Skip to main content
Log in

Investigating the properties and microstructure of high-performance cement composites with nano-silica, silica fume, and ultra-fine TiO2

  • Practice-oriented Paper
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

Nanomaterials find widespread use in industries, including construction, due to their superior mechanical, thermal, and electrical characteristics. Addressing cement composites’ weaknesses like low tensile strength and brittleness, researchers increasingly use supplementary cementitious materials and nanoparticles. This study investigates the effects of varied proportions of silica fume (SF), nano-silica (nS), and ultra-fine TiO2 (UFTiO2) in both mixed and separate phases on cement composites. SF represents the pozzolanic family, while nS and UFTiO2 stand for nanomaterials. Tests measured compressive, flexural, and impact strengths, abrasion resistance, and electrical resistivity. Scanning electron microscopy examined microstructure-property relationships. SF and nS enhanced the mechanical strength of the composites, with SF proving superior in durability. The addition of UFTiO2 increased the compressive strength slightly for SF samples (4–7%) and more for nS samples (8–14%). SF samples with UFTiO2 showed 16–25% more flexural strength than nS samples with UFTiO2. The addition of UFTiO2 also raised the electrical resistance by 24–30% for nS samples and 14.5–31.5% for SF samples after 14 days. UFTiO2 affected the abrasion resistance significantly, exhibiting diverse roles in nS and SF specimens. The first crack strength and failure strength for the mixtures containing SF were in the range of 33–36 blows and 39–43 blows, respectively. Meanwhile, for the mixtures containing nS, this impact range was reduced to a maximum of 57%. The impact test results followed the two-parameter Weibull distribution well, with an R2 value exceeding 0.891 across concrete mixes. The study demonstrates the potential of nanomaterials to improve the performance of cement composites for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data availability

The data set analyzed during the current study is available and can be provided upon request.

References

  1. Ramakrishna G, Sundararajan T (2005) Impact strength of a few natural fibre reinforced cement mortar slabs: a comparative study. Cem Concr Compos. https://doi.org/10.1016/j.cemconcomp.2004.09.006

    Article  Google Scholar 

  2. Safiuddin M, Abdel-Sayed G, Hearn N (2022) Flexural and impact behaviors of mortar composite including carbon fibers. Materials. https://doi.org/10.3390/ma15051657

    Article  Google Scholar 

  3. Shafigh P, Asadi I, Akhiani AR, Mahyuddin NB, Hashemi M (2020) Thermal properties of cement mortar with different mix proportions. Mater de Constr. https://doi.org/10.3989/mc.2020.09219

    Article  Google Scholar 

  4. Sadrmomtazi A, Noorollahi Z, Tahmouresi B, Saradar A (2019) Effects of hauling time on self-consolidating mortars containing metakaolin and natural zeolite. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2019.06.037

    Article  Google Scholar 

  5. Tajasosi S, Saradar A, Barandoust J, Mohtasham Moein M, Zeinali R, Karakouzian M (2023) Multi-criteria risk analysis of ultra-high performance concrete application in structures. CivilEng 4:1016–35. https://doi.org/10.3390/civileng4030055

    Article  Google Scholar 

  6. Husein I, Sivaraman R, Mohmmad SH, Al-Khafaji FAH, Kadhim SI, Rezakhani Y (2024) Predictive equations for estimation of the slump of concrete using GEP and MARS methods. J Soft Comput Civ Eng 8:1–18. https://doi.org/10.22115/scce.2023.389726.1619

    Article  Google Scholar 

  7. Xuan D, Zhan B, Poon CS. Development of a new generation of eco-friendly concrete blocks by accelerated mineral carbonation. J Clean Prod 2016;133. doi https://doi.org/10.1016/j.jclepro.2016.06.062.

  8. Habert G, Denarié E, Šajna A, Rossi P (2013) Lowering the global warming impact of bridge rehabilitations by using ultra high performance fibre reinforced concretes. Cem Concr Compos. https://doi.org/10.1016/j.cemconcomp.2012.11.008

    Article  Google Scholar 

  9. Mohtasham Moein M, Saradar A, Rahmati K, Ghasemzadeh Mousavinejad SH, Bristow J, Aramali V et al (2023) Predictive models for concrete properties using machine learning and deep learning approaches: a review. J Buil Eng. https://doi.org/10.1016/j.jobe.2022.105444

    Article  Google Scholar 

  10. Tahmouresi B, Nemati P, Asadi MA, Saradar A, Mohtasham MM (2021) Mechanical strength and microstructure of engineered cementitious composites: a new configuration for direct tensile strength, experimental and numerical analysis. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.121361

    Article  Google Scholar 

  11. Mohammad Mohtasham Moein, Soliman A (2022) Predicting the compressive strength of alkali-activated concrete using various data mining methods. In: Canadian society of civil engineering annual conference, Springer Nature Singapore, p 317–26. https://doi.org/10.1007/978-981-19-1004-3_26.

