Skip to main content

Advertisement

Log in

Application of a combined physical and data-based model for improved numerical simulation of a medium-duty diesel engine

  • Original Paper
  • Published:
Automotive and Engine Technology Aims and scope Submit manuscript

Abstract

The one-dimensional computational fluid dynamics (1D-CFD) simulation is an important development tool for improving the matching process of the exhaust gas turbocharger with a combustion engine. To meet future emission requirements of commercial vehicles, an increasing focus on transient operation conditions is given. For example, a faster boost pressure build-up allows higher exhaust gas recirculation rates during load steps—improving transient nitrogen oxides (\(\hbox {NO}_x\)) emissions. According to this, the matching process of the turbocharger focuses increasingly on the transient operation conditions of combustion engines. To increase the quality of the dynamic engine process simulation, the simulation model should be optimized with regard to the quality of the engine’s high-pressure process including emissions as well as the turbocharger modeling methodology. This paper focuses on the application of an approach that combines a data-based combustion model for the \(\hbox {NO}_x\) and soot values and the high-pressure part of the working process with a physical description of the gas exchange. To generate the data for the combustion model, an extensive measurement campaign of all relevant parameters was carried out on a medium-duty diesel single-cylinder research engine. The developed model was integrated into a multi-cylinder engine (MCE) simulation environment and validated on the basis of corresponding MCE measurements. The sensitivities of the model were examined for the input parameters. The data-based combustion model demonstrates a high accuracy in emissions and high-pressure working process modeling both in the wide range of the engine map and under transient operating conditions as well as for different engine calibration strategies. As a result, a good baseline for the improved transient combustion simulation is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\({\text {1D}}\)\(\mathbf{CFD }\) :

One-dimensional computational fluid dynamics

\({\text {BMEP}}\) :

Brake mean effective pressure

\({\text {CAD a. TDCf}}\) :

Crank angle degree after top dead center firing

\({\text {CAC}}\) :

Charge air cooler

\({\text {CARB}}\) :

California Air Resources Board

\({\text {CO}_{\mathbf{2}}}\) :

Carbon dioxide

\({\text {CRP}}\) :

Common rail pressure

\({\text {DoE}}\) :

Design of experiments

\({\text {EGR}}\) :

Exhaust gas recirculation

\({\text {EGT}}\) :

Exhaust gas aftertreatment

\({\text {EPA}}\) :

Environment Protection Agency

\({\text {EU}}\) :

European Union

\({\text {ESC}}\) :

European Stationary Cycle

\({\text {EVO}}\) :

Exhaust valve opening

\({\text {GHG}}\) :

Greenhouse gas

\({\text {GPM}}\) :

Gaussian process modeling

\({\text {GPR}}\) :

Gaussian process regression

\({\text {HGS}}\) :

Hot gas test stand

\({\text {IMEP}}\) :

Indicated mean effective pressure

\({\text {IMEP}_{\mathbf{HD,Shelby}}}\) :

Indicated mean effective pressure Shelby definition

\({\text {IVC}}\) :

Intake valve closing

\({\text {MCE}}\) :

Multi-cylinder engine

\({\text {MI}}\) :

Main injection

\({\text {NO}_\mathbf{x}}\) :

Nitrogen oxides

\({\text {OP}}\) :

Operation point

\({\text {R}^{\mathbf{2}}}\) :

Coefficient of determination

\({\text {SCE}}\) :

Single-cylinder engine

\({\text {TC}}\) :

Turbocharger

\({\text {TDCf}}\) :

Top dead center firing

\({\text {VGT}}\) :

Variable geometry turbine

\(\alpha\) :

Crank angle

\(\alpha _{5~\%}\) :

Crank angle at start of combustion

\(\alpha _{50~\%}\) :

Crank angle at 50 % heat release

\(\alpha _{90~\%}\) :

Crank angle at end of combustion

\(\alpha _{\text {MFB50}\,\%}\) :

