Skip to main content
Log in

Efficient Photocatalytic Decomposition of Acid Blue 25 Dye using Facilely Synthesized Magnesium Aluminate Nanoparticles

  • Research
  • Published:
Water Conservation Science and Engineering Aims and scope Submit manuscript

Abstract

The release of acid blue 25 dye from factories into water sources has been linked to various health issues, including cancer, skin irritation, redness, and allergic reactions. Also, the photocatalytic degradation process plays a vital role in addressing the global challenge of pollution by offering an environmentally friendly, versatile, and efficient method for removing contaminants from water. Therefore, this study focused on the low-cost and facile fabrication of MgAl2O4 nanoparticles by the Pechini sol–gel procedure. Subsequently, these nanoparticles were utilized for effective photocatalytic breakdown of acid blue 25 dye. Using tartaric acid in the Pechini sol–gel synthesis of MgAl2O4 nanoparticles introduces novel and significant aspects. Tartaric acid chelates with metal ions like magnesium and aluminum, ensuring a homogeneous ion distribution, enhanced precursor stability, reduced particle aggregation, and smaller crystal size in the final product. In addition, the fabricated MgAl2O4 nanoparticles were thoroughly characterized using different techniques, including Fourier-transform infrared spectroscopy (FT-IR), ultraviolet–visible spectrophotometry (UV–Vis), high-resolution transmission electron microscopy (HR-TEM), field emission scanning electron microscopy (FE-SEM), and X-ray powder diffraction (XRD). In addition, the XRD revealed that the mean crystal size of the fabricated MgAl2O4 nanoparticles was 14.25 nm, while their optical energy gap was 3.76 eV. FE-SEM analysis revealed a mixture of spherical and irregular forms with an average grain size of 0.34 µm. HR-TEM analysis revealed that the fabricated MgAl2O4 nanoparticles consisted of tiny spherical particles with an average diameter of 12.78 nm. The maximum photocatalytic breakdown of 50 mL of 100 mg/L acid blue 25 dye, reaching 99.86%, was achieved within 35 min at pH 3. Additionally, the results demonstrated consistent breakdown efficiency of the acid blue 25 dye even after four cycles, validating the efficacy and reusability of the developed MgAl2O4 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 4
Fig. 11

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Ahmadian M, Jaymand M (2023) Interpenetrating polymer network hydrogels for removal of synthetic dyes: a comprehensive review. Coord Chem Rev 486:215152. https://doi.org/10.1016/j.ccr.2023.215152

    Article  CAS  Google Scholar 

  2. Kausar A, Zohra ST, Ijaz S et al (2023) Cellulose-based materials and their adsorptive removal efficiency for dyes: a review. Int J Biol Macromol 224:1337–1355. https://doi.org/10.1016/j.ijbiomac.2022.10.220

    Article  CAS  Google Scholar 

  3. Akrami M, Danesh S, Eftekhari M (2019) Comparative study on the removal of cationic dyes using different graphene oxide forms. J Inorg Organomet Polym Mater 29:1785–1797. https://doi.org/10.1007/s10904-019-01140-0

    Article  CAS  Google Scholar 

  4. Ghiasi E, Malekzadeh A (2020) Removal of various textile dyes using LaMn(Fe)O3 and LaFeMn0.5O3 nanoperovskites; RSM optimization, isotherms and kinetics studies. J Inorg Organomet Polym Mater 30:2789–2804. https://doi.org/10.1007/s10904-019-01438-z

    Article  CAS  Google Scholar 

  5. Sankar Sana S, Haldhar R, Parameswaranpillai J et al (2022) Silver nanoparticles-based composite for dye removal: a comprehensive review. Clean Mater 6:100161. https://doi.org/10.1016/j.clema.2022.100161