  12. Mansoori A, Mohtasham Moein M, Mohseni E (2020) Effect of micro silica on fiber-reinforced self-compacting composites containing ceramic waste. J Compos Mater. https://doi.org/10.1177/0021998320944570

    Article  Google Scholar 

  13. Pacheco-Torgal F, Jalali S, Labrincha J, John VM (2013) Eco-efficient concrete. Woodhead Publishing Limited, SWaston, pp 85–96. https://doi.org/10.1533/9780857098993

    Book  Google Scholar 

  14. Du X, Li Y, Huangfu B, Si Z, Huang L, Wen L et al (2023) Modification mechanism of combined nanomaterials on high performance concrete and optimization of nanomaterial content. J Build Eng. https://doi.org/10.1016/j.jobe.2022.105648

    Article  Google Scholar 

  15. Kishore K, Pandey A, Wagri NK, Saxena A, Patel J, Al-Fakih A (2023) Technological challenges in nanoparticle-modified geopolymer concrete: a comprehensive review on nanomaterial dispersion, characterization techniques and its mechanical properties. Case Stud Constr Mater. https://doi.org/10.1016/j.cscm.2023.e02265

    Article  Google Scholar 

  16. Irshad MA, Sattar S, Nawaz R, Al-Hussain SA, Rizwan M, Bukhari A et al (2023) Enhancing chromium removal and recovery from industrial wastewater using sustainable and efficient nanomaterial: a review. Ecotoxicol Environ Saf. https://doi.org/10.1016/j.ecoenv.2023.115231

    Article  Google Scholar 

  17. Feynman RP (2002) There’s plenty of room at the bottom: an invitation to enter a new field of physics. Handbook of Nanoscience, Engineering, and Technology. https://doi.org/10.1201/9781420040623-8.

  18. Feynman RP (1960) A plenty of room at the bottom. In: The annual meeting of the American Physical Society at the California Institute of Technology (Caltech), vol 23, pp 22–36. https://calteches.library.caltech.edu/47/2/1960Bottom.pdf

  19. Sharon M (2019) History of nanotechnology: from prehistoric to modern times. Wiley. https://books.google.com/books?id=L5J3swEACAAJ

  20. Zhu W, Bartos PJM, Porro A (2004) Application of nanotechnology in construction Summary of a state-of-the-art report. Mater Struct/Materiaux et Constr. https://doi.org/10.1617/14234

    Article  Google Scholar 

  21. Abhilash PP, Nayak DK, Sangoju B, Kumar R, Kumar V (2021) Effect of nano-silica in concrete; a review. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2021.122347

    Article  Google Scholar 

  22. Mohtasham Moein M, Rahmati K, Saradar A, Moon J, Karakouzian M (2024) A critical review examining the characteristics of modified concretes with different nanomaterials. Materials 17:409. https://doi.org/10.3390/ma17020409

    Article  CAS  Google Scholar 

  23. Bastami M, Baghbadrani M, Aslani F (2014) Performance of nano-Silica modified high strength concrete at elevated temperatures. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2014.06.026

    Article  Google Scholar 

  24. Durgun MY, Atahan HN (2018) Strength, elastic and microstructural properties of SCCs’ with colloidal nano silica addition. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2017.10.041

    Article  Google Scholar 

  25. Younis KH, Mustafa SM (2018) Feasibility of using nanoparticles of SiO2 to improve the performance of recycled aggregate concrete. Adv Mater Sci Eng. https://doi.org/10.1155/2018/1512830

    Article  Google Scholar 

  26. Erdem S, Hanbay S, Güler Z (2018) Micromechanical damage analysis and engineering performance of concrete with colloidal nano-silica and demolished concrete aggregates. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2018.03.197

    Article  Google Scholar 

  27. Quercia G, Brouwers HJH (2010) Application of nano-silica ( nS ) in concrete mixtures. In: 8th Fib PhD symposium in Kgs Lyngby, Denmark.

  28. de Abreu GB, Costa SMM, Gumieri AG, Calixto JMF, França FC, Silva C et al (2017) Mechanical properties and microstructure of high performance concrete containing stabilized nano-silica. Revista Materia. https://doi.org/10.1590/S1517-707620170002.0156

    Article  Google Scholar 

  29. Ambikakumari Sanalkumar KU, Yang EH (2021) Self-cleaning performance of nano-TiO2 modified metakaolin-based geopolymers. Cem Concr Compos. https://doi.org/10.1016/j.cemconcomp.2020.103847

    Article  Google Scholar 

  30. Paul KK, Giri PK (2018) Plasmonic metal and semiconductor nanoparticle decorated TiO2-based photocatalysts for solar light driven photocatalysis. Encycl Interfacial Chem Surface Sci Electrochem. https://doi.org/10.1016/B978-0-12-409547-2.13176-2

    Article  Google Scholar 

  31. Shchelokova EA, Tyukavkina V, Tsyryatyeva A, Kasikov AG (2021) Synthesis and characterization of SiO2-TiO2 nanoparticles and their effect on the strength of self-cleaning cement composites. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2021.122769