Crank angle at 50 % mass fuel burned

\(\phi _\text {MI}\) :

Start of injection of the main injection

\(\phi _\text {p,Cyl,Max}\) :

Specific crank angle after TDCf at maximum cylinder pressure

\(\lambda\) :

Air–fuel ratio

\(\dot{m}_\text {Air}\) :

Air mass flow

\(\hbox {m}_\text {Inj}\) :

Injection mass

\(\hbox {n}_\text {Eng}\) :

Engine speed

\(\hbox {n}_\text {TC}\) :

Turbocharger speed

\(\hbox {p}_\text {2,a.CAC}\) :

Boost pressure after charge air cooler

\(\hbox {p}_\text {2,IM}\) :

Boost pressure in the intake manifold

\(\hbox {p}_\text {3}\) :

Exhaust back pressure

\(\hbox {p}_\text {Cyl}\) :

Cylinder pressure

\(\hbox {p}_\text {Spline,x}\) :

Combustion characteristic pressure value for high-pressure trace replication algorithm

\(\hbox {T}_\text {2,a.CAC}\) :

Charge air temperature after charge air cooler

\(\hbox {T}_\text {2,IM}\) :

Charge air temperature in the intake manifold

\(\hbox {T}_\text {3}\) :

Exhaust temperature in the exhaust manifold

\(\hbox {T}_\text {3,b.T}\) :

Exhaust temperature before turbine

\(\hbox {T}_\text {4,a.T}\) :

Turbine outlet temperature

\(\hbox {V}_\text {h}\) :

Engine displacement

\(\hbox {X}_\text {EGR}\) :

Exhaust gas recirculation rate

References

  1. Walter, L., Wagner, T., Theissl, H., Flitsch, S., Hasenbichler, G.: Impact of \(\text{CO}_2\) and ultra–low \(\text{ NO}_x\) legislation on commercial vehicle base engine. 4th International Engine Congress (2017)

  2. Pedrozo, V.B., May, I., Lanzanova, T., Guan, W., Zhao, H.: The effective use of ethanol for GHG emissions reduction in a dual–fuel engine. 13th International MTZ Conference on Heavy–Duty Engines (2018), 6–7 November 2018, Cologne

  3. Hennes, C., Lehmann, J., Kožuch, P., Koch, T.: Assessment of factors influencing the wall heat transfer with regard to increasing efficiency and compliance with future \(\text{CO}_2\) limits for commercial vehicles. 6th International Engine Congress, 26–27 February 2019, Baden–Baden (2019)

  4. Christl, W., Naber, D., Barba, C., Kufferath, A. Krüger, M., Schumacher, H.: Facing European real driving emission requirements—ways to low emission of diesel–powered on–highway vehicles. 13th International MTZ Conference on Heavy–Duty Engines, 6–7 November 2018, Cologne (2018)

  5. Höpke, B.: Analyse und Modellierung des thermischen Verhaltens von Pkw–Abgasturboladern; Dissertation; Rheinisch–Westfälische Hochschule Aachen (2017)

  6. Grigoriadis, P., Binder, E., Böttcher, L., Benz, A., Sens, M.: Advanced Turbocharger Model for 1D ICE Simulation—Part 1; SAE Technical Paper 2013–01–0581; 13. https://doi.org/10.4271/2013-01-0581

  7. Lüddecke, B.: Stationäres und instationäres Betriebsverhalten von Abgasturboladern; Dissertation; Universität Stuttgart (2016) https://doi.org/10.1007/9783658127817

  8. Walther, U.: Supplementäre Verfahren zur Bestimmung der thermodynamischen Eigenschaften von Abgasturboladern, Der Verbrennungsmotor - ein Antrieb mit Vergangenheit und Zukunft, 61–82. Springer Vieweg, Wiesbaden (2018)

