Skip to main content

Advertisement

Log in

Recent advances in greenly synthesized nanoengineered materials for water/wastewater remediation: an overview

  • Mini-Reviews
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

With the growth in the global human population, resource availability has become minimal. The creation of technology that is free of toxins for the remediation of the water/wastewater treatment for the sustainable development of global civilization is a matter of urgency. The development of cleaner and greener technologies with significant health and environmental benefits would be greatly influenced by nanotechnology. Nanotechnology technologies are being investigated for their potential to offer ways to remove water pollutants, as well as to increase the efficacy of conventional technologies used in environmental cleanup. Green nanotechnology is a nanotechnology area that envisions sustainability across a number of applications. This paper addresses issues relevant to green nanotechnology for sustainable development. Nanomaterials synthesis and applications have been used to solve water pollution by reducing the cumulative energy consumption during the synthesis or production process, the ability to recycle and manufacture new products and the use of environmentally friendly nanomaterials  in water/wastewater remediation have been reviewed in the current study. Green nanotechnology offers choices to develop the next generation of water treatment systems.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Madramootoo CA, Johnston WR, Willardson LS (1997) Management of agricultural drainage water quality, vol 13. Food & Agriculture Organsiation, Geneva

    Google Scholar 

  2. Choudhary M, Peter C, Shukla SK, Govender PP, Joshi GM, Wang R (2020) Environmental issues: a challenge for wastewater treatment. In: Green materials for wastewater treatment. Springer, Berlin, pp 1–12

  3. Somsesta N, Sricharoenchaikul V, Aht-Ong D (2020) Adsorption removal of methylene blue onto activated carbon/cellulose biocomposite films: Equilibrium and kinetic studies. Mater Chem Phys 240:122221. https://doi.org/10.1016/j.matchemphys.2019.122221

    Article  Google Scholar 

  4. Richa RC, A, (2020) Synthesis of a novel gellan-pullulan nanogel and its application in adsorption of cationic dye from aqueous medium. Carbohydr Polym 227:115291. https://doi.org/10.1016/j.carbpol.2019.115291

    Article  Google Scholar 

  5. Alharbi OML (2018) Sorption, kinetic, thermodynamics and artificial neural network modelling of phenol and 3-amino-phenol in water on composite iron nano-adsorbent. J Mol Liq 260:261–269. https://doi.org/10.1016/j.molliq.2018.03.104

    Article  Google Scholar 

  6. de Lima CRM, Gomes DN, de Morais Filho JR, Pereira MR, Fonseca JLC (2018) Anionic and cationic drug sorption on interpolyelectrolyte complexes. Colloids Surf B 170:210–218. https://doi.org/10.1016/j.colsurfb.2018.05.071

    Article  Google Scholar 

  7. Li Y, Bai P, Yan Y, Yan W, Shi W, Xu R (2019) Removal of Zn2+, Pb2+, Cd2+, and Cu2+ from aqueous solution by synthetic clinoptilolite. Microporous Mesoporous Mater 273:203–211. https://doi.org/10.1016/j.micromeso.2018.07.010

    Article  Google Scholar 

  8. Xiao J, Xie Y, Cao H (2015) Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation. Chemosphere 121:1–17. https://doi.org/10.1016/j.chemosphere.2014.10.072

    Article  Google Scholar 

  9. Azari A, Noorisepehr M, Dehghanifard E, Karimyan K, Hashemi SY, Kalhori EM, Norouzi R, Agarwal S, Gupta VK (2019) Experimental design, modeling and mechanism of cationic dyes biosorption on to magnetic chitosan-lutaraldehyde composite. Int J Biol Macromol 131:633–645. https://doi.org/10.1016/j.ijbiomac.2019.03.058

    Article  Google Scholar 

  10. Yao T, Qiao L, Du K (2020) High tough and highly porous graphene/carbon nanotubes hybrid beads enhanced by carbonized polyacrylonitrile for efficient dyes adsorption. Microporous Mesoporous Mater 292:109716. https://doi.org/10.1016/j.micromeso.2019.109716

    Article  Google Scholar 

  11. Oliveira CMd (2017) Sustainable access to safe drinking water: fundamental human right in the international and national scene. Rev Ambient Água 12(6):985–1000

    Article  Google Scholar 

  12. Elgarahy AM, Elwakeel KZ, Elshoubaky GA, Mohammad SH (2019) Untapped sepia shell-based composite for the sorption of cationic and anionic dyes. Water Air Soil Pollut 230(9):217. https://doi.org/10.1007/s11270-019-4247-1

    Article  Google Scholar 

  13. Soliman NK, Moustafa AF (2020) Industrial solid waste for heavy metals adsorption features and challenges; a review. J Mater Res Technol 9(5):10235–10253. https://doi.org/10.1016/j.jmrt.2020.07.045

    Article  Google Scholar 

  14. Elgarahy AM, Elwakeel KZ, Elshoubaky GA, Mohammad SH (2019) Microwave-accelerated sorption of cationic dyes onto green marine algal biomass. Environ Sci Pollut Res 26(22):22704–22722. https://doi.org/10.1007/s11356-019-05417-2

    Article  Google Scholar 

  15. Afolabi IC, Popoola SI, Bello OS (2020) Modeling pseudo-second-order kinetics of orange peel-paracetamol adsorption process using artificial neural network. Chemom Intell Lab Syst 203:104053. https://doi.org/10.1016/j.chemolab.2020.104053

    Article  Google Scholar 

  16. Romero V, Fernandes SPS, Kovář P, Pšenička M, Kolen’ko YV, Salonen LM, Espiña B (2020) Efficient adsorption of endocrine-disrupting pesticides from water with a reusable magnetic covalent organic framework. Microporous Mesoporous Mater 307:110523. https://doi.org/10.1016/j.micromeso.2020.110523

    Article  Google Scholar 

  17. Wang X, Chen A, Chen B, Wang L (2020) Adsorption of phenol and bisphenol A on river sediments: effects of particle size, humic acid, pH and temperature. Ecotoxicol Environ Saf 204:111093. https://doi.org/10.1016/j.ecoenv.2020.111093

    Article  Google Scholar 

  18. Elwakeel KZ, Elgarahy AM, Khan ZA, Almughamisi MS, Al-Bogami AS (2020) Perspectives regarding metal/mineral-incorporating materials for water purification: with special focus on Cr(vi) removal. Mater Adv 1(6):1546–1574. https://doi.org/10.1039/D0MA00153H

    Article  Google Scholar 

  19. AlJaberi FY, Ahmed SA, Makki HF (2020) Electrocoagulation treatment of high saline oily wastewater: evaluation and optimization. Heliyon 6(6):e03988

    Article  Google Scholar 

  20. AlJaberi FY, Abdulmajeed BA, Hassan AA, Ghadban ML (2020) Assessment of an electrocoagulation reactor for the removal of oil content and turbidity from real oily wastewater using response surface method. Rec Innov Chem Eng 13(1):55–71

    Google Scholar 

  21. Mohammed WT, AlJaberi FY (2018) Novel method for electrocoagulation removal of lead from simulated wastewater by using concentric tubes electrodes reactor. Desal Water Treat 101:86–91

    Article  Google Scholar 

  22. AlJaberi FY (2018) Studies of autocatalytic electrocoagulation reactor for lead removal from simulated wastewater. J Environ Chem Eng 6(5):6069–6078. https://doi.org/10.1016/j.jece.2018.09.032

    Article  Google Scholar 

  23. AlJaberi FY, Mohammed WT (2018) Analyzing the removal of lead from synthesis wastewater by electrocoagulation technique using experimental design. Desal Water Treat 111:286–296

    Article  Google Scholar 

  24. Nakshatra Bahadur S, Md. Abu Bin Hasan S, Mridula G, (2020) Applications of green synthesized nanomaterials in water remediation. Curr Pharm Biotechnol 21:1–29. https://doi.org/10.2174/1389201021666201027160029