    Article  Google Scholar 

  32. Chen J, Kou S, Poon C (2012) Hydration and properties of nano-TiO2 blended cement composites. Cem Concr Compos 34:642–649. https://doi.org/10.1016/j.cemconcomp.2012.02.009

    Article  CAS  Google Scholar 

  33. Bautista-Gutierrez KP, Herrera-May AL, Santamaría-López JM, Honorato-Moreno A, Zamora-Castro SA (2019) Recent progress in nanomaterials for modern concrete infrastructure: advantages and challenges. Materials. https://doi.org/10.3390/ma12213548

    Article  Google Scholar 

  34. Bogue R (2014) Smart materials: a review of capabilities and applications. Assem Autom. https://doi.org/10.1108/AA-10-2013-094

    Article  Google Scholar 

  35. Hanafizadeh P, Eshraghi J, Ahmadi P, Sattari A (2016) Evaluation and sizing of a CCHP system for a commercial and office buildings. J Build Eng. https://doi.org/10.1016/j.jobe.2015.11.003

    Article  Google Scholar 

  36. Singh LP, Ali D, Sharma U (2016) Studies on optimization of silica nanoparticles dosage in cementitious system. Cem Concr Compos. https://doi.org/10.1016/j.cemconcomp.2016.03.006

    Article  Google Scholar 

  37. Meng T, Ying K, Yang X, Hong Y (2021) Comparative study on mechanisms for improving mechanical properties and microstructure of cement paste modified by different types of nanomaterials. Nanotechnol Rev. https://doi.org/10.1515/ntrev-2021-0027

    Article  Google Scholar 

  38. Kurihara R, Maruyama I (2016) Influences of nano-TiO2 particles on alteration of microstructure of hardened cement. In: Proceedings of the Japan concrete institute, vol 38.

  39. Akhtar MN, Jameel M, Ibrahim Z, Bunnori NM (2022) Incorporation of recycled aggregates and silica fume in concrete: an environmental savior-a systematic review. J Market Res 20:4525–4544. https://doi.org/10.1016/j.jmrt.2022.09.021

    Article  CAS  Google Scholar 

  40. Siddique R (2011) Utilization of silica fume in concrete: review of hardened properties. Resour Conserv Recycl. https://doi.org/10.1016/j.resconrec.2011.06.012

    Article  Google Scholar 

  41. Sadrmomtazi A, Tahmouresi B, Saradar A (2018) Effects of silica fume on mechanical strength and microstructure of basalt fiber reinforced cementitious composites (BFRCC). Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2017.11.159

    Article  Google Scholar 

  42. Jahandari S, Mohammadi M, Rahmani A, Abolhasani M, Miraki H, Mohammadifar L et al (2021) Mechanical properties of recycled aggregate concretes containing silica fume and steel fibres. Materials. https://doi.org/10.3390/ma14227065

    Article  Google Scholar 

  43. Saradar A, Nemati P, Paskiabi AS, Moein MM, Moez H, Vishki EH (2020) Prediction of mechanical properties of lightweight basalt fiber reinforced concrete containing silica fume and fly ash: experimental and numerical assessment. J Build Eng. https://doi.org/10.1016/j.jobe.2020.101732

    Article  Google Scholar 

  44. Dalvand A, Ahmadi M (2021) Impact failure mechanism and mechanical characteristics of steel fiber reinforced self-compacting cementitious composites containing silica fume. Eng Sci Technol Int J. https://doi.org/10.1016/j.jestch.2020.12.016

    Article  Google Scholar 

  45. Nabighods K, Saradar A, Mohtasham Moein M, Mirgozar Langaroudi MA, Byzyka J, Karakouzian M (2023) Evaluation of self-compacting concrete containing pozzolan (zeolite, metakaolin & silica fume) and polypropylene fiber against sulfate attacks with different PH: an experimental study. Innov Infrastruct Solut 9(1):5. https://doi.org/10.1007/s41062-023-01309-0

    Article  Google Scholar 

  46. Ransinchung RNGD, Kumar B (2010) Investigations on pastes and mortars of ordinary portland cement admixed with wollastonite and microsilica. J Mater Civ Eng. https://doi.org/10.1061/(asce)mt.1943-5533.0000019

    Article  Google Scholar 

  47. Pillai UU, Anand KB (2019) Performance evaluation of polyurethane-nano silica modified cement mortar. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.10.314

    Article  Google Scholar 

  48. Ramezanian Pour AA, Sedighi S, Kazemian M, Ramezanianpour A (2020) Effect of micro silica and slag on the durability properties of mortars against accelerated carbonation and chloride ions attack. AUT J Civ Eng 4:411–22. https://doi.org/10.22060/ajce.2020.15943.5565

    Article  Google Scholar 

  49. Yön MŞ, Arslan F, Karatas M, Benli A (2022) High-temperature and abrasion resistance of self-compacting mortars incorporating binary and ternary blends of silica fume and slag. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2022.129244

    Article  Google Scholar 

  50. Khan K, Ullah MF, Shahzada K, Amin MN, Bibi T, Wahab N et al (2020) Effective use of micro-silica extracted from rice husk ash for the production of high-performance and sustainable cement mortar. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.119589

