Skip to main content
Log in

Adsorptive Removal of Crystal Violet from Water by Chemically Modified Coconut Shell

  • Original Paper
  • Published:
Water Conservation Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, samples of pristine and chemically modified coconut shells are used as adsorbents for the removal of crystal violet from an aqueous solution. The modification based on NaOH treatment of coconut shell fibers was evaluated by scanning electron microscopy and Fourier transform infrared spectroscopy. The dye uptake efficiency was evaluated by determining the variation in dye concentration, pH, adsorbent mass, and reaction time. The equilibrium condition of the overall process was analyzed by standard methods (Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin isotherms), while kinetics were evaluated using the pseudo-first-order/pseudo-second-order, Elovich, and intra-particle diffusion models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jo WK, Tayade RJ (2014) New generation energy-efficient light source for photocatalysis: LEDs for environmental applications. Ind Eng Chem Res 53:2073–2084. https://doi.org/10.1021/ie404176g

    Article  CAS  Google Scholar 

  2. Nguyen AT, Juang RS (2015) Photocatalytic degradation of p-chlorophenol by hybrid H2O2 and TiO2 in aqueous suspensions under UV irradiation. J Environ Manag 147:271–277. https://doi.org/10.1016/j.jenvman.2014.08.023

    Article  CAS  Google Scholar 

  3. Reddy PVL, Kim KH (2015) A review of photochemical approaches for the treatment of a wide range of pesticides. J Hazard Mater 285:325–335. https://doi.org/10.1016/j.jhazmat.2014.11.036

    Article  CAS  Google Scholar 

  4. Shinde SS, Bhosale CH, Rajpure KY (2014) Photodegradation of organic pollutants using N-titanium oxide catalyst. J Photochem Photobiol B Biol 141:186–191. https://doi.org/10.1016/j.jphotobiol.2014.09.017

    Article  CAS  Google Scholar 

  5. Verma SP, Sarkar B (2020) Analysis of flux decline during rhamnolipid based micellar-enhanced ultrafiltration for simultaneous removal of cd+2 and crystal violet from aqueous solution. J Water Process Eng 33:101048. https://doi.org/10.1016/j.jwpe.2019.101048

    Article  Google Scholar 

  6. Ayadi I, Souissi Y (2015) Chemical synonyms, molecular structure and toxicological risk assessment of synthetic textile dyes: a critical review. J Dev Drugs 05. https://doi.org/10.4172/2329-6631.1000151

  7. Bentahar S, Dbik A, El Khomri M et al (2017) Adsorption of methylene blue, crystal violet and Congo red from binary and ternary systems with natural clay: kinetic, isotherm, and thermodynamic. J Environ Chem Eng 5:5921–5932. https://doi.org/10.1016/j.jece.2017.11.003

    Article  CAS  Google Scholar 

  8. Mbacké MK, Kane C, Diallo NO, Diop CM, Chauvet F, Comtat M, Tzedakis T (2016) Electrocoagulation process applied on pollutants treatment- experimental optimization and fundamental investigation of the crystal violet dye removal. J Environ Chem Eng 4:4001–4011. https://doi.org/10.1016/j.jece.2016.09.002

    Article  CAS  Google Scholar 

  9. Aggarwal R, Saini D, Singh B, Kaushik J, Garg AK, Sonkar SK (2020) Bitter apple peel derived photoactive carbon dots for the sunlight induced photocatalytic degradation of crystal violet dye. Sol Energy 197:326–331. https://doi.org/10.1016/j.solener.2020.01.010

    Article  CAS  Google Scholar 

  10. Wu J, Gao H, Yao S, Chen L, Gao Y, Zhang H (2015) Degradation of crystal violet by catalytic ozonation using Fe/activated carbon catalyst. Sep Purif Technol 147:179–185. https://doi.org/10.1016/j.seppur.2015.04.022

    Article  CAS  Google Scholar 

  11. Yin J, Cai J, Yin C, Gao L, Zhou J (2016) Degradation performance of crystal violet over CuO@AC and CeO2-CuO@AC catalysts using microwave catalytic oxidation degradation method. J Environ Chem Eng 4:958–964. https://doi.org/10.1016/j.jece.2016.01.001

