Skip to main content

Advertisement

Log in

A review for the impacts of circadian disturbance on urological cancers

  • Review Article
  • Published:
Sleep and Biological Rhythms Aims and scope Submit manuscript

Abstract

Circadian rhythm is an internal timing system and harmonizes a variety of cellular, behavioral, and physiological processes to daily environment. Circadian disturbance caused by altered life style or disrupted sleep patterns inevitably contributes to various disorders. As the rapidly increased cancer occurrences and subsequent tremendous financial burdens, more researches focus on reducing the morbidity rather than treating it. Recently, many epidemiologic studies demonstrated that circadian disturbance was tightly related to the occurrence and development of cancers. For urinary system, numerous clinical researches observed the incidence and progress of prostate cancer were influenced by nightshift work, sleep duration, chronotypes, light exposure, and meal timing, this was also proved by many genetic and fundamental findings. Although the epidemiological studies regarding the relationship between circadian disturbance and kidney/bladder cancers were relative limited, some basic researches still claimed circadian disruption was closely correlated to these two cancers. The role of circadian chemotherapy on cancers of prostate, kidney, and bladder were also explored, however, it has not been regularly recommended considering the limited evidence and poor standard protocols. Finally, the researches for the impacts of circadian disturbance on cancers of adrenal gland, penis, testis were not found at present. In general, a better understanding the relationship between circadian disturbance and urological cancers might help to provide more scientific work schedules and rational lifestyles which finally saving health resource by reducing urological tumorigenesis, however, the underlying mechanisms are complex which need further exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were used during the current review.

References

  1. Noh JY, Han DH, Yoon JA, Kim MH, Kim SE, Ko IG, Kim KH, Kim CJ, Cho S. Circadian rhythms in urinary functions: possible roles of circadian clocks? Int Neurourol J. 2011;15:64–73.

    PubMed  PubMed Central  Google Scholar 

  2. Shostak A. Circadian clock, cell division, and cancer: from molecules to organism. Int J Mol Sci. 2017;18:873.

    PubMed  PubMed Central  Google Scholar 

  3. Walker WH 2nd, Bumgarner JR. Light pollution and cancer. Int J Mol Sci. 2020;21:9360.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Chang WH, Lai AG. Timing gone awry: distinct tumour suppressive and oncogenic roles of the circadian clock and crosstalk with hypoxia signalling in diverse malignancies. J Transl Med. 2019;17:132.

    PubMed  PubMed Central  Google Scholar 

  5. Fatima N, Rana S. Metabolic implications of circadian disruption. Pflugers Arch. 2020;472:513–26.

    CAS  PubMed  Google Scholar 

  6. Xu H, Huang L, Zhao J, Chen S, Liu J, Li G. The circadian clock and inflammation: a new insight. Clin Chim Acta. 2020;512:12–7.

    PubMed  Google Scholar 

  7. Goel N, Basner M, Rao H, Dinges DF. Circadian rhythms, sleep deprivation, and human performance. Prog Mol Biol Transl Sci. 2013;119:155–90.

    PubMed  PubMed Central  Google Scholar 

  8. Panda S. Circadian physiology of metabolism. Science. 2016;354:1008–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chan MC, Spieth PM, Quinn K, Parotto M, Zhang H, Slutsky AS. Circadian rhythms: from basic mechanisms to the intensive care unit. Crit Care Med. 2012;40:246–53.

    PubMed  PubMed Central  Google Scholar 

  10. Manoogian ENC, Panda S. Circadian rhythms, time-restricted feeding, and healthy aging. Ageing Res Rev. 2017;39:59–67.

    PubMed  Google Scholar 

  11. McAlpine CS, Swirski FK. Circadian influence on metabolism and inflammation in atherosclerosis. Circ Res. 2016;119:131–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Tobaldini E, Costantino G, Solbiati M, Cogliati C, Kara T, Nobili L, Montano N. Sleep, sleep deprivation, autonomic nervous system and cardiovascular diseases. Neurosci Biobehav Rev. 2017;74:321–9.

    PubMed  Google Scholar 

  13. Masri S, Sassone-Corsi P. The emerging link between cancer, metabolism, and circadian rhythms. Nat Med. 2018;24:1795–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Vignozzi L, Maggi M. Circadian rhythm and erectile function: is there a penile clock? Nat Rev Urol. 2020;17:603–4.

    PubMed  Google Scholar 

  15. Mogavero M, DelRosso L, Fanfulla F, Bruni O, Ferri R. Sleep disorders and cancer: state of the art and future perspectives. Sleep Med Rev. 2020;56: 101409.

    PubMed  Google Scholar 

  16. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021. https://doi.org/10.3322/caac.21654.

    Article  PubMed  Google Scholar 

  17. Mehrzadi MH, Hosseinzadeh A, Juybari KB, Mehrzadi S. Melatonin and urological cancers: a new therapeutic approach. Cancer Cell Int. 2020;20:444.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, Zoran MJ. Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet. 2005;6:544–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Soták M, Sumová A, Pácha J. Cross-talk between the circadian clock and the cell cycle in cancer. Ann Med. 2014;46:221–32.

