Skip to main content
Log in

Investigating the capability of the Harmonic Analysis of Time Series (HANTS) algorithm in reconstructing time series images of daytime and nighttime land surface temperature from the MODIS sensor

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

A continuous, high-resolution surface temperature time series is necessary for hydrology, meteorology, and ecology. However, challenges such as cloud cover, aerosols, and algorithmic disturbances in satellite-based temperature images, particularly from MODIS, result in irregular observations, data loss, noise, and spatial–temporal outliers. The effectiveness of the Harmonic Analysis of Time Series (HANTS) algorithm in reconstructed day and night temperature series from MODIS in desert regions are assessed in this study. Utilizing daily and nightly surface temperature data from 2014 to 2020 (4380 images), data gap analysis revealed peak loss during spring and winter, averaging 6.19% during the day and 8.20% at night over seven years. Because of temperature differences between day and night, the HANTS algorithm was unable to reconstruct the day-night sequence in an accurate way, highlighting the potential of the algorithm in addressing challenges associated with desert environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jiang, B., Li, X., Chong, H., Wu, Y., Li, Y., Jia, J., & Chen, X. (2022). A deep-learning reconstruction method for remote sensing images with large thick cloud cover. International Journal of Applied Earth Observation and Geoinformation, 115, 103079.

    Article  Google Scholar 

  2. Cui, J., Zhang, M., Song, D., Shan, X., & Wang, B. (2022). MODIS land surface temperature product reconstruction based on the SSA-BiLSTM model. Remote Sensing, 14(4), 958.

    Article  Google Scholar 

  3. Fan, X.-M., Liu, H.-G., Liu, G.-H., & Li, S.-B. (2014). Reconstruction of MODIS land-surface temperature in a flat terrain and fragmented landscape. International Journal of Remote Sensing, 35, 7857–7877.

    Article  Google Scholar 

  4. Sarafanov, M., Kazakov, E., Nikitin, N. O., & Kalyuzhnaya, A. V. (2020). A machine learning approach for remote sensing data gap-filling with open-source implementation: an example regarding land surface temperature surface Albedo and NDVI. Remote Sensing, 12, 3865.

    Article  Google Scholar 

  5. Yao, R., Wang, L., Huang, X., Sun, L., Chen, R., Wu, X., Zhang, W., & Niu, Z. (2021). A Robust method for filling the gaps in MODIS and VIIRS land surface temperature data. IEEE Transactions on Geoscience and Remote Sensing, 59, 10738–10752.

    Article  Google Scholar 

  6. Jia, L., Shang, H., Hu, G., & Menenti, M. (2011). Phenological response of vegetation to upstream river flow in the Heihe Rive basin by time series analysis of MODIS data. Hydrology and Earth System Sciences, 15(3), 1047–1064.

    Article  Google Scholar 

  7. Atkinson, P. M., Jeganathan, C., Dash, J., & Atzberger, C. (2012). Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sensing of Environment, 123, 400–417.

    Article  Google Scholar 

  8. Holben, B. N. (1986). Characteristics of maximum-value composite images from temporal AVHRR data. International Journal of Remote Sensing, 7(11), 1417–1434. https://doi.org/10.1080/01431168608948945

    Article  Google Scholar 

  9. Li, S., Liang, Xu., Jing, Y., Yin, H., Li, X., & Guan, X. (2021). High-quality vegetation index product generation: A review of NDVI time series reconstruction techniques. International Journal of Applied Earth Observation and Geoinformation, 105, 102640. https://doi.org/10.1016/j.jag.2021.102640

    Article  Google Scholar 

  10. Yang, Y., Luo, J., Huang, Q., Wu, W., & Sun, Y. (2019). Weighted double-logistic function fitting method for reconstructing the high-quality sentinel-2 NDVI time series data set. Remote Sensing, 11(20), 2342.

    Article  Google Scholar 

  11. Padhee, S. K., & Dutta, S. (2019). Spatio-temporal reconstruction of MODIS NDVI by regional land surface phenology and harmonic analysis of time-series. GIScience and Remote Sensing, 56(8), 1261–1288. https://doi.org/10.1080/15481603.2019.1646977

    Article  Google Scholar 

  12. Menenti, M., Azzali, S., Verhoef, W., & Van Swol, R. (1993). Mapping agroecological zones and time lag in vegetation growth by means of Fourier analysis of time series of NDVI images. Advances in Space Research, 13(5), 233–237.

    Article  Google Scholar 

  13. Roerink, G. J., Menenti, M., & Verhoef, W. (2000). Reconstructing cloudfree NDVI composites using Fourier analysis of time series. International Journal of Remote Sensing, 21(9), 1911–1917.

    Article  Google Scholar 

  14. Lu, X., Liu, R., Liu, J., & Liang, S. (2007). Removal of noise by wavelet method to generate high quality temporal data of terrestrial MODIS products. Photogrammetric Engineering & Remote Sensing, 73(10), 1129–1139.

    Article  Google Scholar 

  15. Shang, H., Jia, L., & Menenti, M. (2012, November). Analyzing the inundation patterns in Asia floodplains by passive microwave data. In Land Surface Remote Sensing (Vol. 8524, pp. 35-48). SPIE

  16. Menenti, M., Jia, L., Azzali, S., Roerink, G., Gonzalez-Loyarte, M., & Leguizamon, S. (2010). Analysis of vegetation response to climate variability using extended time series of multispectral satellite images. In: Maselli, F., Menenti, M., Brivio, PA (eds.). Remote Sensing Optical Observations of Vegetation Properties, Chapter 6, pp. 131–163. ‏

  17. Zhou, D., Zhao, S., Liu, S., Zhang, L., & Zhu, C. (2014). Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers. Remote Sensing of Environment, 152, 51–61.