    Article  Google Scholar 

  25. Islam M, Naushad M, Patel R (2015) Polyaniline/basic oxygen furnace slag nanocomposite as a viable adsorbent for the sorption of fluoride from aqueous medium: equilibrium, thermodynamic and kinetic study. Desal Water Treat 54(2):450–463. https://doi.org/10.1080/19443994.2014.887034

    Article  Google Scholar 

  26. Nabi SA, Bushra R, Naushad M, Khan AM (2010) Synthesis, characterization and analytical applications of a new composite cation exchange material poly-o-toluidine stannic molybdate for the separation of toxic metal ions. Chem Eng J 165(2):529–536. https://doi.org/10.1016/j.cej.2010.09.064

    Article  Google Scholar 

  27. Şengül H, Theis TL, Ghosh S (2008) Toward Sustainable Nanoproducts. J Ind Ecol 12(3):329–359. https://doi.org/10.1111/j.1530-9290.2008.00046.x

    Article  Google Scholar 

  28. Dahl JA, Maddux BLS, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107(6):2228–2269. https://doi.org/10.1021/cr050943k

    Article  Google Scholar 

  29. Eckelman MJ, Zimmerman JB, Anastas PT (2008) Toward green nano. J Ind Ecol 12(3):316–328. https://doi.org/10.1111/j.1530-9290.2008.00043.x

    Article  Google Scholar 

  30. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959. https://doi.org/10.1021/cr0500535

    Article  Google Scholar 

  31. El-Eskandarany MS, Al-Salem SM, Ali N (2020) Top-down reactive approach for the synthesis of disordered zrn nanocrystalline bulk material from solid waste. Nanomaterials 10(9):1826

  32. Yadav TP, Yadav RM, Singh DP (2012) Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites. Nanosci Nanotechnol 2(3):22–48

    Article  Google Scholar 

  33. Varma RS (2014) Journey on greener pathways: from the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation. Green Chem 16(4):2027–2041. https://doi.org/10.1039/C3GC42640H

    Article  Google Scholar 

  34. Amin MT, Alazba AA, Manzoor U (2014) A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng 2014:825910. https://doi.org/10.1155/2014/825910

    Article  Google Scholar 

  35. Wang X, Li X, Liu D, Song S, Zhang H (2012) Green synthesis of Pt/CeO2/graphene hybrid nanomaterials with remarkably enhanced electrocatalytic properties. Chem Commun 48(23):2885–2887. https://doi.org/10.1039/C2CC17409J

    Article  Google Scholar 

  36. Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS (2021) Green-synthesized nanocatalysts and nanomaterials for water treatment: Current challenges and future perspectives. J Hazard Mater 401:123401. https://doi.org/10.1016/j.jhazmat.2020.123401

    Article  Google Scholar 

  37. Huang Y, Li Y, Luo Q, Huang X (2021) One-step preparation of functional groups-rich graphene oxide and carbon nanotubes nanocomposite for efficient magnetic solid phase extraction of glucocorticoids in environmental waters. Chem Eng J 406:126785. https://doi.org/10.1016/j.cej.2020.126785

    Article  Google Scholar 

  38. Tang Y, Zhang S, Su Y, Wu D, Zhao Y, Xie B (2021) Removal of microplastics from aqueous solutions by magnetic carbon nanotubes. Chem Eng J 406:126804. https://doi.org/10.1016/j.cej.2020.126804

    Article  Google Scholar 

  39. Rashed AO, Merenda A, Kondo T, Lima M, Razal J, Kong L, Huynh C, Dumée LF (2021) Carbon nanotube membranes – Strategies and challenges towards scalable manufacturing and practical separation applications. Sep Purif Technol 257:117929. https://doi.org/10.1016/j.seppur.2020.117929

    Article  Google Scholar 

  40. Liang W, Wang B, Cheng J, Xiao D, Xie Z, Zhao J (2021) 3D, eco-friendly metal-organic frameworks@carbon nanotube aerogels composite materials for removal of pesticides in water. J Hazard Mater 401:123718. https://doi.org/10.1016/j.jhazmat.2020.123718

    Article  Google Scholar 

  41. Jalali Alenjareghi M, Rashidi A, Kazemi A, Talebi A (2021) Highly efficient and recyclable spongy nanoporous graphene for remediation of organic pollutants. Process Saf Environ Prot 148:313–322. https://doi.org/10.1016/j.psep.2020.09.054

    Article  Google Scholar 

  42. Yakout AA, Shaker MA, Elwakeel KZ, Alshitari W (2019) Lauryl sulfate@magnetic graphene oxide nanosorbent for fast methylene blue recovery from aqueous solutions. J Dispersion Sci Technol 40(5):707–715. https://doi.org/10.1080/01932691.2018.1477604

    Article  Google Scholar 

  43. Elwakeel KZ, Al-Bogami AS, Guibal E (2021) 2-Mercaptobenzimidazole derivative of chitosan for silver sorption – Contribution of magnetite incorporation and sonication effects on enhanced metal recovery. Chem Eng J 403:126265. https://doi.org/10.1016/j.cej.2020.126265

    Article  Google Scholar 

  44. Xu W, Chen X, Chen J, Jia H (2021) Bimetal oxide CuO/Co3O4 derived from Cu ions partly-substituted framework of ZIF-67 for toluene catalytic oxidation. J Hazard Mater 403:123869. https://doi.org/10.1016/j.jhazmat.2020.123869

    Article  Google Scholar 

  45. Duan H, Wang D, Li Y (2015) Green chemistry for nanoparticle synthesis. Chem Soc Rev 44(16):5778–5792. https://doi.org/10.1039/C4CS00363B

    Article  Google Scholar 

  46. Ran N, Zhao L, Chen Z, Tao J (2008) Recent applications of biocatalysis in developing green chemistry for chemical synthesis at the industrial scale. Green Chem 10(4):361–372. https://doi.org/10.1039/B716045C

    Article  Google Scholar 

  47. Guo KW (2011) Green nanotechnology of trends in future energy. Recent Pat Nanotechnol 5(2):76–88. https://doi.org/10.2174/187221011795909198

    Article  Google Scholar 

  48. Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39(1):301–312. https://doi.org/10.1039/B918763B

    Article  Google Scholar 

  49. Nath D, Banerjee P (2013) Green nanotechnology—a new hope for medical biology. Environ Toxicol Pharmacol 36(3):997–1014. https://doi.org/10.1016/j.etap.2013.09.002

    Article  Google Scholar 

  50. Gawande MB, Branco PS, Varma RS (2013) Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem Soc Rev 42(8):3371–3393. https://doi.org/10.1039/C3CS35480F

    Article  Google Scholar 

  51. Albrecht MA, Evans CW, Raston CL (2006) Green chemistry and the health implications of nanoparticles. Green Chem 8(5):417–432. https://doi.org/10.1039/B517131H

    Article  Google Scholar 

  52. Vigneshwaran N, Nachane RP, Balasubramanya RH, Varadarajan PV (2006) A novel one-pot ‘green’ synthesis of stable silver nanoparticles using soluble starch. Carbohydr Res 341(12):2012–2018. https://doi.org/10.1016/j.carres.2006.04.042

    Article  Google Scholar 

  53. Yoshida J-i, Kim H, Nagaki A (2011) Green and sustainable chemical synthesis using flow microreactors. Chemsuschem 4(3):331–340. https://doi.org/10.1002/cssc.201000271

    Article  Google Scholar 

  54. Matus KJ, Hutchison JE, Peoples R, Rung S, Tanguay R (2011) Green nanotechnology challenges and opportunities.

  55. Deepak P, Amutha V, Kamaraj C, Balasubramani G, Aiswarya D, Perumal P (2019) Chapter 15 - Chemical and green synthesis of nanoparticles and their efficacy on cancer cells. In: Shukla AK, Iravani S (eds) Green synthesis, characterization and applications of nanoparticles. Elsevier, Amsterdam, pp 369–387. https://doi.org/10.1016/B978-0-08-102579-6.00016-2