    PubMed  Google Scholar 

  20. Xuan W, Khan F, James CD, Heimberger AB, Lesniak MS, Chen P. Circadian regulation of cancer cell and tumor microenvironment crosstalk. Trends Cell Biol. 2021. https://doi.org/10.1016/j.tcb.2021.06.008.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gery S, Koeffler HP. Circadian rhythms and cancer. Cell Cycle. 2010;9:1097–103.

    CAS  PubMed  Google Scholar 

  22. Konopka RJ, Benzer S. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci USA. 1971;68:2112–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Reddy P, Zehring WA, Wheeler DA, Pirrotta V, Hadfield C, Hall JC, Rosbash M. Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell. 1984;38:701–10.

    CAS  PubMed  Google Scholar 

  24. Welsh DK, Logothetis DE, Meister M, Reppert SM. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron. 1995;14:697–706.

    CAS  PubMed  Google Scholar 

  25. Lydic R, Albers HE, Tepper B, Moore-Ede MC. Three-dimensional structure of the mammalian suprachiasmatic nuclei: a comparative study of five species. J Comp Neurol. 1982;204:225–37.

    CAS  PubMed  Google Scholar 

  26. Lydic R, Schoene WC, Czeisler CA, Moore-Ede MC. Suprachiasmatic region of the human hypothalamus: homolog to the primate circadian pacemaker? Sleep. 1980;2:355–61.

    CAS  PubMed  Google Scholar 

  27. Van den Pol AN. The hypothalamic suprachiasmatic nucleus of rat: intrinsic anatomy. J Comp Neurol. 1980;191:661–702.

    PubMed  Google Scholar 

  28. Kriegsfeld LJ, LeSauter J, Silver R. Targeted microlesions reveal novel organization of the hamster suprachiasmatic nucleus. J Neurosci. 2004;24:2449–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. van den Pol AN, Tsujimoto KL. Neurotransmitters of the hypothalamic suprachiasmatic nucleus: immunocytochemical analysis of 25 neuronal antigens. Neuroscience. 1985;15:1049–86.

    PubMed  Google Scholar 

  30. Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci. 2012;35:445–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Balsalobre A, Damiola F, Schibler U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell. 1998;93:929–37.

    CAS  PubMed  Google Scholar 

  32. Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U. Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell. 2004;119:693–705.

    CAS  PubMed  Google Scholar 

  33. Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science. 2002;295:1070–3.

    CAS  PubMed  Google Scholar 

  34. Warren EJ, Allen CN, Brown RL, Robinson DW. Intrinsic light responses of retinal ganglion cells projecting to the circadian system. Eur J Neurosci. 2003;17:1727–35.

    PubMed  PubMed Central  Google Scholar 

  35. Giebultowicz J. Chronobiology: biological timekeeping. Integr Comp Biol. 2004;44:266.

    PubMed  Google Scholar 

  36. Hay-Schmidt A, Vrang N, Larsen PJ, Mikkelsen JD. Projections from the raphe nuclei to the suprachiasmatic nucleus of the rat. J Chem Neuroanat. 2003;25:293–310.

    PubMed  Google Scholar 

  37. Abrahamson EE, Moore RY. Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res. 2001;916:172–91.

    CAS  PubMed  Google Scholar 

  38. Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 2010;72:517–49.

    CAS  PubMed  Google Scholar 

  39. Golombek DA, Rosenstein RE. Physiology of circadian entrainment. Physiol Rev. 2010;90:1063–102.

    CAS  PubMed  Google Scholar 

  40. Deurveilher S, Burns J, Semba K. Indirect projections from the suprachiasmatic nucleus to the ventrolateral preoptic nucleus: a dual tract-tracing study in rat. Eur J Neurosci. 2002;16:1195–213.

    PubMed  Google Scholar 

  41. Deurveilher S, Semba K. Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: implications for the circadian control of behavioural state. Neuroscience. 2005;130:165–83.

    CAS  PubMed  Google Scholar 

  42. Schwartz MD, Urbanski HF, Nunez AA, Smale L. Projections of the suprachiasmatic nucleus and ventral subparaventricular zone in the Nile grass rat (Arvicanthis niloticus). Brain Res. 2011;1367:146–61.

    CAS  PubMed  Google Scholar 

  43. Challet E. Minireview: Entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology. 2007;148:5648–55.

    CAS  PubMed  Google Scholar 

  44. Hastings MH, Maywood ES, Reddy AB. Two decades of circadian time. J Neuroendocrinol. 2008;20:812–9.

    CAS  PubMed  Google Scholar 

  45. Kalsbeek A, Perreau-Lenz S, Buijs RM. A network of (autonomic) clock outputs. Chronobiol Int. 2006;23:521–35.

    CAS  PubMed  Google Scholar 

  46. Matsuo T, Yamaguchi S, Mitsui S, Emi A, Shimoda F, Okamura H. Control mechanism of the circadian clock for timing of cell division in vivo. Science. 2003;302:255–9.

