Skip to main content
Log in

Optimization-based motion planning of mobile manipulator with high degree of kinematic redundancy

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

With the integration of mobility and manipulation, mobile manipulator constructed by mobile platform and manipulator has become a potential solution for the fields of industrial manufacturing and services. One of the key issues in utilizing the mobile manipulator is the motion planning, i.e., finding a feasible and efficient trajectory for operation. Compared with the traditional motion planning methods on mobile robot and fixed manipulator, the motion planning of mobile manipulator is more challenging due to the high degree of kinematic redundancy from the coupling of mobile platform and manipulator. And the optimization problem becomes more complicated by the integration of the high degree of kinematic redundancy, obstacle avoidance, constraints and task requirements. To address the issue, the integrated kinematic model is proposed, including mobile platform, manipulator and their coupling property. Subsequently, the coordinated motion planning for mobile manipulator to generate a collision free trajectories from the initial state to target state is developed, where the trajectories of mobile platform and manipulator are planned simultaneously by optimization-based method. The proposed motion planning algorithm is implemented and tested in various environments. Simulation and experiment results demonstrate the good effectiveness of the proposed motion planning algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Chen, Z., Yao, B., Wang, Q.: Accurate motion control of linear motors with adaptive robust compensation of nonlinear electromagnetic field effect. IEEE/ASME Trans. Mechatron. 18(3), 1122 (2013)

    Article  Google Scholar 

  • Chen, Z., Yao, B., Wang, Q.: \(mu\)-synthesis-based adaptive robust control of linear motor driven stages with high-frequency dynamics: a case study. IEEE/ASME Trans. Mechatron. 20(3), 1482 (2015)

    Article  Google Scholar 

  • Chen, Z., Pan, Y.J., Gu, J.: Integrated adaptive robust control for multilateral teleoperation systems under arbitrary time delays. Int. J. Robust Nonlinear Control 26(12), 2708 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Chitta, S., Jones, E.G., Ciocarlie, M., Hsiao, K.: Mobile manipulation in unstructured environments: perception, planning, and execution. IEEE Robot. Autom. Mag. 19(2), 58 (2012)

    Article  Google Scholar 

  • Cohen, B.J., Chitta, S., Likhachev, M.: Search-based planning for manipulation with motion primitives. In: 2010 IEEE international conference on robotics and automation (ICRA) (IEEE, 2010), pp. 2902–2908 (2010)

  • Craig, J.J.: Introduction to robotics: mechanics and control, vol. 3. Pearson/Prentice Hall, Upper Saddle River (2005)

    Google Scholar 

  • D’Andrea, R.: Guest editorial: a revolution in the warehouse: a retrospective on kiva systems and the grand challenges ahead. IEEE Trans. Autom. Sci. Eng. 9(4), 638 (2012)

    Article  Google Scholar 

  • Hansen, E.A., Zhou, R.: Anytime heuristic search. J. Artif. Intell. Res. 28, 267 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100 (1968)

    Article  Google Scholar 

  • He, W., Huang, H., Ge, S.S.: Adaptive neural network control of a robotic manipulator with time-varying output constraints. IEEE Trans. Cybern. 47(10), 3136 (2017)

    Article  Google Scholar 

  • Hsu, D., Latombe, J.C., Motwani, R.: Path planning in expansive configuration spaces. In: 1997 IEEE International Conference on Robotics and Automation, 1997. Proceedings., vol. 3 (IEEE, 1997), pp. 2719–2726 (1997)

  • Huang, Q., Tanie, K., Sugano, S.: Coordinated motion planning for a mobile manipulator considering stability and manipulability. Int. J. Robot. Res. 19(8), 732 (2000)

    Article  Google Scholar 

  • Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30(7), 846 (2011)

    Article  MATH  Google Scholar 

  • Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In: Autonomous robot vehicles (Springer, 1986), pp. 396–404 (1986)