  56. Sangeetha G, Rajeshwari S, Venckatesh R (2011) Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: Structure and optical properties. Mater Res Bull 46(12):2560–2566. https://doi.org/10.1016/j.materresbull.2011.07.046

    Article  Google Scholar 

  57. Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO (2014) “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta naturae 6(1):35–44

    Article  Google Scholar 

  58. Hasan S (2015) A review on nanoparticles: their synthesis and types. Res J Recent Sci 2277:2502

    Google Scholar 

  59. Vijayaraghavan K, Ashokkumar T (2017) Plant-mediated biosynthesis of metallic nanoparticles: a review of literature, factors affecting synthesis, characterization techniques and applications. J Environ Chem Eng 5(5):4866–4883. https://doi.org/10.1016/j.jece.2017.09.026

    Article  Google Scholar 

  60. Kalia A, Manchanda P, Bhardwaj S, Singh G (2020) Biosynthesized silver nanoparticles from aqueous extracts of sweet lime fruit and callus tissues possess variable antioxidant and antimicrobial potentials. Inorg Nano-Met Chem 50(11):1053–1062. https://doi.org/10.1080/24701556.2020.1735420

    Article  Google Scholar 

  61. Khandel P, Yadaw RK, Soni DK, Kanwar L, Shahi SK (2018) Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects. J Nanostructure Chem 8(3):217–254. https://doi.org/10.1007/s40097-018-0267-4

    Article  Google Scholar 

  62. Baharifar H, Khoobi M, Arbabi Bidgoli S, Amani A (2020) Preparation of PEG-grafted chitosan/streptokinase nanoparticles to improve biological half-life and reduce immunogenicity of the enzyme. Int J Biol Macromol 143:181–189. https://doi.org/10.1016/j.ijbiomac.2019.11.157

    Article  Google Scholar 

  63. Lin X, Sun S, Wang B, Zheng B, Guo Z (2020) Structural and physicochemical properties of lotus seed starch nanoparticles prepared using ultrasonic-assisted enzymatic hydrolysis. Ultrason Sonochem 68:105199. https://doi.org/10.1016/j.ultsonch.2020.105199

    Article  Google Scholar 

  64. Zhang J, Yu P, Fan L, Sun Y (2021) Effects of ultrasound treatment on the starch properties and oil absorption of potato chips. Ultrason Sonochem 70:105347. https://doi.org/10.1016/j.ultsonch.2020.105347

    Article  Google Scholar 

  65. Kumari S, Yadav BS, Yadav RB (2020) Synthesis and modification approaches for starch nanoparticles for their emerging food industrial applications: a review. Food Res Int 128:108765. https://doi.org/10.1016/j.foodres.2019.108765

    Article  Google Scholar 

  66. Safari J, Sadeghi M (2017) Nanostarch: a novel and green catalyst for synthesis of 2-aminothiazoles. Monatsh Chem Chem Mon 148(4):745–749. https://doi.org/10.1007/s00706-016-1805-8

    Article  Google Scholar 

  67. Zhang R, Chu F, Hu Y, Hu H, Hu Y, Liu H, Huo C, Wang H (2020) Preparation of photo-crosslinking starch colloidal particles. Starch - Stärke 72(5–6):1900175. https://doi.org/10.1002/star.201900175

    Article  Google Scholar 

  68. Abdolmohammad-Zadeh H, Ayazi Z, Aliyari S (2021) Facile preparation and application of AlxMgFe2-xO4 nanoparticles as a magnetic nano-sorbent for preconcentration of cadmium. J Alloys Compd 853:157203. https://doi.org/10.1016/j.jallcom.2020.157203

    Article  Google Scholar 

  69. Elwakeel K, Elgarahy AM, Guibal E (2020) A biogenic tunable sorbent produced from upcycling of aquatic biota-based materials functionalized with methylene blue dye for the removal of chromium(VI) ions. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2020.104767

    Article  Google Scholar 

  70. Moradi S, Shayesteh K, Behbudi G (2020) Preparation and characterization of biodegradable lignin-sulfonate nanoparticles using the microemulsion method to enhance the acetylation efficiency of lignin-sulfonate. Int J Biol Macromol 160:632–641. https://doi.org/10.1016/j.ijbiomac.2020.05.157

    Article  Google Scholar 

  71. Dang HNT, Lai NH (2020) Process for production of nano-microemulsion system of plant oil triglycerides. Google Patents

  72. Tang Q, Qian Y, Yang D, Qiu X, Qin Y, Zhou M (2020) Lignin-based nanoparticles: a review on their preparations and applications. Polymers 12(11):2471

    Article  Google Scholar 

  73. Banerjee S, Gautam RK, Gautam PK, Jaiswal A, Chattopadhyaya MC (2016) Recent Trends and Advancement in Nanotechnology for Water and Wastewater Treatment: Nanotechnological Approach for Water Purification. In: Advanced research on nanotechnology for civil engineering applications. IGI Global, pp 208–252

  74. El-sayed MEA (2020) Nanoadsorbents for water and wastewater remediation. Sci Total Environ 739:139903. https://doi.org/10.1016/j.scitotenv.2020.139903

    Article  Google Scholar 

  75. Diallo MS, Fromer NA, Jhon MS (2013) Nanotechnology for sustainable development: retrospective and outlook. J Nanopart Res 15(11):2044. https://doi.org/10.1007/s11051-013-2044-0

    Article  Google Scholar 

  76. Brame J, Li Q, Alvarez PJJ (2011) Nanotechnology-enabled water treatment and reuse: emerging opportunities and challenges for developing countries. Trends Food Sci Technol 22(11):618–624. https://doi.org/10.1016/j.tifs.2011.01.004

    Article  Google Scholar 

  77. Gamallo M, Fernández L, Feijoo G, Moreira MT (2020) 10-Nano-based technologies for environmental soil remediation. In: Naushad M, Saravanan R, Raju K (eds) Nanomaterials for sustainable energy and environmental remediation. Elsevier, Amsterdam, pp 307–331. https://doi.org/10.1016/B978-0-12-819355-6.00010-8

  78. Cheriyamundath S, Vavilala SL (2020) Nanotechnology-based wastewater treatment. Water Environ J n/a. https://doi.org/10.1111/wej.12610

    Article  Google Scholar 

  79. Kaur J, Punia S, Kumar K (2017) Need for the advanced technologies for wastewater treatment. In: Advances in Environmental Biotechnology. Springer, pp 39–52

  80. Gehrke I, Geiser A, Somborn-Schulz A (2015) Innovations in nanotechnology for water treatment. Nanotechnol Sci Appl 8:1

    Article  Google Scholar 

  81. Kortel M, Mansuriya BD, Vargas Santana N, Altintas Z (2020) Graphene quantum dots as flourishing nanomaterials for bio-imaging, therapy development, and micro-supercapacitors. Micromachines 11(9):866

    Article  Google Scholar 

  82. Krishnan N, Boyd S, Somani A, Raoux S, Clark D, Dornfeld D (2008) A hybrid life cycle inventory of nano-scale semiconductor manufacturing. Environ Sci Technol 42(8):3069–3075. https://doi.org/10.1021/es071174k

    Article  Google Scholar 

  83. Bhattacharya S, Saha I, Mukhopadhyay A, Chattopadhyay D, Ghosh UC, Chatterjee D Role of nanotechnology in water treatment and purification: potential applications and implications. In, 2013.