    CAS  PubMed  Google Scholar 

  47. Griffin EA Jr, Staknis D, Weitz CJ. Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science. 1999;286:768–71.

    CAS  PubMed  Google Scholar 

  48. Lee C, Etchegaray JP, Cagampang FR, Loudon AS, Reppert SM. Posttranslational mechanisms regulate the mammalian circadian clock. Cell. 2001;107:855–67.

    CAS  PubMed  Google Scholar 

  49. Kiss Z, Ghosh PM. Women in cancer thematic review: circadian rhythmicity and the influence of “clock” genes on prostate cancer. Endocr Relat Cancer. 2016;23:T123–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hergenhan S, Holtkamp S, Scheiermann C. Molecular interactions between components of the circadian clock and the immune system. J Mol Biol. 2020;432:3700–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Feillet C, Krusche P, Tamanini F, Janssens RC, Downey MJ, Martin P, Teboul M, Saito S, Lévi FA, Bretschneider T, van der Horst GT, Delaunay F, Rand DA. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle. Proc Natl Acad Sci USA. 2014;111:9828–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu Z, Yu K, Zheng J, Lin H, Zhao Q, Zhang X, Feng W, Wang L, Xu J, Xie D, Zuo ZX, Liu ZX. Dysregulation, functional implications, and prognostic ability of the circadian clock across cancers. Cancer Med. 2019;8:1710–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Cash E, Sephton S, Woolley C, Elbehi AM, Anu RI, Ekine-Afolabi B, Kok VC. The role of the circadian clock in cancer hallmark acquisition and immune-based cancer therapeutics. J Exp Clin Cancer Res. 2021;40:119.

    PubMed  PubMed Central  Google Scholar 

  54. Rijo-Ferreira F, Takahashi JS. Genomics of circadian rhythms in health and disease. Genome Med. 2019;11:82.

    PubMed  PubMed Central  Google Scholar 

  55. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    CAS  PubMed  Google Scholar 

  56. Hamilton T. Influence of environmental light and melatonin upon mammary tumour induction. Br J Surg. 1969;56:764–6.

    CAS  PubMed  Google Scholar 

  57. Aubert C, Janiaud P, Lecalvez J. Effect of pinealectomy and melatonin on mammary tumor growth in Sprague-Dawley rats under different conditions of lighting. J Neural Transm. 1980;47:121–30.

    CAS  PubMed  Google Scholar 

  58. Mhatre MC, Shah PN, Juneja HS. Effect of varying photoperiods on mammary morphology, DNA synthesis, and hormone profile in female rats. J Natl Cancer Inst. 1984;72:1411–6.

    CAS  PubMed  Google Scholar 

  59. Rao D, Yu H, Bai Y, Zheng X, Xie L. Does night-shift work increase the risk of prostate cancer? A systematic review and meta-analysis. Onco Targets Ther. 2015;8:2817–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Wendeu-Foyet MG, Menegaux F. Circadian disruption and prostate cancer risk: an updated review of epidemiological evidences. Cancer Epidemiol Biomark Prev. 2017;26:985–91.

    Google Scholar 

  61. Rivera-Izquierdo M. Shift work and prostate cancer: an updated systematic review and meta-analysis. Int J Environ Res Public Health. 2020;17:1345.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Wood PA, Yang X, Hrushesky WJ. Clock genes and cancer. Integr Cancer Ther. 2009;8:303–8.

    CAS  PubMed  Google Scholar 

  63. Canaple L, Kakizawa T, Laudet V. The days and nights of cancer cells. Cancer Res. 2003;63:7545–52.

    CAS  PubMed  Google Scholar 

  64. Lewis P, Hellmich M. Perinatal photoperiod and childhood cancer: pooled results from 182,856 individuals in the international childhood cancer cohort consortium (I4C). Chronobiol Int. 2020;37:1034–47.

    PubMed  Google Scholar 

  65. Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, Fuchs CS, Colditz GA. Night-shift work and risk of colorectal cancer in the nurses’ health study. J Natl Cancer Inst. 2003;95:825–8.

    PubMed  Google Scholar 

  66. Hansen J. Increased breast cancer risk among women who work predominantly at night. Epidemiology. 2001;12:74–7.

    CAS  PubMed  Google Scholar 

  67. Viswanathan AN, Hankinson SE, Schernhammer ES. Night shift work and the risk of endometrial cancer. Cancer Res. 2007;67:10618–22.

    CAS  PubMed  Google Scholar 

  68. Kisamore C, Elliott B, DeVries A, Nelson R, Walker W. Chronotherapeutics for solid tumors. Pharmaceutics. 2023. https://doi.org/10.3390/pharmaceutics15082023.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zhu W, He Q, Feng D, Wei Q, Yang L. Circadian rhythm in prostate cancer: time to take notice of the clock. Asian J Androl. 2023;25:184–91.

    CAS  PubMed  Google Scholar 

  70. Walton J, Walker W, Bumgarner J, Meléndez-Fernández O, Liu J, Hughes H, Kaper A, Nelson R. Circadian variation in efficacy of medications. Clin Pharmacol Ther. 2021;109:1457–88.