    Article  Google Scholar 

  18. Jakubauskas, M. E., Legates, D. R., & Kastens, J. H. (2001). Harmonic analysis of time-series AVHRR NDVI data. Photogrammetric Engineering and Remote Sensing, 67(4), 461–470.

    Google Scholar 

  19. De Jong, R., de Bruin, S., de Wit, A., Schaepman, M. E., & Dent, D. L. (2011). Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sensing of Environment, 115(2), 692–702.

    Article  Google Scholar 

  20. Azzali, S., & Menenti, M. (2000). Mapping vegetation-soil-climate complexes in southern Africa using temporal Fourier analysis of NOAA-AVHRR NDVI data. International Journal of Remote Sensing, 21(5), 973–996.

    Article  Google Scholar 

  21. Geerken, R. A. (2009). An algorithm to classify and monitor seasonal variations in vegetation phenologies and their inter-annual change. ISPRS Journal of Photogrammetry and Remote Sensing, 64(4), 422–431.

    Article  Google Scholar 

  22. Alfieri, S. M., De Lorenzi, F., & Menenti, M. (2013). Mapping air temperature using time series analysis of LST: The SINTESI approach. Nonlinear Processes in Geophysics, 20(4), 513–527.

    Article  Google Scholar 

  23. Julien, Y., Sobrino, J. A., & Verhoef, W. (2006). Changes in land surface temperatures and NDVI values over Europe between 1982 and 1999. Remote Sensing of Environment, 103(1), 43–55.

    Article  Google Scholar 

  24. Jia, L., Xi, G., Liu, S., Huang, C., Yan, Y., & Liu, G. (2009). Regional estimation of daily to annual regional evapotranspiration with MODIS data in the Yellow River Delta wetland. Hydrology and Earth System Sciences, 13(10), 1775–1787.

    Article  Google Scholar 

  25. Zhou, J., Jia, L., Menenti, M., & Gorte, B. (2016). On the performance of remote sensing time series reconstruction methods—A spatial comparison. Remote Sensing of Environment, 187, 367–384.

    Article  Google Scholar 

  26. Julien, Y., & Sobrino, J. A. (2018). TISSBERT: A benchmark for the validation and comparison of NDVI time series reconstruction methods. Revista de Teledetección, 51, 19–31.

    Article  Google Scholar 

  27. Zhang, J., Shang, R., Rittenhouse, C., Witharana, C., & Zhu, Z. (2021). Evaluating the impacts of models, data density and irregularity on reconstructing and forecasting dense Landsat time series. Science of Remote Sensing, 4, 100023.

    Article  Google Scholar 

  28. Zhou, J., Jia, L., & Menenti, M. (2015). Reconstruction of global MODIS NDVI time series: Performance of harmonic analysis of time series (HANTS). Remote Sensing of Environment, 163, 217–228.

    Article  Google Scholar 

  29. Efthimiou, N., Psomiadis, E., Papanikolaou, I., Soulis, K. X., Borrelli, P., & Panagos, P. (2022). Developing a high-resolution land use/land cover map by upgrading CORINE’s agricultural components using detailed national and pan-European datasets. Geocarto International, 37(25), 10871–10906.

    Google Scholar 

  30. Asrar, G. R. (2019). Advances in quantitative earth remote sensing: Past present and future. Sensors, 19, 5399.

    Article  Google Scholar 

  31. Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., & Huang, X. (2010). MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sensing of Environment, 114, 168–182.

    Article  Google Scholar 

  32. Palácios, R., Nassarden, D. C., Franco, M. A., Morais, F. G., Machado, L. A., Rizzo, L. V., & Artaxo, P. (2022). Evaluation of MODIS dark target AOD product with 3 and 10 km resolution in Amazonia. Atmosphere, 13(11), 1742.

    Article  Google Scholar 

  33. Xiong, X., & Butler, J. J. (2020). MODIS and VIIRS calibration history and future outlook. Remote Sensing, 12(16), 2523.

    Article  Google Scholar 

  34. Roerink, G. J., Menenti, M., Soepboer, W., & Su, Z. (2003). Assessment of climate impact on vegetation dynamics by using remote sensing. Physics and Chemistry of the Earth, Parts A/B/C, 28(1–3), 103–109.

    Article  Google Scholar 

  35. Jia, L., Shang, H., Hu, G., & Menenti, M. (2011). Phenological response of vegetation to upstream river flow in the Heihe river basin by time series analysis of MODIS data. Hydrology and Earth System Sciences, 15(3), 1047–1064.

    Article  Google Scholar 

  36. Moody, A., & Johnson, D. M. (2001). Land-surface phenologies from AVHRR using the discrete Fourier transform. Remote Sensing of Environment, 75(3), 305–323.

    Article  Google Scholar 

  37. Xu, Y., & Shen, Y. (2013). Reconstruction of the land surface temperature time series using harmonic analysis. Computers and Geosciences, 61, 126–132.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saeed Shojaei or Mohammad Zare.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Data were collected from public sources and no informed consent was needed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliabad, F.A., Shojaei, S., Zare, M. et al. Investigating the capability of the Harmonic Analysis of Time Series (HANTS) algorithm in reconstructing time series images of daytime and nighttime land surface temperature from the MODIS sensor. Spat. Inf. Res. (2024). https://doi.org/10.1007/s41324-023-00569-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41324-023-00569-3

Keywords

Navigation