  84. Alqadami AA, Naushad M, Abdalla MA, Ahamad T, Abdullah Alothman Z, Alshehri SM (2016) Synthesis and characterization of Fe3O4@TSC nanocomposite: highly efficient removal of toxic metal ions from aqueous medium. RSC Adv 6(27):22679–22689. https://doi.org/10.1039/C5RA27525C

    Article  Google Scholar 

  85. Khan SH, Pathak B, Fulekar MH (2018) Synthesis, characterization and photocatalytic degradation of chlorpyrifos by novel Fe: ZnO nanocomposite material. Nanotechnol Environ Eng 3(1):13. https://doi.org/10.1007/s41204-018-0041-3

    Article  Google Scholar 

  86. Swaminathan M, Manickavachagam M, Sillanpaa M (2014) Advanced oxidation processes for wastewater treatment 2013. Int J Photoenergy 2014:682767. https://doi.org/10.1155/2014/682767

    Article  Google Scholar 

  87. Oturan MA, Aaron J-J (2014) Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Crit Rev Environ Sci Technol 44(23):2577–2641. https://doi.org/10.1080/10643389.2013.829765

    Article  Google Scholar 

  88. Polshettiwar V, Varma RS (2010) Green chemistry by nano-catalysis. Green Chem 12(5):743–754. https://doi.org/10.1039/B921171C

    Article  Google Scholar 

  89. Oller I, Malato S, Sánchez-Pérez JA (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Sci Total Environ 409(20):4141–4166. https://doi.org/10.1016/j.scitotenv.2010.08.061

    Article  Google Scholar 

  90. Kalidindi SB, Jagirdar BR (2012) Nanocatalysis and prospects of green chemistry. Chemsuschem 5(1):65–75. https://doi.org/10.1002/cssc.201100377

    Article  Google Scholar 

  91. Wang L, Huang X, Han M, Lyu L, Li T, Gao Y, Zeng Q, Hu C (2019) Efficient inhibition of photogenerated electron-hole recombination through persulfate activation and dual-pathway degradation of micropollutants over iron molybdate. Appl Catal B 257:117904. https://doi.org/10.1016/j.apcatb.2019.117904

    Article  Google Scholar 

  92. Tang H, Chang S, Tang G, Liang W (2017) AgBr and g-C3N4 co-modified Ag2CO3 photocatalyst: a novel multi-heterostructured photocatalyst with enhanced photocatalytic activity. Appl Surf Sci 391:440–448. https://doi.org/10.1016/j.apsusc.2016.07.021

    Article  Google Scholar 

  93. Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX, Liu ZF (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10. https://doi.org/10.1016/j.scitotenv.2012.02.023

    Article  Google Scholar 

  94. Campelo JM, Luna D, Luque R, Marinas JM, Romero AA (2009) Sustainable preparation of supported metal nanoparticles and their applications in catalysis. Chemsuschem 2(1):18–45. https://doi.org/10.1002/cssc.200800227

    Article  Google Scholar 

  95. Research AGJoS (2013) Nanomaterial-based photocatalysts. In: Nanocatalysis synthesis and applications. pp 469–493. doi:https://doi.org/10.1002/9781118609811.ch13

  96. Berekaa MM (2016) Nanotechnology in wastewater treatment; influence of nanomaterials on microbial systems. Int J Curr Microbiol App Sci 5(1):713–726

    Article  Google Scholar 

  97. Sherin L, Sohail A, U-e-S A, Mustafa M, Jabeen R, Ul-Hamid A (2020) Facile green synthesis of silver nanoparticles using Terminalia bellerica kernel extract for catalytic reduction of anthropogenic water pollutants. Colloids Interface Sci Commun 37:100276. https://doi.org/10.1016/j.colcom.2020.100276

    Article  Google Scholar 

  98. Montenegro-Ayo R, Morales-Gomero JC, Alarcon H, Corzo A, Westerhoff P, Garcia-Segura S (2021) Photoelectrocatalytic degradation of 2,4-dichlorophenol in a TiO2 nanotube-coated disc flow reactor. Chemosphere 268:129320. https://doi.org/10.1016/j.chemosphere.2020.129320

    Article  Google Scholar 

  99. Cerrón-Calle GA, Aranda-Aguirre AJ, Luyo C, Garcia-Segura S, Alarcón H (2019) Photoelectrocatalytic decolorization of azo dyes with nano-composite oxide layers of ZnO nanorods decorated with Ag nanoparticles. Chemosphere 219:296–304. https://doi.org/10.1016/j.chemosphere.2018.12.003

    Article  Google Scholar 

  100. Martínez-Huitle CA, Panizza M (2018) Electrochemical oxidation of organic pollutants for wastewater treatment. Curr Opin Electrochem 11:62–71. https://doi.org/10.1016/j.coelec.2018.07.010

    Article  Google Scholar 

  101. Garcia-Segura S, Brillas E (2011) Mineralization of the recalcitrant oxalic and oxamic acids by electrochemical advanced oxidation processes using a boron-doped diamond anode. Water Res 45(9):2975–2984. https://doi.org/10.1016/j.watres.2011.03.017

    Article  Google Scholar 

  102. Martínez-Huitle CA, Rodrigo MA, Sirés I, Scialdone O (2015) Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chem Rev 115(24):13362–13407. https://doi.org/10.1021/acs.chemrev.5b00361

    Article  Google Scholar 

  103. Santhosh C, Velmurugan V, Jacob G, Jeong SK, Grace AN, Bhatnagar A (2016) Role of nanomaterials in water treatment applications: a review. Chem Eng J 306:1116–1137. https://doi.org/10.1016/j.cej.2016.08.053

    Article  Google Scholar 

  104. Tlili I, Alkanhal TA (2019) Nanotechnology for water purification: electrospun nanofibrous membrane in water and wastewater treatment. J Water Reuse Desalination 9(3):232–248. https://doi.org/10.2166/wrd.2019.057

    Article  Google Scholar 

  105. Ersahin ME, Ozgun H, Dereli RK, Ozturk I, Roest K, van Lier JB (2012) A review on dynamic membrane filtration: Materials, applications and future perspectives. Bioresour Technol 122:196–206. https://doi.org/10.1016/j.biortech.2012.03.086

    Article  Google Scholar 

  106. Strathmann H, Giorno L, Drioli E (2011) Introduction to membrane science and technology, vol 544. Wiley-VCH, Weinheim

    Google Scholar 

  107. Karimi H, Rahimpour A, Shirzad Kebria MR (2016) Pesticides removal from water using modified piperazine-based nanofiltration (NF) membranes. Desal Water Treat 57(52):24844–24854. https://doi.org/10.1080/19443994.2016.1156580

    Article  Google Scholar 

  108. Ji D, Xiao C, Zhao J, Chen K, Zhou F, Gao Y, Zhang T, Ling H (2021) Green preparation of polyvinylidene fluoride loose nanofiltration hollow fiber membranes with multilayer structure for treating textile wastewater. Sci Total Environ 754:141848. https://doi.org/10.1016/j.scitotenv.2020.141848

    Article  Google Scholar 

  109. Graboski AM, Martinazzo J, Ballen SC, Steffens J, Steffens C (2020) Chapter 4 Nanosensors for water quality control. In: Amrane A, Rajendran S, Nguyen TA, Assadi AA, Sharoba AM (eds) Nanotechnology in the beverage industry. Elsevier, Amsterdam, pp 115–128. https://doi.org/10.1016/B978-0-12-819941-1.00004-3

  110. Pooja Chowdhury P (2020) Functionalized CdTe fluorescence nanosensor for the sensitive detection of water borne environmentally hazardous metal ions. Opt Mater. https://doi.org/10.1016/j.optmat.2020.110584

    Article  Google Scholar 

  111. Mekuria TM (2020) Carbon nanotube magnetic nanoparticle composite as nano sensor for monitoring heavy metals in water. Morgan State University, Ann Arbor

    Google Scholar 

  112. Rabbani M, Hoque ME, Mahbub ZB (2020) Chapter 7 - Nanosensors in biomedical and environmental applications: Perspectives and prospects. In: Pal K, Gomes F (eds) Nanofabrication for smart nanosensor applications. Elsevier, Amsterdam, pp 163–186. doi:https://doi.org/https://doi.org/10.1016/B978-0-12-820702-4.00007-6