    PubMed  Google Scholar 

  71. Abu-Samak A-A, Abu-Samak M, Al-Waeli H, Cai W, Al-Tamimi M, Tamimi F, Nicolau B. Chronotherapy in head and neck cancer (HNC): a systematic review. J Clin Oncol. 2023;41:e18016-e.

    Google Scholar 

  72. Bermúdez-Guzmán L, Blanco-Saborío A, Ramírez-Zamora J, Lovo E. The time for chronotherapy in radiation oncology. Front Oncol. 2021;11: 687672.

    PubMed  PubMed Central  Google Scholar 

  73. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.

    CAS  PubMed  Google Scholar 

  74. Band PR, Le ND, Fang R, Deschamps M, Coldman AJ, Gallagher RP, Moody J. Cohort study of Air Canada pilots: mortality, cancer incidence, and leukemia risk. Am J Epidemiol. 1996;143:137–43.

    CAS  PubMed  Google Scholar 

  75. Flynn-Evans EE, Mucci L, Stevens RG, Lockley SW. Shiftwork and prostate-specific antigen in the national health and nutrition examination survey. J Natl Cancer Inst. 2013;105:1292–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Pukkala E, Aspholm R, Auvinen A, Eliasch H, Gundestrup M, Haldorsen T, Hammar N, Hrafnkelsson J, Kyyrönen P, Linnersjö A, Rafnsson V, Storm H, Tveten U. Incidence of cancer among Nordic airline pilots over five decades: occupational cohort study. BMJ. 2002;325:567.

    PubMed  PubMed Central  Google Scholar 

  77. Pukkala E, Martinsen JI, Lynge E, Gunnarsdottir HK, Sparén P, Tryggvadottir L, Weiderpass E, Kjaerheim K. Occupation and cancer - follow-up of 15 million people in five Nordic countries. Acta Oncol. 2009;48:646–790.

    CAS  PubMed  Google Scholar 

  78. Man AWC, Li H, Xia N. Circadian rhythm: potential therapeutic target for atherosclerosis and thrombosis. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22020676.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lue TF. Erectile dysfunction. N Engl J Med. 2000;342:1802–13.

    CAS  PubMed  Google Scholar 

  80. Rodriguez KM, Kohn TP, Kohn JR, Sigalos JT, Kirby EW, Pickett SM, Pastuszak AW, Lipshultz LI. Shift work sleep disorder and night shift work significantly impair erectile function. J Sex Med. 2020;17:1687–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Cho JW, Duffy JF. Sleep, sleep disorders, and sexual dysfunction. World J Mens Health. 2019;37:261–75.

    PubMed  Google Scholar 

  82. Stenvers DJ, Scheer F, Schrauwen P, la Fleur SE, Kalsbeek A. Circadian clocks and insulin resistance. Nat Rev Endocrinol. 2019;15:75–89.

    PubMed  Google Scholar 

  83. Parent M-É, El-Zein M, Rousseau M-C, Pintos J, Siemiatycki J. Night work and the risk of cancer among men. Am J Epidemiol. 2012;176:751–9.

    PubMed  Google Scholar 

  84. Arafa A, Eshak ES, Iso H, Muraki I, Tamakoshi A. Night work, rotating shift work and the risk of cancer in japanese men and women: the JACC study. J Epidemiol. 2020;31:585–92.

    Google Scholar 

  85. Papantoniou K, Castaño-Vinyals G, Espinosa A, Aragonés N, Pérez-Gómez B, Burgos J, Gómez-Acebo I, Llorca J, Peiró R, Jimenez-Moleón JJ, Arredondo F, Tardón A, Pollan M, Kogevinas M. Night shift work, chronotype and prostate cancer risk in the MCC-Spain case-control study. Int J Cancer. 2015;137:1147–57.

    CAS  PubMed  Google Scholar 

  86. Hu L, Harper A, Heer E, McNeil J, Cao C. Social jetlag and prostate cancer incidence in alberta’s tomorrow project: a prospective cohort study. Cancers (Basel). 2020;12:3873.

    PubMed  PubMed Central  Google Scholar 

  87. Lozano-Lorca M, Olmedo-Requena R, Vega-Galindo MV, Vázquez-Alonso F, Jiménez-Pacheco A, Salcedo-Bellido I, Sánchez MJ, Jiménez-Moleón JJ. Night shift work, chronotype, sleep duration, and prostate cancer risk: CAPLIFE study. Int J Environ Res Public Health. 2020;17:6300.

    PubMed  PubMed Central  Google Scholar 

  88. Yong M, Blettner M, Emrich K, Nasterlack M, Oberlinner C, Hammer GP. A retrospective cohort study of shift work and risk of incident cancer among German male chemical workers. Scand J Work Environ Health. 2014;40:502–10.

    PubMed  Google Scholar 

  89. Åkerstedt T, Narusyte J, Svedberg P, Kecklund G, Alexanderson K. Night work and prostate cancer in men: a Swedish prospective cohort study. BMJ Open. 2017;7: e015751.