    Article  CAS  Google Scholar 

  6. Aramesh N, Bagheri AR, Bilal M (2021) Chitosan-based hybrid materials for adsorptive removal of dyes and underlying interaction mechanisms. Int J Biol Macromol 183:399–422. https://doi.org/10.1016/j.ijbiomac.2021.04.158

    Article  CAS  Google Scholar 

  7. Teo SH, Ng CH, Islam A et al (2022) Sustainable toxic dyes removal with advanced materials for clean water production: a comprehensive review. J Clean Prod 332. https://doi.org/10.1016/j.jclepro.2021.130039

  8. Al-Wasidi AS, Abouelreash YG, AlReshaidan S, Naglah AM (2022) Application of novel modified chitosan hydrogel composite for the efficient removal of eriochrome black T and methylene blue dyes from aqueous media. J Inorg Organomet Polym Mater 32:1142–1158. https://doi.org/10.1007/s10904-021-02168-x

    Article  CAS  Google Scholar 

  9. Verma R, Chauhan MS, Pandey S, Dandia A (2023) Reduced graphene Oxide/NiO based nano-composites for the efficient removal of alizarin dye, indigo dye and reduction of nitro aromatic compounds. Heliyon 9:e17162. https://doi.org/10.1016/j.heliyon.2023.e17162

    Article  CAS  Google Scholar 

  10. Naderahmadian A, Eftekhari-sis B, Jafari H, Zirak M (2023) International journal of biological macromolecules cellulose nanofibers decorated with SiO 2 nanoparticles: green adsorbents for removal of cationic and anionic dyes; kinetics, isotherms, and thermodynamic studies. Int J Biol Macromol 247:125753. https://doi.org/10.1016/j.ijbiomac.2023.125753

    Article  CAS  Google Scholar 

  11. Wu S, Shi W, Li K et al (2023) Chitosan-based hollow nanofiber membranes with polyvinylpyrrolidone and polyvinyl alcohol for efficient removal and filtration of organic dyes and heavy metals. Int J Biol Macromol 239:124264. https://doi.org/10.1016/j.ijbiomac.2023.124264

    Article  CAS  Google Scholar 

  12. Duan Y, Zhao J, Qiu X et al (2022) Coagulation performance and floc properties for synchronous removal of reactive dye and polyethylene terephthalate microplastics. Process Saf Environ Prot 165:66–76. https://doi.org/10.1016/j.psep.2022.07.010

    Article  CAS  Google Scholar 

  13. Ihaddaden S, Aberkane D, Boukerroui A, Robert D (2022) Removal of methylene blue (basic dye) by coagulation-flocculation with biomaterials (bentonite and Opuntia ficus indica). J Water Process Eng 49:102952. https://doi.org/10.1016/j.jwpe.2022.102952

    Article  Google Scholar 

  14. Nataraj SK, Hosamani KM, Aminabhavi TM (2009) Nanofiltration and reverse osmosis thin film composite membrane module for the removal of dye and salts from the simulated mixtures. Desalination 249:12–17. https://doi.org/10.1016/j.desal.2009.06.008

    Article  CAS  Google Scholar 

  15. Abdelrahman EA, Hegazey RM (2019) Facile synthesis of HgO nanoparticles using hydrothermal method for efficient photocatalytic degradation of crystal violet dye under UV and sunlight irradiation. J Inorg Organomet Polym Mater 29. https://doi.org/10.1007/s10904-018-1005-6

  16. Al-Kadhi NS, Saad FA, Shah RK et al (2023) Photocatalytic decomposition of indigo carmine and methylene blue dyes using facilely synthesized lithium borate/copper oxide nanocomposite. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-023-02727-4

    Article  Google Scholar 

  17. Abdelrahman EA, Al-Farraj ES (2022) Facile synthesis and characterizations of mixed metal oxide nanoparticles for the efficient photocatalytic degradation of rhodamine B and congo red dyes. Nanomaterials 12:3992. https://doi.org/10.3390/nano12223992