  113. Singh H, Bamrah A, Bhardwaj SK, Deep A, Khatri M, Kim K-H, Bhardwaj N (2020) Nanomaterial-based fluorescent sensors for the detection of lead ions. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.124379

    Article  Google Scholar 

  114. Cheng C, Zhang R, Wang J, Zhang Y, Wen C, Tan Y, Yang M (2020) An ultrasensitive and selective fluorescent nanosensor based on porphyrinic metal–organic framework nanoparticles for Cu2+ detection. Analyst 145(3):797–804. https://doi.org/10.1039/C9AN02231G

    Article  Google Scholar 

  115. Prosposito P, Burratti L, Venditti I (2020) Silver nanoparticles as colorimetric sensors for water pollutants. Chemosensors 8(2):26

    Article  Google Scholar 

  116. Ghasemi Z, Mohammadi A (2020) Sensitive and selective colorimetric detection of Cu (II) in water samples by thiazolylazopyrimidine-functionalized TiO2 nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 239:118554. https://doi.org/10.1016/j.saa.2020.118554

    Article  Google Scholar 

  117. Schiesaro I, Burratti L, Meneghini C, Fratoddi I, Prosposito P, Lim J, Scheu C, Venditti I, Iucci G, Battocchio C (2020) Hydrophilic silver nanoparticles for Hg(II) detection in water: direct evidence for mercury-silver interaction. J Phys Chem C. https://doi.org/10.1021/acs.jpcc.0c06951

    Article  Google Scholar 

  118. Sha R, Bhattacharyya TK (2020) MoS2-based nanosensors in biomedical and environmental monitoring applications. Electrochim Acta 349:136370. https://doi.org/10.1016/j.electacta.2020.136370

    Article  Google Scholar 

  119. Cheng X-L, Xu Q-Q, Li S-S, Li J, Zhou Y, Zhang Y, Li S (2021) Oxygen vacancy enhanced Co3O4/ZnO nanocomposite with small sized and loose structure for sensitive electroanalysis of Hg(II) in subsidence area water. Sens Actuators B Chem 326:128967. https://doi.org/10.1016/j.snb.2020.128967

    Article  Google Scholar 

  120. Garcia-Segura S, Qu X, Alvarez PJJ, Chaplin BP, Chen W, Crittenden JC, Feng Y, Gao G, He Z, Hou C-H, Hu X, Jiang G, Kim J-H, Li J, Li Q, Ma J, Ma J, Nienhauser AB, Niu J, Pan B, Quan X, Ronzani F, Villagran D, Waite TD, Walker WS, Wang C, Wong MS, Westerhoff P (2020) Opportunities for nanotechnology to enhance electrochemical treatment of pollutants in potable water and industrial wastewater – a perspective. Environ Sci Nano 7(8):2178–2194. https://doi.org/10.1039/D0EN00194E

    Article  Google Scholar 

  121. Garcia-Segura S, Ocon JD, Chong MN (2018) Electrochemical oxidation remediation of real wastewater effluents — a review. Process Saf Environ Prot 113:48–67. https://doi.org/10.1016/j.psep.2017.09.014

    Article  Google Scholar 

  122. Maduraiveeran G, Jin W (2017) Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications. Trends Environ Anal Chem 13:10–23. https://doi.org/10.1016/j.teac.2017.02.001

    Article  Google Scholar 

  123. Zhang Y-n, Niu Q, Gu X, Yang N, Zhao G (2019) Recent progress on carbon nanomaterials for the electrochemical detection and removal of environmental pollutants. Nanoscale 11(25):11992–12014. https://doi.org/10.1039/C9NR02935D

    Article  Google Scholar 

  124. Ghasemzadeh G, Momenpour M, Omidi F, Hosseini MR, Ahani M, Barzegari A (2014) Applications of nanomaterials in water treatment and environmental remediation. Front Environ Sci Eng 8(4):471–482. https://doi.org/10.1007/s11783-014-0654-0

    Article  Google Scholar 

  125. Dhal JP, Sethi M, Mishra BG, Hota G (2015) MgO nanomaterials with different morphologies and their sorption capacity for removal of toxic dyes. Mater Lett 141:267–271. https://doi.org/10.1016/j.matlet.2014.10.055

    Article  Google Scholar 

  126. Gautam RK, Tiwari I (2020) Humic acid functionalized magnetic nanomaterials for remediation of dye wastewater under ultrasonication: application in real water samples, recycling and reuse of nanosorbents. Chemosphere 245:125553. https://doi.org/10.1016/j.chemosphere.2019.125553

    Article  Google Scholar 

  127. Vergis BR, Kottam N, Hari Krishna R, Nagabhushana BM (2019) Removal of evans blue dye from aqueous solution using magnetic spinel ZnFe2O4 nanomaterial: adsorption isotherms and kinetics. Nano-Struct Nano-Objects 18:100290. https://doi.org/10.1016/j.nanoso.2019.100290

    Article  Google Scholar 

  128. Mahmoud AED (2020) Graphene-based nanomaterials for the removal of organic pollutants: insights into linear versus nonlinear mathematical models. J Environ Manage 270:110911. https://doi.org/10.1016/j.jenvman.2020.110911

    Article  Google Scholar 

  129. Sebeia N, Jabli M, Ghith A, Saleh TA (2020) Eco-friendly synthesis of Cynomorium coccineum extract for controlled production of copper nanoparticles for sorption of methylene blue dye. Arab J Chem 13(2):4263–4274. https://doi.org/10.1016/j.arabjc.2019.07.007

    Article  Google Scholar 

  130. Oveisi M, Asli MA, Mahmoodi NM (2018) MIL-Ti metal-organic frameworks (MOFs) nanomaterials as superior adsorbents: Synthesis and ultrasound-aided dye adsorption from multicomponent wastewater systems. J Hazard Mater 347:123–140. https://doi.org/10.1016/j.jhazmat.2017.12.057

    Article  Google Scholar 

  131. Singh RK, Behera SS, Singh KR, Mishra S, Panigrahi B, Sahoo TR, Parhi PK, Mandal D (2020) Biosynthesized gold nanoparticles as photocatalysts for selective degradation of cationic dye and their antimicrobial activity. J Photochem Photobiol A 400:112704. https://doi.org/10.1016/j.jphotochem.2020.112704

    Article  Google Scholar 

  132. Domingues JT, Orlando RM, Sinisterra RD, Pinzón-García AD, Rodrigues GD (2020) Polymer-bixin nanofibers: a promising environmentally friendly material for the removal of dyes from water. Sep Purif Technol 248:117118. https://doi.org/10.1016/j.seppur.2020.117118

    Article  Google Scholar 

  133. Mu’azu ND, Jarrah N, Zubair M, Manzar MS, Kazeem TS, Qureshi A, Haladu SA, Blaisi NI, Essa MH, Al-Harthi MA (2020) Mechanistic aspects of magnetic MgAlNi barium-ferrite nanocomposites enhanced adsorptive removal of an anionic dye from aqueous phase. J Saudi Chem Soc 24(10):715–732. https://doi.org/10.1016/j.jscs.2020.08.001

    Article  Google Scholar 

  134. Alardhi SM, AlJaberi FY, AlSaedi LM (2020) Studying the treatability of different types of nanoparticles for oil content removal from oily wastewater produced from refinery process. Egypt J Chem 63(12):4963–4973

    Google Scholar 

  135. Moharrami P, Motamedi E (2020) Application of cellulose nanocrystals prepared from agricultural wastes for synthesis of starch-based hydrogel nanocomposites: efficient and selective nanoadsorbent for removal of cationic dyes from water. Bioresour Technol 313:123661. https://doi.org/10.1016/j.biortech.2020.123661

    Article  Google Scholar 

  136. Inyang M, Gao B, Zimmerman A, Zhang M, Chen H (2014) Synthesis, characterization, and dye sorption ability of carbon nanotube–biochar nanocomposites. Chem Eng J 236:39–46. https://doi.org/10.1016/j.cej.2013.09.074