    PubMed  PubMed Central  Google Scholar 

  90. Barul C, Richard H, Parent ME. Night-shift work and risk of prostate cancer: results from a Canadian case-control study, the prostate cancer and environment study. Am J Epidemiol. 2019;188:1801–11.

    PubMed  PubMed Central  Google Scholar 

  91. Gan Y, Li L, Zhang L, Yan S, Gao C, Hu S, Qiao Y, Tang S, Wang C, Lu Z. Association between shift work and risk of prostate cancer: a systematic review and meta-analysis of observational studies. Carcinogenesis. 2018;39:87–97.

    CAS  PubMed  Google Scholar 

  92. Mancio J, Leal C. Does the association of prostate cancer with night-shift work differ according to rotating vs. fixed schedule? A systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2018;21:337–44.

    PubMed  Google Scholar 

  93. Du H-B, Bin K-Y, Liu W-H, Yang F-S. Shift work, night work, and the risk of prostate cancer: a meta-analysis based on 9 cohort studies. Medicine (Baltimore). 2017;96: e8537.

    PubMed  Google Scholar 

  94. Cho S, Park WJ. Night shiftwork and prostate-specific antigen level in a tire manufacturing factory. Ann Occup Environ Med. 2019;31: e19.

    PubMed  PubMed Central  Google Scholar 

  95. Hirshkowitz M, Whiton K, Albert SM, Alessi C, Bruni O, DonCarlos L, Hazen N, Herman J, Katz ES, Kheirandish-Gozal L, Neubauer DN, O’Donnell AE, Ohayon M, Peever J, Rawding R, Sachdeva RC, Setters B, Vitiello MV, Ware JC, Adams Hillard PJ. National sleep foundation’s sleep time duration recommendations: methodology and results summary. Sleep Health. 2015;1:40–3.

    PubMed  Google Scholar 

  96. Liu PY. A clinical perspective of sleep and andrological health: assessment, treatment considerations and future research. J Clin Endocrinol Metab. 2019;104:4398–417.

    PubMed  PubMed Central  Google Scholar 

  97. Kling JM, Manson JE, Naughton MJ, Temkit M, Sullivan SD, Gower EW, Hale L, Weitlauf JC, Nowakowski S, Crandall CJ. Association of sleep disturbance and sexual function in postmenopausal women. Menopause. 2017;24:604–12.

    PubMed  PubMed Central  Google Scholar 

  98. Starreveld DEJ, Habers GEA, Valdimarsdottir HB, Kessels R, Daniëls LA, van Leeuwen FE, Bleiker EMA. Cancer-related fatigue in relation to chronotype and sleep quality in (non-)hodgkin lymphoma survivors. J Biol Rhythms. 2021;36:71–83.

    PubMed  PubMed Central  Google Scholar 

  99. Kakizaki M, Inoue K, Kuriyama S, Sone T, Matsuda-Ohmori K, Nakaya N, Fukudo S, Tsuji I, Study OC. Sleep duration and the risk of prostate cancer: the Ohsaki cohort study. Br J Cancer. 2008;99:176–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Markt SC, Flynn-Evans EE, Valdimarsdottir UA, Sigurdardottir LG, Tamimi RM, Batista JL, Haneuse S, Lockley SW, Stampfer M, Wilson KM, Czeisler CA, Rider JR, Mucci LA. Sleep duration and disruption and prostate cancer risk: a 23-year prospective study. Cancer Epidemiol Biomarkers Prev. 2016;25:302–8.

    PubMed  Google Scholar 

  101. Sigurdardottir LG, Valdimarsdottir UA, Mucci LA, Fall K, Rider JR, Schernhammer E, Czeisler CA, Launer L, Harris T, Stampfer MJ, Gudnason V, Lockley SW. Sleep disruption among older men and risk of prostate cancer. Cancer Epidemiol Biomark Prev. 2013;22:872–9.

    Google Scholar 

  102. Gapstur SM, Diver WR, Stevens VL, Carter BD, Teras LR, Jacobs EJ. Work schedule, sleep duration, insomnia, and risk of fatal prostate cancer. Am J Prev Med. 2014;46:S26-33.

    PubMed  Google Scholar 

  103. Wendeu-Foyet MG, Bayon V, Cénée S, Trétarre B, Rébillard X, Cancel-Tassin G, Cussenot O, Lamy P-J, Faraut B, Ben Khedher S, Léger D, Menegaux F. Night work and prostate cancer risk: results from the EPICAP Study. Occup Environ Med. 2018;75:573–81.

    PubMed  Google Scholar 

  104. Markt SC, Grotta A, Nyren O, Adami H-O, Mucci LA, Valdimarsdottir UA, Stattin P, Bellocco R, Lagerros YT. Insufficient sleep and risk of prostate cancer in a large swedish cohort. Sleep. 2015;38:1405–10.