    Google Scholar 

  9. Serrano, J.R., Olmeda, P., Arnau, F.J., Reyes-Belmonte, M.A., Tartoussi, H.: A study on the internal convection in small turbochargers. Proposal of heat transfer convective coefficients. J. Appl. Thermal Eng. 89, 587–599 (2015). https://doi.org/10.1016/j.applthermaleng.2015.06.053

    Article  Google Scholar 

  10. Uhlmann, A.T.: Vermessung und Modellierung von Abgasturboladern für die Motorprozessrechnung; Dissertation; Rheinisch–Westfälische Hochschule Aachen (2013)

  11. Kaufmann, A.: Using turbocharger maps in gas exchange simulation and engine control units. Forschung Ingenieurwesen 78, 45–57 (2014). https://doi.org/10.1007/s10010-014-0171-0

    Article  Google Scholar 

  12. Schinnerl, M., Ehrhard, J., Bogner, M., Seume, J.: Correcting turbocharger performance measurements for heat and friction. J. Eng. Gas Turb. Power 140, 9 (2018). https://doi.org/10.1115/1.4037586

    Article  Google Scholar 

  13. Lüddecke, B., Filsinger, D., Ehrhard, J., Bargende, M.: Heat transfer correction and torque measurement for wide range performance measurement of exhaust gas turbocharger turbines. 17th Supercharging Conference, 13–14 September 2012, Dresden (2012)

  14. Romagnoli, A., Martinez-Botas, R.: Heat transfer analysis in a turbocharger turbine: an experimental and computational evaluation. J. Appl. Thermal Eng. 38, 58–77 (2012). https://doi.org/10.1016/j.applthermaleng.2011.12.022

    Article  Google Scholar 

  15. Burke, R.D.: Analysis and modeling of the transient thermal behavior of automotive turbochargers. J. Eng. Gas Turb. Power 136, 10 (2014)

    Article  Google Scholar 

  16. Galindo, J., Luján, J.M., Serrano, J.R., Dolz, V., Guilain, S.: Description of a heat transfer model suitable to calculate transient processes of turbocharged diesel engines with one-dimensional gas-dynamic codes. J. Appl. Thermal Eng. 26, 66–76 (2006). https://doi.org/10.1016/j.applthermaleng.2005.04.010

    Article  Google Scholar 

  17. Cornetti, G., Huber, T., Kruse, T.: Simulation of diesel engine emissions by coupling 1–D with data based models. 14th International Stuttgarter Symposium, 18–19 March 2014, Stuttgart (2014)

  18. Bloch, P., Cornetti, G., Naber, D., Keskin, T.M., Grill, M., Bargende, M.: A combined appraoch of physical and data–based modeling to simulate the combustion engine. 13th International AVL Symposium on Propulsion Diagnostics, 26–27 June 2018, Baden–Baden (2018)

  19. Auerbach, C.: Zylinderdruckbasierte Mehrgrößenregelung des Dieselmotors mit teilhomogener Verbrennung; Universität Stuttgart (2017). https://doi.org/10.1007/978-3-658-17245-9

  20. Shelby, M.H., Stein, R.A., Warren, C.C.: A New Analysis Method for Accurate Accounting of IC Engine Pumping Work and Indicated Work. SAE World Congress, 8–11 March, 2004, Detroit (2004)

  21. Grill, M., Hann, S., Fasse, S., Keskin, T.M., Bargende, M.: Concept studies 2025+: Challenging Tasks in 0D/1D Engine Simulation. 11th MTZ–Fachtagung Ladungswechsel und Emissionierung, 23–24 October 2018, Stuttgart (2018)

  22. Gauthier, Y.: Einspritzdruck bei modernen Pkw–Dieselmotoren; Dissertation; Helmut–Schmidt–Universität / Universität der Bundeswehr Hamburg, 2009, ISBN 978-3-8348-0936-0