    Article  CAS  Google Scholar 

  18. Abdelrahman EA, Hegazey RM, Ismail SH et al (2022) Facile synthesis and characterization of β-cobalt hydroxide/hydrohausmannite/ramsdellitee/spertiniite and tenorite/cobalt manganese oxide/manganese oxide as novel nanocomposites for efficient photocatalytic degradation of methylene blue dye. Arab J Chem 15:104372. https://doi.org/10.1016/j.arabjc.2022.104372

    Article  CAS  Google Scholar 

  19. Gurunathan K, Baeg JO, Lee SM et al (2008) Visible light active pristine and Fe3 + doped CuGa2 O4 spinel photocatalysts for solar hydrogen production. Int J Hydrogen Energy 33:2646–2652. https://doi.org/10.1016/j.ijhydene.2008.03.018

    Article  CAS  Google Scholar 

  20. Boppana VBR, Doren DJ, Lobo RF (2010) A spinel oxynitride with visible-light photocatalytic activity. Chemsuschem 3:814–817. https://doi.org/10.1002/cssc.201000036

    Article  CAS  Google Scholar 

  21. Lv W, Liu B, Qiu Q et al (2009) Synthesis, characterization and photocatalytic properties of spinel CuAl2O4 nanoparticles by a sonochemical method. J Alloys Compd 479:480–483. https://doi.org/10.1016/j.jallcom.2008.12.111

    Article  CAS  Google Scholar 

  22. Cao SW, Zhu YJ, Cheng GF, Huang YH (2009) ZnFe2O4 nanoparticles: microwave-hydrothermal ionic liquid synthesis and photocatalytic property over phenol. J Hazard Mater 171:431–435. https://doi.org/10.1016/j.jhazmat.2009.06.019

    Article  CAS  Google Scholar 

  23. Wang D, Zou Z, Ye J (2003) A new spinel-type photocatalyst BaCr2O4 for H2 evolution under UV and visible light irradiation. Chem Phys Lett 373:191–196. https://doi.org/10.1016/S0009-2614(03)00574-8

    Article  CAS  Google Scholar 

  24. Zhu Z, Li X, Zhao Q et al (2010) Porous “ brick-like” NiFe2O4 nanocrystals loaded with Ag species towards effective degradation of toluene. Chem Eng J 165:64–70. https://doi.org/10.1016/j.cej.2010.08.060

    Article  CAS  Google Scholar 

  25. Tang J, Zou Z, Ye J (2004) Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. Angew Chemie - Int Ed 43:4463–4466. https://doi.org/10.1002/anie.200353594

    Article  CAS  Google Scholar 

  26. Yanyan J, Jinggang L, Xiaotao S et al (2007) CuAl2O4 powder synthesis by sol-gel method and its photodegradation property under visible light irradiation. J Sol-Gel Sci Technol 42:41–45. https://doi.org/10.1007/s10971-006-1525-3

    Article  CAS  Google Scholar 

  27. Al AS, Faisal W, Fawaz KA, Ehab AS (2023) Remarkable high adsorption of methylene blue dye from aqueous solutions using facilely synthesized ­ MgFe 2 O 4 nanoparticles. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-023-02652-6

    Article  Google Scholar 

  28. Fan Y, Lu X, Ni Y et al (2011) Catalytic destruction of chlorinated aromatic pollutants over mesoporous CuxMg1-xAl2O4 spinel oxides. Appl Catal B Environ 101:606–612. https://doi.org/10.1016/j.apcatb.2010.11.001

    Article  CAS  Google Scholar 

  29. Mathew DS, Juang RS (2007) An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem Eng J 129:51–65. https://doi.org/10.1016/j.cej.2006.11.001

    Article  CAS  Google Scholar 

  30. Singh Yadav R, Kuřitka I, Vilcakova J et al (2020) Impact of sonochemical synthesis condition on the structural and physical properties of MnFe2O4 spinel ferrite nanoparticles. Ultrason Sonochem 61. https://doi.org/10.1016/j.ultsonch.2019.104839