    PubMed  PubMed Central  Google Scholar 

  105. Sun X, Ye D, Jiang M, Qian Y, Mao Y. Genetically proxied morning chronotype was associated with a reduced risk of prostate cancer. Sleep. 2021. https://doi.org/10.1093/sleep/zsab104.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Garcia-Saenz A, de Miguel AS, Espinosa A, Valentin A, Aragonés N, Llorca J, Amiano P, Martín Sánchez V, Guevara M, Capelo R, Tardón A, Peiró-Perez R, Jiménez-Moleón JJ, Roca-Barceló A, Pérez-Gómez B, Dierssen-Sotos T, Fernández-Villa T, Moreno-Iribas C, Moreno V, García-Pérez J, Castaño-Vinyals G, Pollán M, Aubé M, Kogevinas M. Evaluating the association between artificial light-at-night exposure and breast and prostate cancer risk in Spain (MCC-Spain Study). Environ Health Perspect. 2018;126:047011.

    PubMed  PubMed Central  Google Scholar 

  107. Kim KY, Lee E, Kim YJ, Kim J. The association between artificial light at night and prostate cancer in Gwangju City and South Jeolla Province of South Korea. Chronobiol Int. 2017;34:203–11.

    CAS  PubMed  Google Scholar 

  108. Rybnikova NA, Haim A, Portnov BA. Is prostate cancer incidence worldwide linked to artificial light at night exposures? Review of earlier findings and analysis of current trends. Arch Environ Occup Health. 2017;72:111–22.

    CAS  PubMed  Google Scholar 

  109. Wittmann M, Dinich J, Merrow M, Roenneberg T. Social jetlag: misalignment of biological and social time. Chronobiol Int. 2006;23:497–509.

    PubMed  Google Scholar 

  110. Kogevinas M, Espinosa A, Castelló A. Effect of mistimed eating patterns on breast and prostate cancer risk (MCC-Spain Study). Int J Cancer. 2018;143:2380–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Wendeu-Foyet MG, Koudou Y, Cénée S, Trétarre B, Rébillard X, Cancel-Tassin G, Cussenot O, Boland A, Bacq D, Deleuze JF, Lamy PJ, Mulot C, Laurent-Puig P, Truong T, Menegaux F. Circadian genes and risk of prostate cancer: findings from the EPICAP study. Int J Cancer. 2019;145:1745–53.

    CAS  PubMed  Google Scholar 

  112. Wendeu-Foyet MG, Cénée S, Koudou Y, Trétarre B, Rébillard X, Cancel-Tassin G, Cussenot O, Boland A, Olaso R, Deleuze JF, Blanché H, Lamy PJ, Mulot C, Laurent-Puig P, Truong T, Menegaux F. Circadian genes polymorphisms, night work and prostate cancer risk: findings from the EPICAP study. Int J Cancer. 2020;147:3119–29.

    CAS  PubMed  Google Scholar 

  113. Zhu Y, Stevens RG, Hoffman AE, Fitzgerald LM, Kwon EM, Ostrander EA, Davis S, Zheng T, Stanford JL. Testing the circadian gene hypothesis in prostate cancer: a population-based case-control study. Cancer Res. 2009;69:9315–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Chu LW, Zhu Y, Yu K, Zheng T, Yu H, Zhang Y, Sesterhenn I, Chokkalingam AP, Danforth KN, Shen MC, Stanczyk FZ, Gao YT, Hsing AW. Variants in circadian genes and prostate cancer risk: a population-based study in China. Prostate Cancer Prostatic Dis. 2008;11:342–8.

    CAS  PubMed  Google Scholar 

  115. Chu LW, Till C, Yang B. Circadian genes and risk of prostate cancer in the prostate cancer prevention trial. Mol Carcinog. 2018;57:462–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Yu CC, Chen LC, Chiou CY, Chang YJ, Lin VC, Huang CY, Lin IL, Chang TY, Lu TL, Lee CH, Huang SP, Bao BY. Genetic variants in the circadian rhythm pathway as indicators of prostate cancer progression. Cancer Cell Int. 2019;19:87.

    PubMed  PubMed Central  Google Scholar 

  117. Gu F, Zhang H, Hyland PL, Berndt S, Gapstur SM, Wheeler W, Ellipse Consortium T, Amos CI, Bezieau S, Bickeböller H, Brenner H, Brennan P, Chang-Claude J, Conti DV, Doherty JA, Gruber SB, Harrison TA, Hayes RB, Hoffmeister M, Houlston RS, Hung RJ, Jenkins MA, Kraft P, Lawrenson K, McKay J, Markt S, Mucci L, Phelan CM, Qu C, Risch A, Rossing MA, Wichmann HE, Shi J, Schernhammer E, Yu K, Landi MT, Caporaso NE. Inherited variation in circadian rhythm genes and risks of prostate cancer and three other cancer sites in combined cancer consortia. Int J Cancer. 2017;141:1794–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Mocellin S, Tropea S, Benna C, Rossi CR. Circadian pathway genetic variation and cancer risk: evidence from genome-wide association studies. BMC Med. 2018;16:20.

    PubMed  PubMed Central  Google Scholar 

  119. Markt SC, Valdimarsdottir UA, Shui IM, Sigurdardottir LG, Rider JR, Tamimi RM, Batista JL, Haneuse S, Flynn-Evans E, Lockley SW, Czeisler CA, Stampfer MJ, Launer L, Harris T, Smith AV, Gudnason V, Lindstrom S, Kraft P, Mucci LA. Circadian clock genes and risk of fatal prostate cancer. Cancer Causes Control. 2015;26:25–33.