    Article  Google Scholar 

  51. Li H, Xiao HG, Yuan J, Ou J (2004) Microstructure of cement mortar with nano-particles. Compos B Eng. https://doi.org/10.1016/S1359-8368(03)00052-0

    Article  Google Scholar 

  52. Li H, Xiao H, gang O, Ping J (2004) A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2003.08.025

    Article  Google Scholar 

  53. Ramezanianpour AA, Mortezaei M, Mirvalad S (2021) Synergic effect of nano-silica and natural pozzolans on transport and mechanical properties of blended cement mortars. J Build Eng. https://doi.org/10.1016/j.jobe.2021.102667

    Article  Google Scholar 

  54. Gesoglu M, Güneyisi E, Asaad DS, Muhyaddin GF (2016) Properties of low binder ultra-high performance cementitious composites: comparison of nanosilica and microsilica. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2015.11.020

    Article  Google Scholar 

  55. Nili M, Ehsani A (2015) Investigating the effect of the cement paste and transition zone on strength development of concrete containing nanosilica and silica fume. Mater Des. https://doi.org/10.1016/j.matdes.2015.03.024

    Article  Google Scholar 

  56. Zhang MH, Islam J (2012) Use of nano-silica to reduce setting time and increase early strength of concretes with high volumes of fly ash or slag. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2011.11.013

    Article  Google Scholar 

  57. Shih JY, Chang TP, Hsiao TC (2006) Effect of nanosilica on characterization of Portland cement composite. Mater Sci Eng A. https://doi.org/10.1016/j.msea.2006.03.010

    Article  Google Scholar 

  58. Li G (2004) Properties of high-volume fly ash concrete incorporating nano-SiO 2. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2003.11.013

    Article  Google Scholar 

  59. Li H, Hua ZM, Ping OJ (2006) Abrasion resistance of concrete containing nano-particles for pavement. Wear. https://doi.org/10.1016/j.wear.2005.08.006

    Article  Google Scholar 

  60. Li H, Xiao H, Guan X, Wang Z, Yu L (2014) Chloride diffusion in concrete containing nano-TiO2 under coupled effect of scouring. Compos B Eng. https://doi.org/10.1016/j.compositesb.2013.09.024

    Article  Google Scholar 

  61. Rao S, Silva P, de Brito J (2015) Experimental study of the mechanical properties and durability of self-compacting mortars with nano materials (SiO2 and TiO2). Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2015.08.049

    Article  Google Scholar 

  62. Ying J, Zhou B, Xiao J (2017) Pore structure and chloride diffusivity of recycled aggregate concrete with nano-SiO2 and nano-TiO2. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2017.05.168

    Article  Google Scholar 

  63. Shekari AH, Razzaghi MS (2011) Influence of nano particles on durability and mechanical properties of high performance concrete. Procedia Eng. https://doi.org/10.1016/j.proeng.2011.07.382

    Article  Google Scholar 

  64. Karthikeyan B, Dhinakaran G (2018) Influence of ultrafine TiO2 and silica fume on performance of unreinforced and fiber reinforced concrete. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2017.11.133

    Article  Google Scholar 

  65. Madani H, Norouzifar MN, Rostami J (2018) The synergistic effect of pumice and silica fume on the durability and mechanical characteristics of eco-friendly concrete. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2018.04.070

    Article  Google Scholar 

  66. Pedro D, de Brito J, Evangelista L (2017) Evaluation of high-performance concrete with recycled aggregates: use of densified silica fume as cement replacement. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2017.05.007

    Article  Google Scholar 

  67. Mastali M, Dalvand A (2016) Use of silica fume and recycled steel fibers in self-compacting concrete (SCC). Constr Build Mater 125:196–209. https://doi.org/10.1016/j.conbuildmat.2016.08.046

    Article  CAS  Google Scholar 

  68. Song HW, Pack SW, Nam SH, Jang JC, Saraswathy V (2010) Estimation of the permeability of silica fume cement concrete. Constr Build Mater 24:5. https://doi.org/10.1016/j.conbuildmat.2009.08.033

    Article  Google Scholar 

  69. Ali B, Ahmed H, Qureshi LA, Kurda R, Hafez H, Mohammed H et al (2020) Enhancing the hardened properties of recycled concrete (RC) through synergistic incorporation of fiber reinforcement and silica fume. Materials. https://doi.org/10.3390/ma13184112

    Article  Google Scholar 

  70. Lin WT, Huang R, Chang JJ, Lee CL (2009) Effect of silica fumes on the permeability of fiber cement composites. J Chin Instit Eng Trans Chin Instit Eng Ser A/Chung-Kuo Kung Ch’eng Hsuch K’an. https://doi.org/10.1080/02533839.2009.9671535

    Article  Google Scholar 

  71. Singh S, Shintre D, Ransinchung RNGD, Kumar P (2018) Performance of fine RAP concrete containing flyash, silica fume, and bagasse ash. J Mater Civ Eng. https://doi.org/10.1061/(asce)mt.1943-5533.0002408

