Skip to main content
Log in

A review of mechanical and durability properties and microstructure of semi-flexible pavement

  • Review
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

In the present time, there is a need for durable, fatigue-resistant, and comfort-inducing pavement. Neither the rigid nor the flexible pavements fulfill these criteria perfectly. Semi-flexible pavement is a type of road construction technology that falls between flexible and rigid pavement. It consists of a porous bituminous skeleton injected with grouting material and is designed to combine the benefits of both flexibility and rigidity, providing a durable and long-lasting road surface that is also able to flex slightly under heavy loads and temperature changes. The purpose of this review paper is to investigate the mechanical, durability and microstructural characteristics of semi-flexible pavement including their composition, design, and performance in order to provide an overview related to suitability as a pavement. The strength of each component of a Semi-Flexible pavement (SFP), coupled with its fatigue and crack resistance properties are presented in the first part whereas exploring additional critical aspects which play a pivotal role in the overall performance and durability of SFPs, including shrinkage, rutting, and moisture resistance, are covered in the second part. Finally, interlayer bonding, and material interactions within SFPs are reviewed based on microstructural examination such as scanning electron microscopy (SEM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Koting S, Karim MR, Mahmud H et al (2014) Effects of using silica fume and polycarboxylate-type superplasticizer on physical properties of cementitious grout mixtures for semiflexible pavement surfacing. Sci World J 2014:1–8. https://doi.org/10.1155/2014/596364

    Article  CAS  Google Scholar 

  2. Jain B, Tiwari D, Parida M, Anbanandam R (2022) Assessment of vehicular fuel consumption and interaction with pavement characteristics using HDM-4 on Indian urban road network: a case of Pune city. Case Stud Constr Mater 17:e01362. https://doi.org/10.1016/j.cscm.2022.e01362

    Article  Google Scholar 

  3. Ling S, Hu M, Sun D et al (2022) Mechanical properties of pouring semi-flexible pavement material and engineering estimation on contribution of each phase. Constr Build Mater 315:125782. https://doi.org/10.1016/j.conbuildmat.2021.125782

    Article  Google Scholar 

  4. Xu Y, Jiang Y, Xue J et al (2020) High-performance semi-flexible pavement coating material with the microscopic interface optimization. Coatings 10(3):268

    Article  CAS  Google Scholar 

  5. Khan MI, Sutanto MH, Yusoff NIM et al (2022) Cementitious grouts for semi-flexible pavement surfaces—a review. Materials (Basel) 15:5466. https://doi.org/10.3390/ma15155466

    Article  CAS  Google Scholar 

  6. Hassani A, Taghipoor M, Karimi MM (2020) A state of the art of semi-flexible pavements: introduction, design, and performance. Constr Build Mater 253:119196. https://doi.org/10.1016/j.conbuildmat.2020.119196

    Article  Google Scholar 

  7. Jacobsen S (2012) The effectiveness of grouted macadam at intersections—a life—cycle cost perspective Stockholm 2012

  8. Ding Q, Sun Z, Shen F, Huang S (2011) The performance analysis of semi-flexible pavement by the volume parameter of matrix asphalt mixture. Adv Mater Res 168–170:351–356. https://doi.org/10.4028/www.scientific.net/AMR.168-170.351

    Article  Google Scholar 

  9. Deng C, Huang C, Hong J et al (2016) The study of super-early-strength semi-flexible pavement used in municipal road. J Highw Eng 41:116–119

    Google Scholar 

  10. Hou S, Xu T, Huang K (2016) Investigation into engineering properties and strength mechanism of grouted macadam composite materials. Int J Pavement Eng 17:878–886. https://doi.org/10.1080/10298436.2015.1024467

    Article  Google Scholar 

  11. Taghipoor M, Hassani A, Karimi MM (2021) Development of procedure for design and preparation of open-graded asphalt mixture used in semi-flexible pavement. Constr Build Mater 306:124884. https://doi.org/10.1016/j.conbuildmat.2021.124884

    Article  Google Scholar 

  12. An S, Ai C, Ren D et al (2018) Laboratory and field evaluation of a novel cement grout asphalt composite. J Mater Civ Eng 30:04018179. https://doi.org/10.1061/(asce)mt.1943-5533.0002376

    Article  CAS  Google Scholar 

  13. Bharath G, Shukla M, Nagabushana MN et al (2020) Laboratory and field evaluation of cement grouted bituminous mixes. Road Mater Pavement Des 21:1694–1712. https://doi.org/10.1080/14680629.2019.1567375

    Article  CAS  Google Scholar 

  14. Aashto J (2014) Standard method of test for determination of drain down characteristics in uncompacted asphalt mixtures. AASHTO T305

  15. ASTM A (2013) D7964 standard practice for open-graded friction course (OGFC) mix design. Am Aociety Test Mater West Conshohocken, PA, United States

  16. Abdulsahib I, Hilal MM, Fattah MY (2023) Semi-flexible pavement: a review of design and performance evaluation. In: E3S web of conferences, vol 427, pp 1–9. https://doi.org/10.1051/e3sconf/202342703001

  17. Al-Qadi IL, Gouru H, Weyers RE (1994) Asphalt portland cement concrete composite: laboratory evaluation. J Transp Eng 120:94–108

    Article  Google Scholar 

  18. ASTM C (2002) 939,“Standard test method for flow of grout for preplaced-aggregate concrete (flow cone method).” Annual Book of ASTM Standards, 4

  19. Satyarnoa I, Solehudina AP, Meyartoa C et al (2014) Practical method for mix design of cement-based grout. Procedia Eng 95:356–365. https://doi.org/10.1016/j.proeng.2014.12.194