  • Kuffner, J.J., LaValle, S.M.: RRT-connect: An efficient approach to single-query path planning. In: IEEE International Conference on Robotics and Automation, 2000. Proceedings. ICRA’00. Vol. 2 (IEEE, 2000), pp. 995–1001 (2000)

  • LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  • LaValle, S.M., Kuffner Jr., J.J.: Randomized kinodynamic planning. Int. J. Robot. Res. 20(5), 378 (2001)

    Article  Google Scholar 

  • Li, C., Li, C., Chen, Z., Yao, B.: Advanced synchronization control of a dual-linear-motor-driven gantry with rotational dynamics. IEEE Trans. Ind. Electron. (2018)

  • Li, Z., Ge, S.S., Adams, M., Wijesoma, W.S.: Adaptive robust output-feedback motion/force control of electrically driven nonholonomic mobile manipulators. IEEE Trans. Control Syst. Technol. 16(6), 1308 (2008)

    Article  Google Scholar 

  • Li, Z., Li, J., Kang, Y.: Adaptive robust coordinated control of multiple mobile manipulators interacting with rigid environments. Automatica 46(12), 2028 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Liao, J., Chen, Z., Yao, B.: Model-based coordinated control of four-wheel independently driven skid steer mobile robot with wheel/ground interaction and wheel dynamics. IEEE Trans. Ind. Inf. (2018)

  • Likhachev, M., Ferguson, D.I., Gordon, G.J., Stentz, A., Thrun, S.: Anytime dynamic a*: An anytime, replanning algorithm. ICAPS, 262–271 (2005)

  • Likhachev, M., Gordon, G.J., Thrun, S.: ARA*: Anytime A* with provable bounds on sub-optimality. In: Advances in neural information processing systems, pp. 767–774 (2004)

  • Lyu, L., Chen, Z., Yao, B.: Development of pump and valves combined hydraulic system for both high tracking precision and high energy efficiency. IEEE Trans. Ind. Electron. PP(99), 1 (2018)

    Google Scholar 

  • Paden, B., Čáp, M., Yong, S.Z., Yershov, D., Frazzoli, E.: A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Trans. Intell. Vehicles 1(1), 33 (2016)

    Article  Google Scholar 

  • Ratliff, N., Zucker, M., Bagnell, J.A., Srinivasa, S.: CHOMP: Gradient optimization techniques for efficient motion planning. In: IEEE International Conference on Robotics and Automation, 2009. ICRA’09 (IEEE, 2009), pp. 489–494 (2009)

  • Roa, M.A., Berenson, D., Huang, W.: Mobile manipulation: toward smart manufacturing [tc spotlight]. IEEE Robot. Autom. Mag. 22(4), 14 (2015)

    Article  Google Scholar 

  • Salzman, O., Halperin, D.: Asymptotically near-optimal RRT for fast, high-quality motion planning. IEEE Trans. Robot. 32(3), 473 (2016)

    Article  Google Scholar 

  • Schulman, J., Ho, J., Lee, A.X., Awwal, I., Bradlow, H., Abbeel, P.: Finding locally optimal, collision-free trajectories with sequential convex optimization. In: Robotics: science and systems, vol. 9 (Citeseer, 2013), pp. 1–10 (2013)

  • Schulman, J., Duan, Y., Ho, J., Lee, A., Awwal, I., Bradlow, H., Pan, J., Patil, S., Goldberg, K., Abbeel, P.: Motion planning with sequential convex optimization and convex collision checking. Int. J. Robot. Res. 33(9), 1251 (2014)

    Article  Google Scholar 

  • Shimoga, K.B.: Robot grasp synthesis algorithms: a survey. Int. J. Robot. Res. 15(3), 230 (1996)

    Article  Google Scholar 

  • Sun, W., Zhang, Y., Huang, Y., Gao, H., Kaynak, O.: Transient-performance-guaranteed robust adaptive control and its application to precision motion control systems. IEEE Trans. Ind. Electron. 63(10), 6510 (2016)