    Article  Google Scholar 

  72. Mazloom M, Ramezanianpour AA, Brooks JJ (2004) Effect of silica fume on mechanical properties of high-strength concrete. Cem Concr Compos. https://doi.org/10.1016/S0958-9465(03)00017-9

    Article  Google Scholar 

  73. Tanyildizi H, Coskun A (2008) Performance of lightweight concrete with silica fume after high temperature. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2007.07.017

    Article  Google Scholar 

  74. Wu Z, Khayat KH, Shi C (2019) Changes in rheology and mechanical properties of ultra-high performance concrete with silica fume content. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2019.105786

    Article  Google Scholar 

  75. ASTM. ASTM C150 / C150M-19a Standard Specification for Portland Cement. Annual Book of ASTM Standards 2019.

  76. C1240–15 (2015) A standard specification for silica fume used in cementitious mixtures, West Conshohocken. Pa

  77. ASTM (2017) ASTM C778 standard specification for standard sand. ASTM (American Society for Testing and Materials)

  78. ASTM C494 (2013) Standard specification for chemical admixtures for concrete. Annual Book of ASTM Standards 04

  79. ASTM C109 (2020) ASTM C109 / C109M - 20b. Standard test method for compressive strength of hydraulic cement mortars (Using 2-in. or [50 mm] Cube Specimens). Annual Book of ASTM Standards 04.

  80. Wang YS, Cho HK, Wang XY (2022) Mixture optimization of sustainable concrete with silica fume considering CO2 emissions and cost. Buildings. https://doi.org/10.3390/buildings12101580

    Article  Google Scholar 

  81. Ahmad J, Abid SR, Arbili MM, Majdi A, Hakamy A, Deifalla AF (2022) A review on sustainable concrete with the partially substitutions of silica fume as a cementitious material. Sustain (Switzerland). https://doi.org/10.3390/su141912075

    Article  Google Scholar 

  82. Goel G, Sachdeva P, Chaudhary AK, Singh Y (2022) The use of nanomaterials in concrete: a review. Mater Today Proc. https://doi.org/10.1016/j.matpr.2022.09.051

    Article  Google Scholar 

  83. Janczarek M, Klapiszewski Ł, Jędrzejczak P, Klapiszewska I, Ślosarczyk A, Jesionowski T (2022) Progress of functionalized TiO2-based nanomaterials in the construction industry: a comprehensive review. Chem Eng J. https://doi.org/10.1016/j.cej.2021.132062

    Article  Google Scholar 

  84. ASTM C348–21 (2021) Standard test method for flexural strength of hydraulic-cement mortars. ASTM International 04

  85. AASHTO (2015) AASHTO TP 119: Standard method of test for electrical resistivity of a concrete cylinder tested in a uniaxial resistance Test.

  86. Wen S, Chung DDL (2001) Electric polarization in carbon fiber-reinforced cement. Cem Concr Res. https://doi.org/10.1016/S0008-8846(00)00382-3

    Article  Google Scholar 

  87. Xie P, Gu P, Beaudoin JJ (1996) Electrical percolation phenomena in cement composites containing conductive fibres. J Mater Sci. https://doi.org/10.1007/BF00352673

    Article  Google Scholar 

  88. Cao J, Chung DDL (2004) Electric polarization and depolarization in cement-based materials, studied by apparent electrical resistance measurement. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2003.09.003

    Article  Google Scholar 

  89. Chen B, Wu K, Yao W (2004) Conductivity of carbon fiber reinforced cement-based composites. Cem Concr Compos. https://doi.org/10.1016/S0958-9465(02)00138-5

    Article  Google Scholar 

  90. Han B, Ding S, Yu X (2015) Intrinsic self-sensing concrete and structures: a review. Measure (Lond). https://doi.org/10.1016/j.measurement.2014.09.048

    Article  Google Scholar 

  91. Han B, Guan X, Ou J (2007) Electrode design, measuring method and data acquisition system of carbon fiber cement paste piezoresistive sensors. Sens Actuators A Phys. https://doi.org/10.1016/j.sna.2006.08.003

    Article  Google Scholar 

  92. ASTM (2017) ASTM C944–99: Standard test method for abrasion resistance of concrete or mortar surfaces by the rotating-cutter method

  93. Foglar M, Hajek R, Fladr J, Pachman J, Stoller J (2017) Full-scale experimental testing of the blast resistance of HPFRC and UHPFRC bridge decks. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2017.04.054

    Article  Google Scholar 

  94. Yoo DY, Banthia N (2017) Mechanical and structural behaviors of ultra-high-performance fiber-reinforced concrete subjected to impact and blast. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2017.05.136

    Article  Google Scholar 

  95. Xu S, Wu P, Li Q, Zhou F, Chen B (2021) Experimental investigation and numerical simulation on the blast resistance of reactive powder concrete subjected to blast by embedded explosive. Cem Concr Compos. https://doi.org/10.1016/j.cemconcomp.2021.103989