    Article  CAS  Google Scholar 

  12. Shoukat S, Bhatti HN, Iqbal M, Noreen S (2017) Mango stone biocomposite preparation and application for crystal violet adsorption: a mechanistic study. Microporous Mesoporous Mater 239:180–189. https://doi.org/10.1016/j.micromeso.2016.10.004

    Article  CAS  Google Scholar 

  13. Sharma G, Sharma S, Kumar A, Naushad M, du B, Ahamad T, Ghfar AA, Alqadami AA, J.Stadler F (2019) Honeycomb structured activated carbon synthesized from Pinus roxburghii cone as effective bioadsorbent for toxic malachite green dye. J Water Process Eng 32:100931. https://doi.org/10.1016/j.jwpe.2019.100931

    Article  Google Scholar 

  14. Sharma G, Kumar A, Devi K, Sharma S, Naushad M, Ghfar AA, Ahamad T, Stadler FJ (2018) Guar gum-crosslinked-soya lecithin nanohydrogel sheets as effective adsorbent for the removal of thiophanate methyl fungicide. Int J Biol Macromol 114:295–305. https://doi.org/10.1016/j.ijbiomac.2018.03.093

    Article  CAS  Google Scholar 

  15. Sharma G, Naushad M, Kumar A, Rana S, Sharma S, Bhatnagar A, J. Stadler F, Ghfar AA, Khan MR (2017) Efficient removal of Coomassie brilliant blue R-250 dye using starch/poly(alginic acid-cl-acrylamide) nanohydrogel. Process Saf Environ Prot 109:301–310. https://doi.org/10.1016/j.psep.2017.04.011

    Article  CAS  Google Scholar 

  16. Sharma G, Kumar A, Sharma S, Naushad M, Ghfar AA, al-Muhtaseb A’H, Ahamad T, Sharma N, Stadler FJ (2020) Carboxymethyl cellulose structured nano-adsorbent for removal of methyl violet from aqueous solution: isotherm and kinetic analyses. Cellulose 27:3677–3691. https://doi.org/10.1007/s10570-020-02989-y

    Article  CAS  Google Scholar 

  17. Brígida AIS, Calado VMA, Gonçalves LRB, Coelho MAZ (2010) Effect of chemical treatments on properties of green coconut fiber. Carbohydr Polym 79:832–838. https://doi.org/10.1016/j.carbpol.2009.10.005

    Article  CAS  Google Scholar 

  18. Nunes LA, Silva MLS, Gerber JZ, de Kalid RA (2020) Waste green coconut shells: diagnosis of the disposal and applications for use in other products. J Clean Prod 255:120169. https://doi.org/10.1016/j.jclepro.2020.120169

    Article  Google Scholar 

  19. Filho JLRP, Sader LT, Damianovic MHRZ, Foresti E, Silva EL (2010) Performance evaluation of packing materials in the removal of hydrogen sulphide in gas-phase biofilters: polyurethane foam, sugarcane bagasse, and coconut fibre. Chem Eng J 158:441–450. https://doi.org/10.1016/j.cej.2010.01.014

    Article  CAS  Google Scholar 

  20. Staroń P, Chwastowski J, Banach M (2017) Sorption and desorption studies on silver ions from aqueous solution by coconut fiber. J Clean Prod 149:290–301. https://doi.org/10.1016/j.jclepro.2017.02.116

    Article  CAS  Google Scholar 

  21. Zhou F, Cheng G, Jiang B (2014) Effect of silane treatment on microstructure of sisal fibers. Appl Surf Sci 292:806–812

    Article  CAS  Google Scholar 

  22. Amarasinghe BMWPK (2011) Lead and cadmium removal from aqueous medium using coir pith as adsorbent: batch and fixed bed column studies. J Trop For Environ 1:36–47. https://doi.org/10.31357/jtfe.v1i1.82

    Article  Google Scholar 

  23. Phan NH, Rio S, Faur C, le Coq L, le Cloirec P, Nguyen TH (2006) Production of fibrous activated carbons from natural cellulose (jute, coconut) fibers for water treatment applications. Carbon N Y 44:2569–2577. https://doi.org/10.1016/j.carbon.2006.05.048