    Article  Google Scholar 

  • Sun, W., Tang, S., Gao, H., Zhao, J.: Two time-scale tracking control of nonholonomic wheeled mobile robots. IEEE Trans. Control Syst. Technol. 24(6), 2059 (2016)

    Article  Google Scholar 

  • Tang, C.P., Miller, P.T., Krovi, V.N., Ryu, J.C., Agrawal, S.K.: Differential-flatness-based planning and control of a wheeled mobile manipulator Theory and experiment. IEEE/ASME Trans. Mechatron. 16(4), 768 (2011)

  • Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M., Dolan, J., Duggins, D., Galatali, T., Geyer, C., et al.: Autonomous driving in urban environments: boss and the urban challenge. J. Field Robot. 25(8), 425 (2008)

    Article  Google Scholar 

  • Vannoy, J., Xiao, J.: Robotics, Real-time adaptive motion planning (RAMP) of mobile manipulators in dynamic environments with unforeseen changes. IEEE Trans. 24(5), 1199 (2008)

    Google Scholar 

  • Wright, S., Nocedal, J.: Numerical optimization. Springer Sci. 35(67–68), 7 (1999)

    MATH  Google Scholar 

  • Xia, K., Gao, H., Ding, L., Liu, G., Deng, Z., Liu, Z., Ma, C.: Trajectory tracking control of wheeled mobile manipulator based on fuzzy neural network and extended Kalman filtering. Neural Comput. Appl. 1–16 (2016)

  • Yao, J., Deng, W.: Active disturbance rejection adaptive control of hydraulic servo systems. IEEE Trans. Ind. Electron. 64(10), 8023 (2017a)

    Article  Google Scholar 

  • Yao, J., Deng, W.: Active disturbance rejection adaptive control of uncertain nonlinear systems: theory and application. Nonlinear Dyn. 89(3), 1611 (2017b)

    Article  MathSciNet  MATH  Google Scholar 

  • Yuan, M., Chen, Z., Yao, B., Zhu, X.: Time optimal contouring control of industrial biaxial gantry: a highly efficient analytical solution of trajectory planning. IEEE/ASME Trans. Mechatron. 22(1), 247 (2017)

    Article  Google Scholar 

  • Zhang, Z., Zhang, Y.: Variable joint-velocity limits of redundant robot manipulators handled by quadratic programming. IEEE/ASME Trans. Mechatron. 18(2), 674 (2013)

    Article  Google Scholar 

  • Zhijun, L., Shuzhi, G., S, Adams, M., Wijesoma, W.: Robust adaptive control of uncertain force/motion constrained nonholonomic mobile manipulators. Automatica 44(3), 776 (2008)

  • Zhou, K., Doyle, J.C., Glover, K., et al.: Robust and optimal control, vol. 40. Prentice hall, New Jersey (1996)

    MATH  Google Scholar 

  • Zucker, M., Ratliff, N., Dragan, A.D., Pivtoraiko, M., Klingensmith, M., Dellin, C.M., Bagnell, J.A., Srinivasa, S.S.: Chomp: Covariant hamiltonian optimization for motion planning. Int. J. Robot. Res. 32(9–10), 1164 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Science Foundation of Zhejiang Province, China (No. LY19E050016), National Natural Science Foundation of China (No.51875508), Youth Funds of the State Key Laboratory of Fluid Power and Mechatronic Systems (Zhejiang University), and Science Fund for Creative Research Groups of National Natural Science Foundation of China (No.51821093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 2212 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, J., Huang, F., Chen, Z. et al. Optimization-based motion planning of mobile manipulator with high degree of kinematic redundancy. Int J Intell Robot Appl 3, 115–130 (2019). https://doi.org/10.1007/s41315-019-00090-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-019-00090-7

Keywords

Navigation