    Article  Google Scholar 

  96. Feng J, Gao X, Li J, Dong H, He Q, Liang J et al (2019) Penetration resistance of hybrid-fiber-reinforced high-strength concrete under projectile multi-impact. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2019.01.038

    Article  Google Scholar 

  97. Mina AL, Petrou MF, Trezos KG (2021) Resistance of an optimized ultra-high performance fiber reinforced concrete to projectile impact. Buildings. https://doi.org/10.3390/buildings11020063

    Article  Google Scholar 

  98. Yu R, Van Beers L, Spiesz P, Brouwers HJH (2016) Impact resistance of a sustainable ultra-high performance fibre reinforced concrete (UHPFRC) under pendulum impact loadings. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2015.12.157

    Article  Google Scholar 

  99. Ziada M, Erdem S, Tammam Y, Kara S, Lezcano RAG (2021) The effect of basalt fiber on mechanical, microstructural, and high-temperature properties of fly ash-based and basalt powder waste-filled sustainable geopolymer mortar. Sustain (Switzerland). https://doi.org/10.3390/su132212610

    Article  Google Scholar 

  100. Ashraf MR, Akmal U, Khurram N, Aslam F, Deifalla AF (2022) Impact resistance of styrene-butadiene rubber (SBR) latex-modified fiber-reinforced concrete: the role of aggregate size. Materials. https://doi.org/10.3390/ma15041283

    Article  Google Scholar 

  101. Moein MM, Saradar A, Rahmati K, Rezakhani Y, Ashkan SA, Karakouzian M (2023) Reliability analysis and experimental investigation of impact resistance of concrete reinforced with polyolefin fiber in different shapes, lengths, and doses. J Build Eng. https://doi.org/10.1016/j.jobe.2023.106262

    Article  Google Scholar 

  102. State-of-the-art report on fiber reinforced concrete (1996). ACI Committee 544 report 544,1R-96. Detroit: American Concrete Institute. ACI Committee 544.

  103. Elkady HM, Yasien AM, Elfeky MS, Serag ME (2019) Assessment of mechanical strength of nano silica concrete (NSC) subjected to elevated temperatures. J Struct Fire Eng. https://doi.org/10.1108/JSFE-10-2017-0041

    Article  Google Scholar 

  104. Hendrix D, McKeon J, Wille K (2019) Behavior of colloidal nanosilica in an ultrahigh performance concrete environment using dynamic light scattering. Materials. https://doi.org/10.3390/ma12121976

    Article  Google Scholar 

  105. Kong D, Du X, Wei S, Zhang H, Yang Y, Shah SP (2012) Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2012.08.006

    Article  Google Scholar 

  106. Khaloo A, Mobini MH, Hosseini P (2016) Influence of different types of nano-SiO2 particles on properties of high-performance concrete. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2016.03.041

    Article  Google Scholar 

  107. Xu Z, Gao J, Zhou Z, Zhao Y, Chen X (2020) Hydration and microstructure of tricalcium silicate incorporating nano-TiO2. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.120805

    Article  Google Scholar 

  108. Feng D, Xie N, Gong C, Leng Z, Xiao H, Li H et al (2013) Portland cement paste modified by TiO2 nanoparticles: a microstructure perspective. Ind Eng Chem Res. https://doi.org/10.1021/ie4011595

    Article  Google Scholar 

  109. Sun J, Cao X, Xu Z, Yu Z, Zhang Y, Hou G et al (2020) Contribution of core/shell TiO2@SiO2 nanoparticles to the hydration of Portland cement. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2019.117127

    Article  Google Scholar 

  110. Wang X, Pan Z, Zhu C, Zhu H (2014) Reaction degree of silica fume and its effect on compressive strength of cement-silica fume blends. J Wuhan Univ Technol Mater Sci Ed. https://doi.org/10.1007/s11595-014-0986-4

    Article  Google Scholar 

  111. Bodt BA, Ostle B, Turner K, Hicks C, McElrath G (1997) Engineering statistics: the industrial experience. Technometrics. https://doi.org/10.2307/1270788

    Article  Google Scholar 

  112. Edwards LJ, Muller KE, Wolfinger RD, Qaqish BF, Schabenberger O (2008) An R2 statistic for fixed effects in the linear mixed model. Stat Med. https://doi.org/10.1002/sim.3429

    Article  Google Scholar 

  113. Yoo DY, Banthia N (2019) Impact resistance of fiber-reinforced concrete–a review. Cem Concr Compos. https://doi.org/10.1016/j.cemconcomp.2019.103389

    Article  Google Scholar 

  114. Abid SR, Abdul Hussein ML, Ali SH, Kazem AF (2020) Suggested modified testing techniques to the ACI 544-R repeated drop-weight impact test. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.118321

    Article  Google Scholar 

  115. Abid SR, Abdul-Hussein ML, Ayoob NS, Ali SH, Kadhum AL (2020) Repeated drop-weight impact tests on self-compacting concrete reinforced with micro-steel fiber. Heliyon. https://doi.org/10.1016/j.heliyon.2020.e03198