    Article  Google Scholar 

  137. Anushree C, Philip J (2019) Efficient removal of methylene blue dye using cellulose capped Fe3O4 nanofluids prepared using oxidation-precipitation method. Colloids Surf, A Physicochem Eng Asp 567:193–204. https://doi.org/10.1016/j.colsurfa.2019.01.057

    Article  Google Scholar 

  138. Oliveira EHCd, Marques Fraga DMdS, da Silva MP, Fraga TJM, Carvalho MN, de Luna Freire EMP, Ghislandi MG, da Motta Sobrinho MA (2019) Removal of toxic dyes from aqueous solution by adsorption onto highly recyclable xGnP® graphite nanoplatelets. J Environ Chem Eng 7(2):103001. https://doi.org/10.1016/j.jece.2019.103001

    Article  Google Scholar 

  139. Elwakeel KZ, Shahat A, Khan ZA, Alshitari W, Guibal E (2020) Magnetic metal oxide-organic framework material for ultrasonic-assisted sorption of titan yellow and rose bengal from aqueous solutions. Chem Eng J 392:123635. https://doi.org/10.1016/j.cej.2019.123635

    Article  Google Scholar 

  140. Dubey R, Bajpai J, Bajpai AK (2016) Chitosan-alginate nanoparticles (CANPs) as potential nanosorbent for removal of Hg (II) ions. Environ Nanotechnol Monit Manag 6:32–44. https://doi.org/10.1016/j.enmm.2016.06.008

    Article  Google Scholar 

  141. Elwakeel KZ, Shahat A, Al-Bogami AS, Wijesiri B, Goonetilleke A (2020) The synergistic effect of ultrasound power and magnetite incorporation on the sorption/desorption behavior of Cr(VI) and As(V) oxoanions in an aqueous system. J Colloid Interface Sci 569:76–88. https://doi.org/10.1016/j.jcis.2020.02.067

    Article  Google Scholar 

  142. Elwakeel KZ, Guibal E (2015) Arsenic(V) sorption using chitosan/Cu(OH)2 and chitosan/CuO composite sorbents. Carbohydr Polym 134:190–204. https://doi.org/10.1016/j.carbpol.2015.07.012

    Article  Google Scholar 

  143. Razzaz A, Ghorban S, Hosayni L, Irani M, Aliabadi M (2016) Chitosan nanofibers functionalized by TiO2 nanoparticles for the removal of heavy metal ions. J Taiwan Inst Chem Eng 58:333–343. https://doi.org/10.1016/j.jtice.2015.06.003

    Article  Google Scholar 

  144. Hasanzadeh R, Moghadam PN, Bahri-Laleh N, Sillanpää M (2017) Effective removal of toxic metal ions from aqueous solutions: 2-Bifunctional magnetic nanocomposite base on novel reactive PGMA-MAn copolymer@Fe3O4 nanoparticles. J Colloid Interface Sci 490:727–746. https://doi.org/10.1016/j.jcis.2016.11.098

    Article  Google Scholar 

  145. Gu M, Hao L, Wang Y, Li X, Chen Y, Li W, Jiang L (2020) The selective heavy metal ions adsorption of zinc oxide nanoparticles from dental wastewater. Chem Phys 534:110750. https://doi.org/10.1016/j.chemphys.2020.110750

    Article  Google Scholar 

  146. Di Natale F, Gargiulo V, Alfè M (2020) Adsorption of heavy metals on silica-supported hydrophilic carbonaceous nanoparticles (SHNPs). J Hazard Mater 393:122374. https://doi.org/10.1016/j.jhazmat.2020.122374

    Article  Google Scholar 

  147. Zhang Y, Ni S, Wang X, Zhang W, Lagerquist L, Qin M, Willför S, Xu C, Fatehi P (2019) Ultrafast adsorption of heavy metal ions onto functionalized lignin-based hybrid magnetic nanoparticles. Chem Eng J 372:82–91. https://doi.org/10.1016/j.cej.2019.04.111

    Article  Google Scholar 

  148. Valle JP, Gonzalez B, Schulz J, Salinas D, Romero U, Gonzalez DF, Valdes C, Cantu JM, Eubanks TM, Parsons JG (2017) Sorption of Cr(III) and Cr(VI) to K2Mn4O9 nanomaterial a study of the effect of pH, time, temperature and interferences. Microchem J 133:614–621. https://doi.org/10.1016/j.microc.2017.04.021

    Article  Google Scholar 

  149. Almughamisi MS, Khan ZA, Alshitari W, Elwakeel KZ (2020) Recovery of chromium(VI) oxyanions from aqueous solution using Cu(OH)2 and CuO embedded chitosan adsorbents. J Polym Environ 28(1):47–60. https://doi.org/10.1007/s10924-019-01575-z

    Article  Google Scholar 

  150. Agarwal S, Sadeghi N, Tyagi I, Gupta VK, Fakhri A (2016) Adsorption of toxic carbamate pesticide oxamyl from liquid phase by newly synthesized and characterized graphene quantum dots nanomaterials. J Colloid Interface Sci 478:430–438. https://doi.org/10.1016/j.jcis.2016.06.029

    Article  Google Scholar 

  151. Ncibi MC, Sillanpää M (2015) Optimized removal of antibiotic drugs from aqueous solutions using single, double and multi-walled carbon nanotubes. J Hazard Mater 298:102–110. https://doi.org/10.1016/j.jhazmat.2015.05.025

    Article  Google Scholar 

  152. Zhang L, Song X, Liu X, Yang L, Pan F, Lv J (2011) Studies on the removal of tetracycline by multi-walled carbon nanotubes. Chem Eng J 178:26–33. https://doi.org/10.1016/j.cej.2011.09.127

    Article  Google Scholar 

  153. Shan D, Deng S, Zhao T, Yu G, Winglee J, Wiesner MR (2016) Preparation of regenerable granular carbon nanotubes by a simple heating-filtration method for efficient removal of typical pharmaceuticals. Chem Eng J 294:353–361. https://doi.org/10.1016/j.cej.2016.02.118

    Article  Google Scholar 

  154. Czech B (2017) The effect of MWCNT treatment by H2O2 and/or UV on fulvic acids sorption. Environ Res 155:1–6. https://doi.org/10.1016/j.envres.2017.01.037

    Article  Google Scholar 

  155. Guan Z, Tang X-Y, Nishimura T, Huang Y-M, Reid BJ (2017) Adsorption of linear alkylbenzene sulfonates on carboxyl modified multi-walled carbon nanotubes. J Hazard Mater 322:205–214. https://doi.org/10.1016/j.jhazmat.2016.02.067

    Article  Google Scholar 

  156. Wang D, Wang J (2017) Electrospinning Polyvinyl alcohol/silica-based nanofiber as highly efficient adsorbent for simultaneous and sequential removal of Bisphenol A and Cu(II) from water. Chem Eng J 314:714–726. https://doi.org/10.1016/j.cej.2016.12.037

    Article  Google Scholar 

  157. Bhowmick P, Banerjee D, Santra S, Sen D, Das B, Chattopadhyay KK (2016) Amorphous carbon nanotubes as potent sorbents for removal of a phenolic derivative compound and arsenic: theoretical support of experimental findings. RSC Adv 6(11):8913–8922. https://doi.org/10.1039/C5RA23382H

    Article  Google Scholar 

  158. Wang F, Sun W, Pan W, Xu N (2015) Adsorption of sulfamethoxazole and 17β-estradiol by carbon nanotubes/CoFe2O4 composites. Chem Eng J 274:17–29. https://doi.org/10.1016/j.cej.2015.03.113

    Article  Google Scholar 

  159. Ma J, Zhuang Y, Yu F (2015) Facile method for the synthesis of a magnetic CNTs–C@Fe–chitosan composite and its application in tetracycline removal from aqueous solutions. Phys Chem Chem Phys 17(24):15936–15944. https://doi.org/10.1039/C5CP02542G