  31. Nassar MY, Ahmed IS, Samir I (2014) A novel synthetic route for magnesium aluminate (MgAl2O 4) nanoparticles using sol-gel auto combustion method and their photocatalytic properties. Spectrochim Acta - Part A Mol Biomol Spectrosc 131:329–334. https://doi.org/10.1016/j.saa.2014.04.040

    Article  CAS  Google Scholar 

  32. Al-Wasidi AS, Saad FA, Munshi AM, Abdelrahman EA (2023) Facile synthesis and characterization of magnesium and manganese mixed oxides for the efficient removal of tartrazine dye from aqueous media. RSC Adv 13:5656–5666. https://doi.org/10.1039/d3ra00143a

    Article  CAS  Google Scholar 

  33. Antropova IG, Budaeva AD, Khomoksonova DP et al (2022) A new method of obtaining potassium magnesium sulfate and magnesium aluminate spinel from synnyrite, a potassium-rich aluminosilicate raw material. Miner Eng 187:107779. https://doi.org/10.1016/j.mineng.2022.107779

    Article  CAS  Google Scholar 

  34. Mukherjee S (2022) Development of spinel magnesium aluminate by modified solid state process and its characterization. Mater Today Proc 67:314–319. https://doi.org/10.1016/j.matpr.2022.07.113

    Article  CAS  Google Scholar 

  35. Habibi N, Wang Y, Arandiyan H, Rezaei M (2017) Low-temperature synthesis of mesoporous nanocrystalline magnesium aluminate (MgAl2O4) spinel with high surface area using a novel modified sol-gel method. Adv Powder Technol 28:1249–1257. https://doi.org/10.1016/j.apt.2017.02.012

    Article  CAS  Google Scholar 

  36. Gomes SA, Ramaswamy P (2022) Plasma sprayed magnesium aluminate and alumina composite coatings from waste aluminum dross. Mater Today Proc 66:2568–2574. https://doi.org/10.1016/j.matpr.2022.07.108

    Article  CAS  Google Scholar 

  37. Basiri A, Nassajpour-Esfahani AH, Haftbaradaran-Esfahani MR et al (2022) Optimization of spray freeze drying parameters for spark plasma sintering of transparent MgAl2O4 spinel. Ceram Int 48:10751–10761. https://doi.org/10.1016/j.ceramint.2021.12.291

    Article  CAS  Google Scholar 

  38. Mosayebi Z, Rezaei M, Hadian N et al (2012) Low temperature synthesis of nanocrystalline magnesium aluminate with high surface area by surfactant assisted precipitation method: effect of preparation conditions. Mater Res Bull 47:2154–2160. https://doi.org/10.1016/j.materresbull.2012.06.010

    Article  CAS  Google Scholar 

  39. Ghanei M, Rashidi A, Tayebi HA et al (2020) Adsorption of acid blue 25 dye by CPAA coated on SBA-15 in aqueous solution: a density functional theory study. Synth Met 269:116568. https://doi.org/10.1016/j.synthmet.2020.116568

    Article  CAS  Google Scholar 

  40. Saheed IO, Da OhW, Suah FBM (2021) Enhanced adsorption of acid Blue-25 dye onto chitosan/porous carbon composite modified in 1-allyl-3-methyl imidazolium bromide ionic liquid. Int J Biol Macromol 183:1026–1033. https://doi.org/10.1016/j.ijbiomac.2021.05.042

    Article  CAS  Google Scholar 

  41. Bouzaida I, Ferronato C, Chovelon JM et al (2004) Heterogeneous photocatalytic degradation of the anthraquinonic dye, acid blue 25 (AB25): a kinetic approach. J Photochem Photobiol A Chem 168:23–30. https://doi.org/10.1016/j.jphotochem.2004.05.008