    Article  CAS  Google Scholar 

  24. Dany G. Kramer, Brismark G. Rocha, Mirian C. S. Pereira, et al (2014) Determination of the biosorption of cd(II) by coconut Fiber. J Agric Sci Technol B 4:291–298. https://doi.org/10.17265/2161-6264/2014.04b.007

  25. Chwastowski J, Staroń P, Kołoczek H, Banach M (2017) Adsorption of hexavalent chromium from aqueous solutions using Canadian peat and coconut fiber. J Mol Liq 248:981–989. https://doi.org/10.1016/j.molliq.2017.10.152

    Article  CAS  Google Scholar 

  26. Johari K, Saman N, Song ST, Chin CS, Kong H, Mat H (2016) Adsorption enhancement of elemental mercury by various surface modified coconut husk as eco-friendly low-cost adsorbents. Int Biodeterior Biodegrad 109:45–52. https://doi.org/10.1016/j.ibiod.2016.01.004

    Article  CAS  Google Scholar 

  27. Mondal NK, Bhaumik R, Datta JK (2015) Removal of fluoride by aluminum impregnated coconut fiber from synthetic fluoride solution and natural water. Alexandria Eng J 54:1273–1284. https://doi.org/10.1016/j.aej.2015.08.006

    Article  Google Scholar 

  28. de Lima ACA, Nascimento RF, de Sousa FF, Filho JM, Oliveira AC (2012) Modified coconut shell fibers: a green and economical sorbent for the removal of anions from aqueous solutions. Chem Eng J 185–186:274–284. https://doi.org/10.1016/j.cej.2012.01.037

    Article  CAS  Google Scholar 

  29. Monteiro MS, de Farias RF, Chaves JAP, Santana SA, Silva HAS, Bezerra CWB (2017) Wood (Bagassa guianensis Aubl) and green coconut mesocarp (Cocos nucifera) residues as textile dye removers (Remazol red and Remazol brilliant violet). J Environ Manag 204:23–30. https://doi.org/10.1016/j.jenvman.2017.08.033

    Article  CAS  Google Scholar 

  30. Da Silva Correia IK, Santos PF, Santana CS et al (2018) Application of coconut shell, banana peel, spent coffee grounds, eucalyptus bark, piassava (Attalea funifera) and water hyacinth (Eichornia crassipes) in the adsorption of Pb2+ and Ni2+ ions in water. J Environ Chem Eng 6:2319–2334. https://doi.org/10.1016/j.jece.2018.03.033

    Article  CAS  Google Scholar 

  31. Aljeboree AM, Alshirifi AN, Alkaim AF (2017) Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arab J Chem 10:S3381–S3393. https://doi.org/10.1016/j.arabjc.2014.01.020

    Article  CAS  Google Scholar 

  32. Brião GV, Jahn SL, Foletto EL, Dotto GL (2017) Adsorption of crystal violet dye onto a mesoporous ZSM-5 zeolite synthetized using chitin as template. J Colloid Interface Sci 508:313–322. https://doi.org/10.1016/j.jcis.2017.08.070

    Article  CAS  Google Scholar 

  33. Ghazali A, Shirani M, Semnani A, Zare-Shahabadi V, Nekoeinia M (2018) Optimization of crystal violet adsorption onto date palm leaves as a potent biosorbent from aqueous solutions using response surface methodology and ant colony. J Environ Chem Eng 6:3942–3950. https://doi.org/10.1016/j.jece.2018.05.043

    Article  CAS  Google Scholar 

  34. Gholami M, Vardini MT, Mahdavinia GR (2016) Investigation of the effect of magnetic particles on the crystal violet adsorption onto a novel nanocomposite based on κ-carrageenan-g-poly(methacrylic acid). Carbohydr Polym 136:772–781. https://doi.org/10.1016/j.carbpol.2015.09.044

    Article  CAS  Google Scholar 

  35. Dai Y, Sun Q, Wang W, Lu L, Liu M, Li J, Yang S, Sun Y, Zhang K, Xu J, Zheng W, Hu Z, Yang Y, Gao Y, Chen Y, Zhang X, Gao F, Zhang Y (2018) Utilizations of agricultural waste as adsorbent for the removal of contaminants: a review. Chemosphere 211:235–253. https://doi.org/10.1016/j.chemosphere.2018.06.179