    Article  Google Scholar 

  160. Liu H, Vajpayee A, Vecitis CD (2013) Bismuth-doped tin oxide-coated carbon nanotube network: improved anode stability and efficiency for flow-through organic electrooxidation. ACS Appl Mater Interfaces 5(20):10054–10066. https://doi.org/10.1021/am402621v

    Article  Google Scholar 

  161. Vecitis CD, Schnoor MH, Rahaman MS, Schiffman JD, Elimelech M (2011) Electrochemical multiwalled carbon nanotube filter for viral and bacterial removal and inactivation. Environ Sci Technol 45(8):3672–3679. https://doi.org/10.1021/es2000062

    Article  Google Scholar 

  162. Chu Y, Zhang D, Liu L, Qian Y, Li L (2013) Electrochemical degradation of m-cresol using porous carbon-nanotube-containing cathode and Ti/SnO2–Sb2O5–IrO2 anode: Kinetics, byproducts and biodegradability. J Hazard Mater 252–253:306–312. https://doi.org/10.1016/j.jhazmat.2013.03.018

    Article  Google Scholar 

  163. Liu Y, Dustin Lee JH, Xia Q, Ma Y, Yu Y, Lanry Yung LY, Xie J, Ong CN, Vecitis CD, Zhou Z (2014) A graphene-based electrochemical filter for water purification. J Mater Chem A 2(39):16554–16562. https://doi.org/10.1039/C4TA04006F

    Article  Google Scholar 

  164. Liu Y, Xie J, Ong CN, Vecitis CD, Zhou Z (2015) Electrochemical wastewater treatment with carbon nanotube filters coupled with in situ generated H2O2. Environ Sci Water Res Technol 1(6):769–778. https://doi.org/10.1039/C5EW00128E

    Article  Google Scholar 

  165. Hu F, Cui X, Chen W (2010) Pulse electro-codeposition of Ti/SnO[sub 2]–Sb[sub 2]O[sub 4]–CNT electrode for phenol oxidation. Electrochem Solid-State Lett 13(9):F20. https://doi.org/10.1149/1.3457858

    Article  Google Scholar 

  166. Schnoor MH, Vecitis CD (2013) Quantitative examination of aqueous ferrocyanide oxidation in a carbon nanotube electrochemical filter: effects of flow rate, ionic strength, and cathode material. J Phys Chem C 117(6):2855–2867. https://doi.org/10.1021/jp3112099

    Article  Google Scholar 

  167. Khataee AR, Zarei M, Khataee AR (2011) Electrochemical treatment of dye solution by oxalate catalyzed photoelectro-fenton process using a carbon nanotube-PTFE cathode: optimization by central composite design. Clean Soil Air Water 39(5):482–490. https://doi.org/10.1002/clen.201000120

    Article  Google Scholar 

  168. Khataee AR, Vahid B, Behjati B, Safarpour M (2013) Treatment of a dye solution using photoelectro-fenton process on the cathode containing carbon nanotubes under recirculation mode: Investigation of operational parameters and artificial neural network modeling. Environ Prog Sustain Energy 32(3):557–563. https://doi.org/10.1002/ep.11657

    Article  Google Scholar 

  169. Gao G, Vecitis CD (2011) Electrochemical carbon nanotube filter oxidative performance as a function of surface chemistry. Environ Sci Technol 45(22):9726–9734. https://doi.org/10.1021/es202271z

    Article  Google Scholar 

  170. Zarei M, Niaei A, Salari D, Khataee AR (2010) Removal of four dyes from aqueous medium by the peroxi-coagulation method using carbon nanotube–PTFE cathode and neural network modeling. J Electroanal Chem 639(1):167–174. https://doi.org/10.1016/j.jelechem.2009.12.005

    Article  Google Scholar 

  171. Wang H, Na C (2014) Binder-free carbon nanotube electrode for electrochemical removal of chromium. ACS Appl Mater Interfaces 6(22):20309–20316. https://doi.org/10.1021/am505838r

    Article  Google Scholar 

  172. Vecitis CD, Gao G, Liu H (2011) Electrochemical carbon nanotube filter for adsorption, desorption, and oxidation of aqueous dyes and anions. J Phys Chem C 115(9):3621–3629. https://doi.org/10.1021/jp111844j

    Article  Google Scholar 

  173. Duan X, Zhao Y, Liu W, Chang L, Li X (2014) Electrochemical degradation of p-nitrophenol on carbon nanotube and Ce-modified-PbO2 electrode. J Taiwan Inst Chem Eng 45(6):2975–2985. https://doi.org/10.1016/j.jtice.2014.08.031

    Article  Google Scholar 

  174. Liu Y, Liu H, Zhou Z, Wang T, Ong CN, Vecitis CD (2015) Degradation of the common aqueous antibiotic tetracycline using a carbon nanotube electrochemical filter. Environ Sci Technol 49(13):7974–7980. https://doi.org/10.1021/acs.est.5b00870

    Article  Google Scholar 

  175. Duan X, Ma F, Yuan Z, Chang L, Jin X (2012) Lauryl benzene sulfonic acid sodium-carbon nanotube-modified PbO2 electrode for the degradation of 4-chlorophenol. Electrochim Acta 76:333–343. https://doi.org/10.1016/j.electacta.2012.05.036

    Article  Google Scholar 

  176. Rahaman MS, Vecitis CD, Elimelech M (2012) Electrochemical carbon-nanotube filter performance toward virus removal and inactivation in the presence of natural organic matter. Environ Sci Technol 46(3):1556–1564. https://doi.org/10.1021/es203607d

    Article  Google Scholar 

  177. Sepunaru L, Plowman BJ, Sokolov SV, Young NP, Compton RG (2016) Rapid electrochemical detection of single influenza viruses tagged with silver nanoparticles. Chem Sci 7(6):3892–3899. https://doi.org/10.1039/C6SC00412A

    Article  Google Scholar 

  178. Chaiyo S, Apiluk A, Siangproh W, Chailapakul O (2016) High sensitivity and specificity simultaneous determination of lead, cadmium and copper using μPAD with dual electrochemical and colorimetric detection. Sens Actuat B Chem 233:540–549. https://doi.org/10.1016/j.snb.2016.04.109

    Article  Google Scholar 

  179. Li Z, Miao X, Xing K, Peng X, Zhu A, Ling L (2016) Ultrasensitive electrochemical sensor for Hg2+ by using hybridization chain reaction coupled with Ag@Au core–shell nanoparticles. Biosens Bioelectron 80:339–343. https://doi.org/10.1016/j.bios.2016.01.074

    Article  Google Scholar 

  180. Kariuki VM, Fasih-Ahmad SA, Osonga FJ, Sadik OA (2016) An electrochemical sensor for nitrobenzene using π-conjugated polymer-embedded nanosilver. Analyst 141(7):2259–2269. https://doi.org/10.1039/C6AN00029K

    Article  Google Scholar 

  181. Maduraiveeran G, Ramaraj R (2009) Potential sensing platform of silver nanoparticles embedded in functionalized silicate shell for nitroaromatic compounds. Anal Chem 81(18):7552–7560. https://doi.org/10.1021/ac900781d

    Article  Google Scholar 

  182. Huang J, Xie Z, Xie Z, Luo S, Xie L, Huang L, Fan Q, Zhang Y, Wang S, Zeng T (2016) Silver nanoparticles coated graphene electrochemical sensor for the ultrasensitive analysis of avian influenza virus H7. Anal Chim Acta 913:121–127. https://doi.org/10.1016/j.aca.2016.01.050

    Article  Google Scholar 

  183. Ratner N, Mandler D (2015) Electrochemical detection of low concentrations of mercury in water using gold nanoparticles. Anal Chem 87(10):5148–5155. https://doi.org/10.1021/ac504584f

