Skip to main content
Log in

Estimating wetland insecurity index for Chatra wetland adjacent English Bazar Municipality of West Bengal

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

Charta wetland adjacent to the English Bazar Municipality is considered as the kidney of this urban area. In last 25 years, 43% of total wetland area is urbanized and this trend still continues. This paper aims to compute wetland insecurity index based on 11 selected natural (five) and man induced parameters (six) at multi-temporal scale (1990, 2010 and 2017). Weighted linear combination method is used for preparing wetland insecurity indices (natural, man-induced and integrated parameters specific) in Arc GIS (v-9.3) environment. Result clearly exhibited that man-induced parameters are more crucial for bringing greater north eastern wetland fringe area under high insecurity. Highly insecure wetland covers 6.6% to total area in case of man-induced parameters based spatial model is recorded in 2017 superseded previous phases. In case of natural parameter centric wetland insecurity model, no such highly insecure zone is found. Total 20.17, 33.23 and 72.18 ha areas are appeared as highly insecure wetland area for integrated wetland insecurity models for 1990, 2010 and 2017 respectively indicating increasing spatial extent. Built up area, population density, sedimentation seasonal drying out of the parts of wetland are appeared as major reason behind growing wetland insecurity in Chatra wetland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bassi, N., Kumar, D. M., & Sharma, A. (2014). Status of wetlands in India: A review of extent, ecosystem benefits, threats and management strategies. Journal of Hydrology: Regional Studies, 2, 1–19.

    Google Scholar 

  2. Rai, P. K. (2008). Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: An ecosustainableapproach. International Journal of Phytoremediation, 10(2), 133–160.

    Article  Google Scholar 

  3. Das, R. T., & Pal, S. (2017). Exploring geospatial changes of wetland in different hydrological paradigms using water presence frequency approach in Barind Tract of West Bengal. Spatial Information Research. https://doi.org/10.1007/s41324-017-0114-6.

    Google Scholar 

  4. Verma, M. (2001). Economic valuation of Bhoj Wetlands for sustainable use. EERC working paper series: WB-9. Bhopal: Indian Institute of Forest Management.

  5. Song, Z., Zheng, Z., Li, J., Sun, X., Han, X., Wang, W., et al. (2006). Seasonal and annual performance of a full-scale constructed wetland system for sewage treatment in China. Ecological Engineering, 26(3), 272–282.

    Article  Google Scholar 

  6. Vymazal, J. (2010). Constructed wetlands for wastewater treatment: Five decades of experience. Environmental Science and Technology, 45(1), 61–69.

    Article  Google Scholar 

  7. Chhattaraj, S., & Chattaraj, C. (2008). Present status and future strategy to conserve wetlands in Malda District, West Bengal. National Geographer, XLiii(1 + 2), 243–252.

    Google Scholar 

  8. Kar, S., & Pal, S. (2012). Ensuing threats on wetland in malda district: A case study on chatra wetland. International Journal of Lakes and Rivers, 5(1), 39–45.

    Google Scholar 

  9. Gong, J., Xia, B., & Guo, L. (2006). Assessment and prediction models of urban ecological security. Acta Scientiarum Naturalium Universitatis Sunyatseni, 45(1), 107–111.

    Google Scholar 

  10. Zheng, C. H. (2009). Study on dynamical changes of wetland landscape patterns and responses of ecological security-taking Puxiazhou region of Fuzhou City for example. Safety and Environmental Engineering, 16(1), 2–6.

    Google Scholar 

  11. Pei, L., Du, L., & Yue, G. (2010). Ecological security assessment of Beijing based on PSR model. Procedia Environmental Sciences, 2, 832–841.

    Article  Google Scholar 

  12. Zhang, Y., Zhang, D., & Barrett, S. (2010). Genetic uniformity characterises the invasive spread of water hyacinth (Eichhornia crassipes), a clonal aquatic plant. Molecular Ecology, 19, 1774–1786.

    Article  Google Scholar 

  13. Xu, L., Li, Z., Song, H., & Yin, H. (2013). Land-use planning for urban sprawl based on the clue-s model: A case study of Guangzhou, China. Entropy, 15, 3490–3506.

    Article  Google Scholar 

  14. Talukdar, S., & Pal, S. (2017). Impact of dam on inundation regime of flood plain wetland of punarbhaba river basin of barind tract of Indo-Bangladesh. International Soil and Water Conservation Research. https://doi.org/10.1016/j.iswcr.2017.05.003.

    Google Scholar 

  15. Pal, S. (2016). Impact of water diversion on hydrological regime of Atreyee River of Indo-Bangladesh. International Journal of River Basin Management. https://doi.org/10.1080/15715124.2016.1194282.

    Google Scholar 

  16. Talukdar, S., & Pal, S. (2017). Impact of dam on flow regime and flood plain modification in Punarbhaba River Basin of Indo-Bangladesh Barind tract. Water Conservation Science Engineering. https://doi.org/10.1007/s41101-017-0025-3.

    Google Scholar 

  17. Malekmohammadi, B., & Jahanishakib, F. (2017). Vulnerability assessment of wetland landscape ecosystem services using driver-pressure-state-impact-response (DPSIR) model. Ecological Indicators, 82, 293–303. https://doi.org/10.1016/j.ecolind.2017.06.060.