    Article  Google Scholar 

  116. Li HL, Xu Y, Chen PY, Ge JJ, Wu F (2019) Impact energy consumption of high-volume rubber concrete with silica fume. Adv Civ Eng. https://doi.org/10.1155/2019/1728762

    Article  Google Scholar 

  117. Siddique R (2011) Utilization of silica fume in concrete: review of hardened properties. Resour Conserv Recycl 55:923–932. https://doi.org/10.1016/j.resconrec.2011.06.012

    Article  Google Scholar 

  118. Chishi AK, Gautam L (2023) Sustainable use of silica fume in green cement concrete production: a review. Innov Infrastruct Solut. https://doi.org/10.1007/s41062-023-01164-z

    Article  Google Scholar 

  119. Lou Y, Khan K, Amin MN, Ahmad W, Deifalla AF, Ahmad A (2023) Performance characteristics of cementitious composites modified with silica fume: a systematic review. Case Stud Constr Mater. https://doi.org/10.1016/j.cscm.2022.e01753

    Article  Google Scholar 

  120. Gupta S (2013) Application of silica fume and nanosilica in cement and concrete–a review. J Today’s Ideas Tomorrow’s Technol. https://doi.org/10.15415/jotitt.2013.12006

    Article  Google Scholar 

  121. Rahmani T, Kiani B, Shekarchi M, Safari A (2012) Statistical and experimental analysis on the behavior of fiber reinforced concretes subjected to drop weight test. Constr Build Mater 37:360–369. https://doi.org/10.1016/j.conbuildmat.2012.07.068

    Article  Google Scholar 

  122. Mohtasham Moein M, Saradar A, Rahmati K, Hatami Shirkouh A, Sadrinejad I, Aramali V et al (2022) Investigation of impact resistance of high-strength portland cement concrete containing steel fibers. Cem Mater High Perform Concr 15:1–30. https://doi.org/10.3390/ma15207157

    Article  CAS  Google Scholar 

  123. Song PS, Wu JC, Hwang S, Sheu BC (2005) Assessment of statistical variations in impact resistance of high-strength concrete and high-strength steel fiber-reinforced concrete. Cem Concr Res 35:393–399. https://doi.org/10.1016/j.cemconres.2004.07.021

    Article  CAS  Google Scholar 

  124. Mastali M, Dalvand A (2016) The impact resistance and mechanical properties of self-compacting concrete reinforced with recycled CFRP pieces. Compos B Eng 92:360–376. https://doi.org/10.1016/j.compositesb.2016.01.046

    Article  CAS  Google Scholar 

  125. Rahmati K, Saradar A, Mohtasham Moein M, Sardrinejad I, Bristow J, Yavari A et al (2022) Evaluation of engineered cementitious composites (ECC) containing polyvinyl alcohol (PVA) fibers under compressive, direct tensile, and drop-weight test. Multiscale Multidiscip Model Exper Design. https://doi.org/10.1007/s41939-022-00135-8

    Article  Google Scholar 

  126. Abid SR, Murali G, Ahmad J, Al-Ghasham TS, Vatin NI (2022) Repeated drop-weight impact testing of fibrous concrete: state-of-the-art literature review, analysis of results variation and test improvement suggestions. Materials. https://doi.org/10.3390/ma15113948

    Article  Google Scholar 

  127. Badr A, Ashour AF (2005) Modified ACI drop-weight impact test for concrete. ACI Mater J 102:249–255

    CAS  Google Scholar 

  128. Myers JJ, Tinsley M (2013) Impact resistance of blast mitigation material using modified aci drop-weight impact test. ACI Mater J. https://doi.org/10.14359/51685668

    Article  Google Scholar 

  129. Mohtasham Moein M, Mousavi SY, Madandoust R, Naser Saeid HNS (2019) The Impact resistance of steel fiber reinforcement concrete under different curing conditions: experimental and statistical analysis. J Civ Environ Eng 49(1):109–121

    Google Scholar 

  130. Koushkbaghi M, Alipour P, Tahmouresi B, Mohseni E, Saradar A, Sarker PK (2019) Influence of different monomer ratios and recycled concrete aggregate on mechanical properties and durability of geopolymer concretes. Constr Build Mater 205:519–528. https://doi.org/10.1016/j.conbuildmat.2019.01.174

    Article  CAS  Google Scholar 

  131. Saradar A, Tahmouresi B, Mohseni E, Shadmani A (2018) Restrained shrinkage cracking of fiber-reinforced high-strength concrete. Fibers. https://doi.org/10.3390/fib6010012

    Article  Google Scholar 

  132. Shadmani A, Tahmouresi B, Saradar A, Mohseni E (2018) Durability and microstructure properties of SBR-modified concrete containing recycled asphalt pavement. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2018.07.080

    Article  Google Scholar 

  133. Mosavinejad HG, Saradar A, Tahmouresi B (2018) Hoop stress-strain in fiber-reinforced cementitious composite thin-walled cylindrical shells. J Mater Civ Eng 30:1–12. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002428