    Article  Google Scholar 

  184. Bui M-PN, Brockgreitens J, Ahmed S, Abbas A (2016) Dual detection of nitrate and mercury in water using disposable electrochemical sensors. Biosens Bioelectron 85:280–286. https://doi.org/10.1016/j.bios.2016.05.017

    Article  Google Scholar 

  185. Chen H-H, Huang J-F (2014) EDTA assisted highly selective detection of As3+ on Au nanoparticle modified glassy carbon electrodes: facile in situ electrochemical characterization of Au nanoparticles. Anal Chem 86(24):12406–12413. https://doi.org/10.1021/ac504044w

    Article  Google Scholar 

  186. Hu L, Fong C-C, Zhang X, Chan LL, Lam PKS, Chu PK, Wong K-Y, Yang M (2016) Au nanoparticles decorated TiO2 nanotube arrays as a recyclable sensor for photoenhanced electrochemical detection of bisphenol A. Environ Sci Technol 50(8):4430–4438. https://doi.org/10.1021/acs.est.5b05857

    Article  Google Scholar 

  187. Zhang Y, Zeng GM, Tang L, Chen J, Zhu Y, He XX, He Y (2015) Electrochemical sensor based on electrodeposited graphene-au modified electrode and nanoau carrier amplified signal strategy for attomolar mercury detection. Anal Chem 87(2):989–996. https://doi.org/10.1021/ac503472p

    Article  Google Scholar 

  188. Wang H, Zhang Y, Ma H, Ren X, Wang Y, Zhang Y, Wei Q (2016) Electrochemical DNA probe for Hg2+ detection based on a triple-helix DNA and multistage signal amplification strategy. Biosens Bioelectron 86:907–912. https://doi.org/10.1016/j.bios.2016.07.098

    Article  Google Scholar 

  189. Zhu G, Yi Y, Han Z, Wang K, Wu X (2014) Sensitive electrochemical sensing for polycyclic aromatic amines based on a novel core–shell multiwalled carbon nanotubes@ graphene oxide nanoribbons heterostructure. Anal Chim Acta 845:30–37. https://doi.org/10.1016/j.aca.2014.06.027

    Article  Google Scholar 

  190. Mahmoudian MR, Alias Y, Basirun WJ, MengWoi P, Jamali-Sheini F, Sookhakian M, Silakhori M (2015) A sensitive electrochemical nitrate sensor based on polypyrrole coated palladium nanoclusters. J Electroanal Chem 751:30–36. https://doi.org/10.1016/j.jelechem.2015.05.026

    Article  Google Scholar 

  191. Zhang R, Sun C-L, Lu Y-J, Chen W (2015) Graphene nanoribbon-supported PtPd concave nanocubes for electrochemical detection of TNT with high sensitivity and selectivity. Anal Chem 87(24):12262–12269. https://doi.org/10.1021/acs.analchem.5b03390

    Article  Google Scholar 

  192. Rismetov B, Ivandini TA, Saepudin E, Einaga Y (2014) Electrochemical detection of hydrogen peroxide at platinum-modified diamond electrodes for an application in melamine strip tests. Diamond Relat Mater 48:88–95. https://doi.org/10.1016/j.diamond.2014.07.003

    Article  Google Scholar 

  193. Jia X, Li J, Wang E (2010) High-sensitivity determination of lead(II) and cadmium(II) based on the CNTs-PSS/Bi composite film electrode. Electroanalysis 22(15):1682–1687. https://doi.org/10.1002/elan.201000083

    Article  Google Scholar 

  194. Sophia J, Muralidharan G (2015) Polyvinylpyrrolidone stabilized palladium nanospheres as simple and novel electrochemical sensor for amperometric hydrogen peroxide detection. J Electroanal Chem 739:115–121. https://doi.org/10.1016/j.jelechem.2014.12.021

    Article  Google Scholar 

  195. Govindhan M, Lafleur T, Adhikari B-R, Chen A (2015) Electrochemical sensor based on carbon nanotubes for the simultaneous detection of phenolic pollutants. Electroanalysis 27(4):902–909. https://doi.org/10.1002/elan.201400608

    Article  Google Scholar 

  196. Sabela MI, Mpanza T, Kanchi S, Sharma D, Bisetty K (2016) Electrochemical sensing platform amplified with a nanobiocomposite of L-phenylalanine ammonia-lyase enzyme for the detection of capsaicin. Biosens Bioelectron 83:45–53. https://doi.org/10.1016/j.bios.2016.04.037

    Article  Google Scholar 

  197. Ting SL, Ee SJ, Ananthanarayanan A, Leong KC, Chen P (2015) Graphene quantum dots functionalized gold nanoparticles for sensitive electrochemical detection of heavy metal ions. Electrochim Acta 172:7–11. https://doi.org/10.1016/j.electacta.2015.01.026

    Article  Google Scholar 

  198. Wang H, Zhang Y, Li H, Du B, Ma H, Wu D, Wei Q (2013) A silver–palladium alloy nanoparticle-based electrochemical biosensor for simultaneous detection of ractopamine, clenbuterol and salbutamol. Biosens Bioelectron 49:14–19. https://doi.org/10.1016/j.bios.2013.04.041

    Article  Google Scholar 

  199. Li Z, Fu Y, Fang W, Li Y (2015) Electrochemical impedance immunosensor based on self-assembled monolayers for rapid detection of Escherichia coli O157: H7 with signal amplification using lectin. Sensors 15(8):19212–19224

    Article  Google Scholar 

  200. Mahmoudian MR, Basirun WJ, Alias Y (2016) A sensitive electrochemical Hg2+ ions sensor based on polypyrrole coated nanospherical platinum. RSC Adv 6(43):36459–36466. https://doi.org/10.1039/C6RA03878F

    Article  Google Scholar 

  201. Zhu G, Gai P, Wu L, Zhang J, Zhang X, Chen J (2012) β-cyclodextrin-platinum nanoparticles/graphene nanohybrids: enhanced sensitivity for electrochemical detection of naphthol isomers. Chem Asian J 7(4):732–737. https://doi.org/10.1002/asia.201100839

    Article  Google Scholar 

  202. Goh MS, Pumera M (2011) Graphene-based electrochemical sensor for detection of 2,4,6-trinitrotoluene (TNT) in seawater: the comparison of single-, few-, and multilayer graphene nanoribbons and graphite microparticles. Anal Bioanal Chem 399(1):127–131. https://doi.org/10.1007/s00216-010-4338-8

    Article  Google Scholar 

  203. Villalonga R, Díez P, Casado S, Eguílaz M, Yáñez-Sedeño P, Pingarrón JM (2012) Electropolymerized network of polyamidoamine dendron-coated gold nanoparticles as novel nanostructured electrode surface for biosensor construction. Analyst 137(2):342–348. https://doi.org/10.1039/C1AN15850C

    Article  Google Scholar 

  204. Pramanik S, Das G, Karak N (2013) Facile preparation of polyaniline nanofibers modified bentonite nanohybrid for gas sensor application. RSC Adv 3(14):4574–4581. https://doi.org/10.1039/C3RA22557G

    Article  Google Scholar 

  205. Wang B, Ye C, Zhong X, Chai Y, Chen S, Yuan R (2016) Electrochemical biosensor for organophosphate pesticides and huperzine-a detection based on Pd wormlike nanochains/graphitic carbon nitride nanocomposites and acetylcholinesterase. Electroanalysis 28(2):304–311. https://doi.org/10.1002/elan.201500339

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Z. Elwakeel.

Ethics declarations

Conflict of interest

The authors confirm that the study reported in this paper has no established conflicting financial interests or personal partnerships that may have affected them.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2324 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elgarahy, A.M., Elwakeel, K.Z., Akhdhar, A. et al. Recent advances in greenly synthesized nanoengineered materials for water/wastewater remediation: an overview. Nanotechnol. Environ. Eng. 6, 9 (2021). https://doi.org/10.1007/s41204-021-00104-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41204-021-00104-5

Keywords

Navigation