province of Turkey. Mun Ent Zool 9(1):564–567

    Google Scholar 

  • Ölmez M, Aslan MM, Güzel G (2009) Kahramanmaras ili mısır alanlarındaki zararlı lepidopter türlerinin tespiti, popülasyon gelisimleri ve predatörlerinin saptanması. KSÜ Tar Doga Derg 13(1):26–33

    Google Scholar 

  • Özer N, Keskin N, Kirbas Z (1995) Occurrence of entomopathogenic nematodes (Steinernematidae: Heterorhabditidae) in Turkey. Nematologica 41(5):639–640

    Google Scholar 

  • Phan KL, Tirry L, Moens M (2005) Pathogenic potential of six isolates of entomopathogenic nematodes (Rhabditida: Steinernematidae) from Vietnam. Biocontrol 50(3):477–491. https://doi.org/10.1007/s10526-004-6122-1

    Article  Google Scholar 

  • Poinar Jr GO (1990) Taxonomy and biology of Steinernematidae and Heterorhabditidae. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes in biological control. Brill, Boca Rotan, pp 23–54

  • Prater CA, Redmond CT, Barney W, Bonning BC, Potter DA (2006) Microbial control of black cutworm (Lepidoptera: Noctuidae) in turfgrass using Agrotis ipsilon multiple nucleopolyhedrovirus. J Econ Entomol 99(4):1129–1137

    Article  PubMed  Google Scholar 

  • Ramos-Rodríguez O, Campbell JF, Ramaswamy SB (2006) Pathogenicity of three species of entomopathogenic nematodes to some major stored-product insect pests. J Stored Prod Res 42(3):241–252. https://doi.org/10.1016/j.jspr.2004.08.004

    Article  Google Scholar 

  • Seinhorst JW (1959) A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica 4(1):67–69

    Article  Google Scholar 

  • Shairra AS, Hassan AH, Ibrahim SS (2016) Efficiency of entomopathogenic nematodes as biocontrol agents for Agrotis ipsilon larvae. Bull Entomol Soc Egypt 42:1–12

    Google Scholar 

  • Shapiro-Ilan D, Dolinski C (2015) Entomopathogenic nematode application technology. In: Campos Herera R (ed) Nematode pathogenesis of insects and other pests. Springer, Dordrecht, pp 231–254

    Chapter  Google Scholar 

  • Shishiniova M, Budurova L, Gradinarov D (1997) Contribution to fauna of entomopathogenic nematodes (Rhabditida: Steinernematidae, Heterorhabditidae) from Bulgaria. Biotechnol Biotechnol Equip 11(1–2):45–52. https://doi.org/10.1080/13102818.1997.10818916

    Article  Google Scholar 

  • Sudhaus W (1993) Redescription of Rhabditis (Oscheius) tipulae (Nematoda: Rhabditidae) associated with leatherjackets, larvae of Tipula paludosa (Diptera: Tipulidae). Nematologica 39(1–4):234–239

    Article  Google Scholar 

  • Susurluk A, Ehlers RU (2008) Field persistence of the entomopathogenic nematode Heterorhabditis bacteriophora in different crops. Biocontrol 53(4):627–641

    Article  Google Scholar 

  • Takeda M (2008) Current research of pest insects of vegetables in last decade. Annual Rep Kansai Plant Protect 50:39–44

    Article  Google Scholar 

  • Tian C, Liu J, Zhang J, Li M, Zhu F, Teng Z, YanWei L, Li J (2019) Identification and biological characteristics of Oscheius tipulae JL1. Chin J Biol 35(6):900–907

    Google Scholar 

  • Tiftikci P, Kornoşor S (2015) Çanakkale’de mısırda zararlı lepidoptera türleri, dağılımları ve yayılışları üzerinde araştırmalar. ÇOMÜ Ziraat Fak Derg 3(2):107–118

    Google Scholar 

  • Vrain TC, Wakarchuk DA, Levesque AC, Hamilton RI (1992) Intraspecific rDNA restriction fragment length polymorphism in the Xiphinema americanum group. Fundam Appl Nematol 15:563–573

    Google Scholar 

  • Waeyenberge L, Ryss A, Moens M, Pinochet J, Vrain T (2000) Molecular characterisation of 18 Pratylenchus species using rDNA restriction fragment length polymorphism. Nematology 2(2):135–142

    Article  CAS  Google Scholar 

  • Westerman PR (1998) Penetration of the Entomopathogenic Nematode Heterorhabditis spp. into host insects at 9 and 20° C. J Invertebr Pathol 72(3):197–205. https://doi.org/10.1006/jipa.1998.4790

    Article  CAS  PubMed  Google Scholar 

  • Valadas V, Laranjo M, Mota M, Oliveira S (2014) A survey of entomopathogenic nematode species in continental Portugal. J Helminthol 88(3):327–341. https://doi.org/10.1017/S0022149X13000217

    Article  CAS  PubMed  Google Scholar 

  • Yan X, Wang X, Han R, Qiu X (2014) Utilisation of entomopathogenic nematodes, Heterorhabditis spp. and Steinernema spp., for the control of Agrotis ipsilon (Lepidoptera, Noctuidae) in China. Nematology 16(1):31–40

    Article  Google Scholar 

  • Yan X, Chen G, Chen Y, Sun B, Gu X, Ruan W, Han R (2020) Virulence of Steinernema ceratophorum against different pest insects and their potential for in vivo and in vitro culture 53:2021–46. https://doi.org/10.21307/jofnem-2021-046

  • Yavuzaslanoglu E, Gozel U, Gozel C, Aydogdu M (2016) Distribution of the entomopathogenic nematodes in apple growing areas of Karaman, Turkey. Pak J Nematol 34(1):53–62. https://doi.org/10.18681/pjn.v34.i01.p53

    Article  Google Scholar 

  • Yoshida M, Reid AP, Briscoe BR, Hominick WM (1998) Survey of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) in Japan. Fundam Appl Nematol 21(2):185–198

    Google Scholar 

  • Yuksel E, Canhilal R (2019) Isolation, identification, and pathogenicity of entomopathogenic nematodes occurring in Cappadocia Region, Central Turkey. Egypt J Biol Pest Control 29(1):1–7. https://doi.org/10.1186/s41938-019-0141-9

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by The Scientific and Technological Research Council of Turkey (TÜBİTAK) (Project No. 119R025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebubekir Yüksel.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gümüş Askar, A., Yüksel, E., Öcal, A. et al. Identification and control potential of entomopathogenic nematodes against the black cutworm, Agrotis ipsilon (Fabricius) (Lepidoptera: Noctuidae), in potato-growing areas of Turkey. J Plant Dis Prot 129, 911–922 (2022). https://doi.org/10.1007/s41348-022-00566-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-022-00566-y

Keywords

Navigation