  23. Eifler, G.: Schadstoffminderung durch Abgasrückführung am kleinen, schnelllaufenden Dieselmotor mit direkter Kraftstoffeinspritzung; Dissertation; Rheinisch–Westfälische Hochschule Aachen (1990)

  24. Pittermann, R., Hinz, M., Kauert, L.: Einfluss von Abgasrückführung und Kraftstoff-Wasser-Emulsion auf Verbrennungsablauf und Schadstoffbildung im Dieselmotor. Motortechnische Zeitschrift (MTZ) 60, 812–818 (1999)

    Article  Google Scholar 

  25. Fischer, S.: Bewertung relevanter Einflussgrößen beim Pkw–Dieselmotor auf die Emissionsreduktion durch Höchstdruckeinspritzung; Dissertation; Universität Rostock (2011)

  26. Alriksson, M., Rente, T., Denbratt, I.: Low Soot, low \(\text{NO}_x\) in a Heavy–Duty Diesel Engine Using High levels of EGR; SAE Technical Paper 2005-01-3836; 15. https://doi.org/10.4271/2005-01-3836

  27. Kožuch, P.: Ein phänomenologisches Modell zur kombinierten Stickoxid- und Rußberechnung bei direkteinspritzenden Dieselmotoren; Dissertation; Universität Stuttgart (2004)

  28. Rollbusch, C.: Einfluss von Höchstdruckeinspritzung und Düsendurchfluss auf das Emissionsverhalten eines kleinen Nutzfahrzeug–Dieselmotors; Universität Rostock (2015)

  29. Schifferdercker, R.: Potential strömungsoptimierter Einspritzdüsen bei NKW–Motoren; Dissertation; Otto–von–Guericke-Universität Magdeburg (2011)

  30. Fenner, M.: Erarbeitung der Anforderungen an das Einspritzsystem für dieselmotorische Off-Highway-Anwendungen gespiegelt an den Abgasemissionsvorschriften; Dissertation, Universität Rostock (2018)

  31. Klar, H., Klages, B., Gundel, D., Huber, T., Kruse, T., Ulmer, H.: Neue Verfahren zur effizienten modellbasierten Motorapplikation. 4th International Symposium on Development Methodology, 22–23 October 2013, Mainz (2013)

  32. Vogt, M.: Aufladesysteme für Ottomotoren im Vergleich; Dissertation; Technische Universität Berlin (2009)

  33. Herbst, F.: Ein Beitrag zur Optimierung des Betriebsverhaltens abgasturboaufgeladener Ottomotoren; Dissertation; Technische Universität Carolo–Wilhelmina zu Braunschweig (2017). ISBN 978-3-8440-5369-2

  34. Nakamura, S., Imaoka, K., Sugahara, K., Harada, T., Akagawa, H.: Optimization of a Dual–Intake / Exhaust / EGR System with the Exhaust–pulse Ejector for a Heavy–duty Turbocharged Diesel Engine, SAE Technical Paper 2007–01–1914, 10. https://doi.org/10.4271/2007-01-1914

  35. Merker, G., Teichmann, R.: Grundlagen Verbrennungsmotoren. Springer Vieweg Verlag, Wiesbaden (2009)

    Book  Google Scholar 

  36. Lumpp, B.C.: Echtzeitfähige Stickoxidmodellierung zur Integration im Steuergerät eines Nutzfahrzeug–Dieselmotors; Dissertation, Techniche Universität München (2011)

  37. Reuter, S.: Erweiterung des Turbinenkennfeldes von Pkw–Abgasturboladern durch Impulsbeaufschlagung; Dissertation; Technische Universität Dresden (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Lang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, M., Bloch, P., Koch, T. et al. Application of a combined physical and data-based model for improved numerical simulation of a medium-duty diesel engine. Automot. Engine Technol. 5, 1–20 (2020). https://doi.org/10.1007/s41104-019-00054-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41104-019-00054-w

Keywords

Navigation