    Article  CAS  Google Scholar 

  42. Kausor M Al, Chakrabortty D (2020) Optimization of system parameters and kinetic study of photocatalytic degradation of toxic acid blue 25 dye by Ag3PO4@RGO nanocomposite. J Nanoparticle Res 22. https://doi.org/10.1007/s11051-020-04829-3

  43. Sen GS, Chakrabortty D (2017) Photocatalytic decolourisation of a toxic dye, acid blue 25, with graphene based N-doped titania. Indian J Chem - Sect A Inorganic Phys Theor Anal Chem 56A:1293–1301

    Google Scholar 

  44. Al-Wasidi AS, Khairy M, Abdulkhair BY, Abdelrahman EA (2023) Efficient disposal of basic fuchsin dye from aqueous media using ZrO2/MgMn2O4/Mg(Mg0.333Mn1.333)O4 as a novel and facilely synthesized nanocomposite. Inorganics 11:363. https://doi.org/10.3390/inorganics11090363

    Article  CAS  Google Scholar 

  45. Sanjabi S, Obeydavi A (2015) Synthesis and characterization of nanocrystalline MgAl2O4 spinel via modified sol-gel method. J Alloys Compd 645:535–540. https://doi.org/10.1016/j.jallcom.2015.05.107

    Article  CAS  Google Scholar 

  46. Algethami FK, Al AS, Eida W et al (2023) Discover nano facile synthesis and characterization of ­ Fe 3 O 4 / analcime nanocomposite for the efficient removal of Cu ( II ) and Cd ( II ) ions from aqueous media. Discov Nano. https://doi.org/10.1186/s11671-023-03848-y

    Article  Google Scholar 

  47. Al-Wasidi AS, Katouah HA, Saad FA, Abdelrahman EA (2023) Functionalization of silica nanoparticles by 5-Chloro-8-quinolinol as a new nanocomposite for the efficient removal and preconcentration of Al3+ ions from water samples. ACS Omega. https://doi.org/10.1021/acsomega.3c00413

    Article  Google Scholar 

  48. Al-Wasidi AS, Basha MT, Alghanmi RM et al (2023) Functionalization of sodium magnesium silicate hydroxide/sodium magnesium silicate hydrate nanostructures using 2,3-dihydroxybenzaldehyde as a novel nanocomposite for the efficient removal of Cd(II) and Cu(II) ions from aqueous media. Separations 10. https://doi.org/10.3390/separations10020088

  49. Al-Wasidi AS, Basha MT, Alghanmi RM et al (2023) Facile synthesis and characterization of sodium magnesium silicate hydrate/sodium magnesium silicate hydroxide as novel nanostructures for the efficient removal of methylene blue dye from aqueous media. J Inorg Organomet Polym Mater 33:1005–1015. https://doi.org/10.1007/s10904-023-02554-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research through the project number IFP-IMSIU-2023057. The authors also appreciate the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) for supporting and supervising this project.

Funding

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research through the project number IFP-IMSIU-2023057. The authors also appreciate the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) for supporting and supervising this project.

Author information

Authors and Affiliations

Authors

Contributions

Eida S. Al-Farraj (Idea, Research writing), Mohamed Khairy (Experimental), Ehab A. Abdelrahman (Idea, Experimental work- Research writing, Review), Reem K. Shah (Revision), Fawaz A. Saad (Revision).

Corresponding authors

Correspondence to Eida S. Al-Farraj or Ehab A. Abdelrahman.

Ethics declarations

Ethics Approval

Authors approve that the submitted work is original and has not been published elsewhere in any form or language (partially or in full).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Farraj, E.S., Khairy, M., Saad, F.A. et al. Efficient Photocatalytic Decomposition of Acid Blue 25 Dye using Facilely Synthesized Magnesium Aluminate Nanoparticles. Water Conserv Sci Eng 9, 3 (2024). https://doi.org/10.1007/s41101-023-00235-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41101-023-00235-7

Keywords

Navigation