    PubMed  Google Scholar 

  120. Cao Q, Gery S, Dashti A, Yin D, Zhou Y, Gu J, Koeffler HP. A role for the clock gene per1 in prostate cancer. Cancer Res. 2009;69:7619–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Jung-Hynes B, Huang W, Reiter RJ, Ahmad N. Melatonin resynchronizes dysregulated circadian rhythm circuitry in human prostate cancer cells. J Pineal Res. 2010;49:60–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Li Q, Xia D, Wang Z, Liu B, Zhang J, Peng P, Tang Q, Dong J, Guo J, Kuang D, Chen W, Mao J, Li Q, Chen X. Circadian rhythm gene PER3 negatively regulates stemness of prostate cancer stem cells via WNT/β-catenin signaling in tumor microenvironment. Front Cell Dev Biol. 2021;9: 656981.

    PubMed  PubMed Central  Google Scholar 

  123. Cai DW, Chen D, Sun SP, Liu ZJ, Liu F, Xian SZ, Wu PS, Kong GQ. Overexpression of PER3 reverses paclitaxel resistance of prostate cancer cells by inhibiting the Notch pathway. Eur Rev Med Pharmacol Sci. 2018;22:2572–9.

    PubMed  Google Scholar 

  124. Zhou L, Zhang C, Yang X, Liu L, Hu J, Hou Y, Tao H, Sugimura H, Chen Z, Wang L. Melatonin inhibits lipid accumulation to repress prostate cancer progression by mediating the epigenetic modification of CES1. Clin Transl Med. 2021;11: e449.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Hsu FM, Hou WH, Huang CY, Wang CC, Tsai CL, Tsai YC, Yu HJ, Pu YS, Cheng JC. Differences in toxicity and outcome associated with circadian variations between patients undergoing daytime and evening radiotherapy for prostate adenocarcinoma. Chronobiol Int. 2016;33:210–9.

    PubMed  Google Scholar 

  126. Chan S, Rowbottom L, McDonald R, Bjarnason GA, Tsao M, Danjoux C, Barnes E, Popovic M, Lam H, DeAngelis C, Chow E. Does the time of radiotherapy affect treatment outcomes? A review of the literature. Clin Oncol (R Coll Radiol). 2017;29:231–8.

    CAS  PubMed  Google Scholar 

  127. Ferlay J, Colombet M, Soerjomataram I, Dyba T, Randi G, Bettio M, Gavin A, Visser O, Bray F. Cancer incidence and mortality patterns in Europe: estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer. 2018;103:356–87.

    CAS  PubMed  Google Scholar 

  128. Zhou L, Luo Z, Li Z, Huang Q. Circadian clock is associated with tumor microenvironment in kidney renal clear cell carcinoma. Aging (Albany NY). 2020;12:14620–32.

    PubMed  Google Scholar 

  129. Gu F, Xiao Q, Chu LW, Yu K, Matthews CE, Hsing AW, Caporaso NE. Sleep duration and cancer in the NIH-AARP diet and health study cohort. PLoS ONE. 2016;11: e0161561.

    PubMed  PubMed Central  Google Scholar 

  130. Mazzoccoli G, Piepoli A, Carella M, Panza A, Pazienza V, Benegiamo G, Palumbo O, Ranieri E. Altered expression of the clock gene machinery in kidney cancer patients. Biomed Pharmacother. 2012;66:175–9.

    CAS  PubMed  Google Scholar 

  131. Okabe T, Kumagai M, Nakajima Y, Shirotake S, Kodaira K, Oyama M, Ueno M, Ikeda M. The impact of HIF1α on the Per2 circadian rhythm in renal cancer cell lines. PLoS ONE. 2014;9: e109693.

    PubMed  PubMed Central  Google Scholar 

  132. English DR, Hopper JL, Southey MC, Giles GG, Milne RL, Titova OE. Sleep duration and risk of overall and 22 site-specific cancers: a Mendelian randomization study. Int J Cancer. 2021;148:914–20.

    Google Scholar 

  133. Qiu MJ, Liu LP, Jin S, Fang XF, He XX, Xiong ZF, Yang SL. Research on circadian clock genes in common abdominal malignant tumors. Chronobiol Int. 2019;36:906–18.

    CAS  PubMed  Google Scholar 

  134. Yang Y, Yuan G, Xie H, Wei T, Zhu D, Cui J, Liu X, Shen R, Zhu Y, Yang X. Circadian clock associates with tumor microenvironment in thoracic cancers. Aging (Albany NY). 2019;11:11814–28.

    CAS  PubMed  Google Scholar 

  135. Kobayashi M, Wood PA, Hrushesky WJ. Circadian chemotherapy for gynecological and genitourinary cancers. Chronobiol Int. 2002;19:237–51.