    Article  Google Scholar 

  134. Fakharifar M, Dalvand A, Arezoumandi M, Sharbatdar M, Chen G, Kheyroddin A (2014) Mechanical properties of high performance fiber reinforced cementitious composites. Constr Build Mater 71:510–520

    Article  Google Scholar 

  135. Mastali A, Dalvand A, Sattarifard A (2016) The impact resistance and mechanical properties of reinforced self-compacting concrete with recycled glass fiber reinforced polymers. J Clean Prod 124:312–324

    Article  CAS  Google Scholar 

  136. Weibull W (1939) A statistical theory of the strength of materials, vol 151. Generalstabens Litografiska Anstalts Förlag, Stockholm. https://books.google.com/books?id=otVRAQAAIAAJ

  137. Mousavinejad SHG, Saradar A, Jabbari M, Moein MM (2023) Evaluation of fresh and hardened properties of self-compacting concrete containing different percentages of waste tiles. J Build Pathol Rehabilit. https://doi.org/10.1007/s41024-023-00329-8

    Article  Google Scholar 

  138. Murali G, Asrani NP, Ramkumar VR, Siva A, Haridharan MK (2019) Impact resistance and strength reliability of novel two-stage fibre-reinforced concrete. Arab J Sci Eng. https://doi.org/10.1007/s13369-018-3466-x

    Article  Google Scholar 

  139. Haridharan MK, Matheswaran S, Murali G, Abid SR, Fediuk R, Mugahed Amran YH et al (2020) Impact response of two-layered grouted aggregate fibrous concrete composite under falling mass impact. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.120628

    Article  Google Scholar 

  140. Chen X, Liu Z, Guo S, Huang Y, Xu W (2019) Experimental study on fatigue properties of normal and rubberized self-compacting concrete under bending. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2019.01.207

    Article  Google Scholar 

  141. Murali G, Abid SR, Mugahed Amran YH, Abdelgader HS, Fediuk R, Susrutha A et al (2020) Impact performance of novel multi-layered prepacked aggregate fibrous composites under compression and bending. Structures. https://doi.org/10.1016/j.istruc.2020.10.001

    Article  Google Scholar 

  142. Tumidajski PJ, Fiore L, Khodabocus T, Lachemi M, Pari R (2006) Comparison of Weibull and normal distributions for concrete compressive strengths. Can J Civ Eng. https://doi.org/10.1139/L06-080

    Article  Google Scholar 

  143. Basu B, Tiwari D, Kundu D, Prasad R (2009) Is Weibull distribution the most appropriate statistical strength distribution for brittle materials? Ceram Int. https://doi.org/10.1016/j.ceramint.2007.10.003

    Article  Google Scholar 

  144. Pedrosa B, Correia JAFO, Rebelo CAS, Veljkovic M (2020) Reliability of fatigue strength curves for riveted connections using normal and weibull distribution functions. ASCE ASME J Risk Uncertain Eng Syst A Civ Eng. https://doi.org/10.1061/ajrua6.0001081

    Article  Google Scholar 

  145. Prasad N, Murali G (2021) Exploring the impact performance of functionally-graded preplaced aggregate concrete incorporating steel and polypropylene fibres. J Build Eng. https://doi.org/10.1016/j.jobe.2020.102077

    Article  Google Scholar 

  146. Bilir L, Imir M, Yi D, Albostan A (2015) An investigation on wind energy potential and small scale wind turbine performance at Incek region-Ankara Turkey. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2015.07.017

    Article  Google Scholar 

  147. Scrivener KL, Juilland P, Monteiro PJM (2015) Advances in understanding hydration of Portland cement. Cem Concr Res 78:5. https://doi.org/10.1016/j.cemconres.2015.05.025

    Article  CAS  Google Scholar 

  148. Juenger MCG, Monteiro PJM, Gartner EM, Denbeaux GP (2005) A soft X-ray microscope investigation into the effects of calcium chloride on tricalcium silicate hydration. Cem Concr Res 35:5. https://doi.org/10.1016/j.cemconres.2004.05.016

    Article  CAS  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Ashkan Saradar contributed to methodology, validation, formal analysis, investigation, resources, data curation, writing—original draft, writing—review and editing, visualization, and supervision. Yousof Rezakhani was involved in validation, investigation, and resources and provided software. Komeil Rahmati contributed to writing—review and editing, and provided software. Farzad Johari Majd provided software and was involved in validation and formal analysis. Mohammad Mohtasham Moein contributed to conceptualization, methodology, validation, formal analysis, investigation, resources, data curation, writing—original draft, writing—review and editing, and visualization and provided software. Moses Karakouzian was involved in writing—review and editing, and visualization.

Corresponding author

Correspondence to Komeil Rahmati.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saradar, A., Rezakhani, Y., Rahmati, K. et al. Investigating the properties and microstructure of high-performance cement composites with nano-silica, silica fume, and ultra-fine TiO2. Innov. Infrastruct. Solut. 9, 84 (2024). https://doi.org/10.1007/s41062-024-01407-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-024-01407-7

Keywords

Navigation