    Article  CAS  Google Scholar 

  36. Hamza W, Dammak N, Hadjltaief HB, Eloussaief M, Benzina M (2018) Sono-assisted adsorption of crystal violet dye onto Tunisian smectite clay: characterization, kinetics and adsorption isotherms. Ecotoxicol Environ Saf 163:365–371. https://doi.org/10.1016/j.ecoenv.2018.07.021

    Article  CAS  Google Scholar 

  37. Hamidzadeh S, Torabbeigi M, Shahtaheri SJ (2015) Removal of crystal violet from water by magnetically modified activated carbon and nanomagnetic iron oxide. J Environ Heal Sci Eng 13:1–7. https://doi.org/10.1186/s40201-015-0156-4

    Article  CAS  Google Scholar 

  38. Ren X, Xiao W, Zhang R, Shang Y, Han R (2015) Adsorption of crystal violet from aqueous solution by chemically modified phoenix tree leaves in batch mode. Desalin Water Treat 53:1324–1334. https://doi.org/10.1080/19443994.2013.859105

    Article  CAS  Google Scholar 

  39. Mohanty K, Naidu JT, Meikap BC, Biswas MN (2006) Removal of crystal violet from wastewater by activated carbons prepared from rice husk. Ind Eng Chem Res 45:5165–5171. https://doi.org/10.1021/ie060257r

    Article  CAS  Google Scholar 

  40. Laskar N, Kumar U (2018) Adsorption of crystal violet from wastewater by modified Bambusa tulda. KSCE J Civ Eng 22:2755–2763. https://doi.org/10.1007/s12205-017-0473-5

    Article  Google Scholar 

  41. Aljeboree AM, Alkaim AF (2019) Role of plant wastes as an ecofriendly for pollutants (crystal violet dye) removal from aqueous solutions. Plant Arch 19:902–905

    Google Scholar 

  42. Miyah Y, Lahrichi A, Idrissi M, Boujraf S, Taouda H, Zerrouq F (2017) Assessment of adsorption kinetics for removal potential of crystal violet dye from aqueous solutions using Moroccan pyrophyllite. J Assoc Arab Univ Basic Appl Sci 23:20–28. https://doi.org/10.1016/j.jaubas.2016.06.001

    Article  Google Scholar 

  43. Saad M, Tahir H, Khan J, Hameed U, Saud A (2017) Synthesis of polyaniline nanoparticles and their application for the removal of crystal violet dye by ultrasonicated adsorption process based on response surface methodology. Ultrason Sonochem 34:600–608. https://doi.org/10.1016/j.ultsonch.2016.06.022

    Article  CAS  Google Scholar 

  44. Shakoor S, Nasar A (2018) Adsorptive decontamination of synthetic wastewater containing crystal violet dye by employing Terminalia arjuna sawdust waste. Groundw Sustain Dev 7:30–38. https://doi.org/10.1016/j.gsd.2018.03.004

    Article  Google Scholar 

  45. Sharma G, Kumar A, Naushad M, García-Peñas A, al-Muhtaseb A'H, Ghfar AA, Sharma V, Ahamad T, Stadler FJ (2018) Fabrication and characterization of gum arabic-cl-poly(acrylamide) nanohydrogel for effective adsorption of crystal violet dye. Carbohydr Polym 202:444–453. https://doi.org/10.1016/j.carbpol.2018.09.004

    Article  CAS  Google Scholar 

Download references

Funding

This work was partially supported by the Brazilian agencies FINEP, CAPES, FAPESB,

FACEPE, and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helinando Pequeno de Oliveira.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 622 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pires, I.C.B., Candido, I.C.M. & de Oliveira, H.P. Adsorptive Removal of Crystal Violet from Water by Chemically Modified Coconut Shell. Water Conserv Sci Eng 5, 159–168 (2020). https://doi.org/10.1007/s41101-020-00090-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41101-020-00090-w

Keywords

Navigation