    CAS  PubMed  Google Scholar 

  136. Hrushesky WJ, von Roemeling R, Lanning RM, Rabatin JT. Circadian-shaped infusions of floxuridine for progressive metastatic renal cell carcinoma. J Clin Oncol. 1990;8:1504–13.

    CAS  PubMed  Google Scholar 

  137. Hrushesky W, Roemeling R, Sothem RB. Circadian chronotherapy: From animal experiments to human cancer chemotherapy. Chronopharmacol Cell Biochem Interact Cell Clocks. 1989;3:439–73.

    Google Scholar 

  138. Mistlberger RE, Skene DJ. Social influences on mammalian circadian rhythms: animal and human studies. Biol Rev Camb Philos Soc. 2004;79:533–56.

    PubMed  Google Scholar 

  139. Chavan S, Bray F, Lortet-Tieulent J, Goodman M, Jemal A. International variations in bladder cancer incidence and mortality. Eur Urol. 2014;66:59–73.

    PubMed  Google Scholar 

  140. Yang Y, Cheng Z, Jia X, Shi N, Xia Z, Zhang W, Shi X. Mortality trends of bladder cancer in China from 1991 to 2015: an age-period-cohort analysis. Cancer Manag Res. 2019;11:3043–51.

    PubMed  PubMed Central  Google Scholar 

  141. Jung YL, Tompa E, Longo C, Kalcevich C, Kim J, Song C, Demers P. The economic burden of bladder cancer due to occupational exposure. J Occup Environ Med. 2018;60:217–25.

    PubMed  Google Scholar 

  142. Fankhauser CD, Mostafid H. Prevention of bladder cancer incidence and recurrence: nutrition and lifestyle. Curr Opin Urol. 2018;28:88–92.

    PubMed  Google Scholar 

  143. Litlekalsoy J, Rostad K, Kalland K-H, Hostmark JG, Laerum OD. Expression of circadian clock genes and proteins in urothelial cancer is related to cancer-associated genes. BMC Cancer. 2016;16:549.

    PubMed  PubMed Central  Google Scholar 

  144. Polo A, Crispo A, Cerino P, Falzone L, Candido S, Giudice A, De Petro G, Ciliberto G, Montella M, Budillon A, Costantini S. Environment and bladder cancer: molecular analysis by interaction networks. Oncotarget. 2017;8:65240–52.

    PubMed  PubMed Central  Google Scholar 

  145. Collado M, Serrano M. Senescence in tumours: evidence from mice and humans. Nat Rev Cancer. 2010;10:51–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Lee S, Lee JS. Cellular senescence: a promising strategy for cancer therapy. BMB Rep. 2019;52:35–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Jia M, Su B, Mo L, Qiu W, Ying J, Lin P, Yang B, Li D, Wang D, Xu L, Li H, Zhou Z, Li X, Li J. Circadian clock protein CRY1 prevents paclitaxel-induced senescence of bladder cancer cells by promoting p53 degradation. Oncol Rep. 2021;45:1033–43.

    CAS  PubMed  Google Scholar 

  148. Iyyanki T, Zhang B, Wang Q, Hou Y, Jin Q, Xu J, Yang H, Liu T, Wang X, Song F, Luan Y, Yamashita H, Chien R, Lyu H, Zhang L, Wang L, Warrick J, Raman JD, Meeks JJ, DeGraff DJ, Yue F. Subtype-associated epigenomic landscape and 3D genome structure in bladder cancer. Genome Biol. 2021;22:105.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Hrushesky WJ, Roemeling RV, Wood PA, Langevin TR, Lange P, Fraley E. High-dose intensity, circadian-timed doxorubicin and cisplatin adjuvant chemotherapy for bladder cancer. Cancer Treat Rep. 1987;71:915–9.

    CAS  PubMed  Google Scholar 

  150. Hrushesky WJ, Roemeling RV, Wood PA, Langevin TR, Lange P, Farley E. High-dose intensity systemic therapy of metastatic bladder cancer. J Clin Oncol. 1987;5:450–5.

    CAS  PubMed  Google Scholar 

Download references

Funding

This manuscript was funded by the Science and Technology Foundation Project of Guizhou Provincial Health Commission (gzwkj2024-150), the National Nature Science Foundation of China (No. 82060276 and 82360295), the Science and Technology Department of Guizhou Province (QianKeHeJiChu-ZK[2021]YiBan382), the Sichuan Province Science and Technology Innovation Seedling Project (2021039), and the Doctor Start-up Fund of Affiliated Hospital of Guizhou Medical University (gyfybsky-2023-03).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. TL, YJ, and YB wrote the first draft of the manuscript; KJ, GD, and PC edited the English language; CL and LL searched and reviewed the referenced papers; JQ and JS reviewed and edited the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Jun Qiao or Jun Shen.

Ethics declarations

Conflict of interest

Ethical approval is not applicable for this review, the authors have no relevant financial or nonfinancial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Jiang, Y., Bai, Y. et al. A review for the impacts of circadian disturbance on urological cancers. Sleep Biol. Rhythms 22, 163–180 (2024). https://doi.org/10.1007/s41105-023-00500-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41105-023-00500-1

Keywords

Navigation