    Article  Google Scholar 

  18. Jiang, W., Lv, J., Wang, C., Chen, Z., & Liu, Y. (2017). Marsh wetland degradation risk assessment and change analysis: A case study in the Zoige Plateau, China. Ecological Indicators, 82, 316–326.

    Article  Google Scholar 

  19. Chatterjee, K., Bandyopadhyay, A., Ghosh, A., & Kar, S. (2015). Assessment of environmental factors causing wetland degradation using fuzzy analytic network process: A case study on Keoladeo National Park, India. Ecological Modelling, 316, 1–13.

    Article  Google Scholar 

  20. Ouma, O. Y., & Tateishi, R. (2014). Urban flood vulnerability and risk mapping using integratedmulti-parametric AHP and GIS: Methodological overview and case study assessment. Water, 6, 1515–1545.

    Article  Google Scholar 

  21. Rimba, A. B., Setiawati, M. D., Sambah, A. B., & Miura, F. (2017). Physical flood vulnerability mapping applying geospatial techniques in Okazaki City, Aichi Prefecture, Japan. Urban Science, 1, 7. https://doi.org/10.3390/urbansci10100.

    Article  Google Scholar 

  22. McFeeters, S. K. (1996). The use of normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432.

    Article  Google Scholar 

  23. Das, R. T., & Pal, S. (2016). Identification of water bodies from multispectral landsat imageries of Barind Tract Of West Bengal. International Journal of Innovative Research and Review, 4(1), 26–37.

    Google Scholar 

  24. Townshend, J. R., & Justice, C. O. (1986). Analysis of the dynamics of African vegetation using the normalized difference vegetation index. International Journal of Remote Sensing, 7(11), 1435–1445.

    Article  Google Scholar 

  25. Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583–594.

    Article  Google Scholar 

  26. Landsat Project Science Office. (2002). Landsat 7 science data user’s handbook. GoddardSpace Flight Center, NASA, Washington, DC. http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_toc.html. Accessed 10 September 2003.

  27. Ziaul, S., & Pal, S. (2016). Image based surface temperature extraction and trend detection in an urban area of West Bengal, India. Journal of Environmental Geography, 9(3–4), 1–13. https://doi.org/10.1515/jengeo-2016-0008.

    Google Scholar 

  28. Artis, D. A., & Carnahan, W. H. (1982). Survey of emissivity variability in thermography of urban areas. Remote Sensing of Environment, 12, 313–329.

    Article  Google Scholar 

  29. Valor, E., & Caselles, V. (1996). Mapping land surface emissivity from NDVI: Application to European, African, and South American areas. Remote Sensing of Environment, 57, 167–184.

    Article  Google Scholar 

  30. Markham, B. L., & Barker, J. K. (1985). Spectral characteristics of the LANDSAT thematic mapper sensors. International Journal of Remote Sensing, 6, 697–716.

    Article  Google Scholar 

  31. Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.

    Google Scholar 

  32. Burton, E. D., Phillips, I. R., & Hawker, D. W. (2004). Trace metals and nutrients in bottom sediments of the Southport Broadwater, Australia. Marine Pollution Bulletin, 48, 378–402.

    Article  Google Scholar 

  33. Mondal, D. (2017). Geo-spatial dynamics of wetland regime in Murshidabad district: A hydro-geomorphological study (pp 130–154). Ph.D. thesis submitted to the University of Gour Banga, India.

  34. Ahmed, B., Kamruzzaman, Md, Zhu, X., Rahman, M. S., & Choi, K. (2013). Simulating land cover changes and their impacts on land surface temperature in Dhaka, Bangladesh. Remote Sensing, 5, 5969–5998. https://doi.org/10.3390/rs5115969.

    Article  Google Scholar 

  35. Pal, S., & Ziaul, S. (2016). Detection of land use and land cover change and land surface temperature in English Bazar urban centre. The Egyptian Journal of Remote Sensing and Space Sciences, temperature. https://doi.org/10.1016/j.ejrs.2016.11.003.

    Google Scholar 

  36. Ren, G. Y., Chu, Z. Y., Chen, Z. H., & Ren, Y. Y. (2007). Implications of temporal change in urban heat island intensity observed at Beijing and Wuhan stations. Geophysical Reseach Letters, 34, L05711.

    Google Scholar 

  37. Ramachandra, T. V., & Kumar, U. (2008). Wetlands of greater Bangalore, India: Automatic delineation through pattern classifiers. Electronic Green Journal, 1(26), 1–22.

    Google Scholar 

  38. Pal, S., & Akoma, O. C. (2009). Water scarcity in wetland area within Kandi Block of west bengal: A hydro-ecological assessment. Ethiopian Journal of Environmental Studies and Management, 2(3), 1–22.

    Article  Google Scholar 

  39. Feuchtmayr, H., Moran, R., Hatton, K., et al. (2009). Global warming and eutrophication: Effects on water chemistry and autotrophic communities in experimental hypertrophic shallow lake mesocosms. Journal of Applied Ecology, 46, 713–723.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sk. Ziaul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziaul, S., Pal, S. Estimating wetland insecurity index for Chatra wetland adjacent English Bazar Municipality of West Bengal. Spat. Inf. Res. 25, 813–823 (2017). https://doi.org/10.1007/s41324-017-0147-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-017-0147-x

Keywords

Navigation