    Article  Google Scholar 

  20. Asphalt I (2014) MS-2 asphalt mix design methods

  21. ASTM D6927-15 (2015) Standard test method for marshall stability and flow of asphalt mixtures. ASTM International, West Conshohocken, PA, USA

  22. Koting S, Mahmud H, Karim MR, Abdul Hamid NA (2011) Development of cement–bitumen composites for semi-flexible pavement surfacing. Proc East Asia Soc Transp Stud 8:12

    Google Scholar 

  23. Koting S, Mohamed Rehan KARIMHM (2007) The properties of bituminous mixtures for semi-flexible pavement. Proc East Asia Soc Transp Stud 6:1–9

    Google Scholar 

  24. Afonso ML, Dinis-Almeida M, Pereira-De-Oliveira LA et al (2016) Development of a semi-flexible heavy duty pavement surfacing incorporating recycled and waste aggregates—preliminary study. Constr Build Mater 102:155–161. https://doi.org/10.1016/j.conbuildmat.2015.10.165

    Article  Google Scholar 

  25. Cai X, Huang W, Wu K (2019) Study of the self-healing performance of semi-flexible pavement materials grouted with engineered cementitious composites mortar based on a non-standard test. Materials (Basel) 12:3488. https://doi.org/10.3390/ma12213488

    Article  CAS  Google Scholar 

  26. Imran Khan M, Sutanto MH, Bin NM et al (2021) Investigating the mechanical properties and fuel spillage resistance of semi-flexible pavement surfacing containing irradiated waste PET based grouts. Constr Build Mater 304:124641. https://doi.org/10.1016/j.conbuildmat.2021.124641

    Article  CAS  Google Scholar 

  27. Tan H, Xiong Z, Gong M et al (2021) Investigation on the influences of curing time on the cracking resistance of semiflexible pavement mixture. Adv Mater Sci Eng 2021:1–15

    Google Scholar 

  28. Xiong Z, Gong M, Hong J et al (2023) Correlation analysis of the gradation design parameters and mechanical performance of semi-flexible pavement. Constr Build Mater 404:133206. https://doi.org/10.1016/j.conbuildmat.2023.133206

    Article  Google Scholar 

  29. Husain NM, Karim MR, Mahmud HB, Koting S (2014) Effects of aggregate gradation on the physical properties of semiflexible pavement. Adv Mater Sci Eng. https://doi.org/10.1155/2014/529305

    Article  Google Scholar 

  30. Zhao W, Yang Q (2022) Study on the applicability of asphalt concrete skeleton in the semi-flexible pavement. Constr Build Mater 327:126923. https://doi.org/10.1016/j.conbuildmat.2022.126923

    Article  Google Scholar 

  31. Asmael NM (2019) Investigate engineering properties of modified open-graded asphalt mixtures. Cogent Eng 6:1678555. https://doi.org/10.1080/23311916.2019.1678555

    Article  Google Scholar 

  32. Peng B, Li J, Ling T et al (2023) Semi-flexible pavement with glass for alleviating the heat island effect. Constr Build Mater 367:130275. https://doi.org/10.1016/j.conbuildmat.2022.130275

    Article  Google Scholar 

  33. Gong M, Xiong Z, Chen H et al (2019) Evaluation on the cracking resistance of semi-flexible pavement mixture by laboratory research and field validation. Constr Build Mater 207:387–395

    Article  CAS  Google Scholar 

  34. Cihackova P, Hyzl P, Stehlik D et al (2015) Performance characteristics of the open-graded asphalt concrete filled with a special cement grout. Balt J Road Bridg Eng 10:316–324

    Article  Google Scholar 

  35. Cai J, Pei J, Luo Q et al (2017) Comprehensive service properties evaluation of composite grouting materials with high-performance cement paste for semi-flexible pavement. Constr Build Mater 153:544–556

    Article  Google Scholar 

  36. Cai X, Zhang H, Zhang J et al (2019) Investigation on reinforcing mechanisms of semi-flexible pavement material through micromechanical model. Constr Build Mater 198:732–741

    Article  Google Scholar 

  37. Corradini A, Cerni G, D’Alessandro A, Ubertini F (2017) Improved understanding of grouted mixture fatigue behavior under indirect tensile test configuration. Constr Build Mater 155:910–918

    Article  Google Scholar 

  38. Oliveira J, Thom NH, Zoorob S (2006) Fracture and fatigue strength of grouted macadams

  39. Toraldo E (2013) Comparative laboratory investigation into pavement materials for road tunnels. Road Mater Pavement Des 14:310–324

    Article  Google Scholar 

  40. Yang B, Weng X (2015) The influence on the durability of semi-flexible airport pavement materials to cyclic wheel load test. Constr Build Mater 98:171–175

    Article  Google Scholar 

  41. Zhang H, Liang S, Ma Y, Fu X (2019) Study on the mechanical performance and application of the composite cement–asphalt mixture. Int J Pavement Eng 20:44–52

    Article  CAS  Google Scholar 

  42. Wang D, Liang X, Jiang C, Pan Y (2018) Impact analysis of Carboxyl Latex on the performance of semi-flexible pavement using warm-mix technology. Constr Build Mater 179:566–575

    Article  CAS  Google Scholar 

  43. Hong J, Wang K, Xiong Z et al (2020) Investigation into the freeze–thaw durability of semi-flexible pavement mixtures. Road Mater Pavement Des 21:2198–2214

    Article  CAS  Google Scholar 

  44. Sun Y, Cheng Y, Ding M et al (2018) Research on properties of high-performance cement mortar for semiflexible pavement. Adv Mater Sci Eng. https://doi.org/10.1155/2018/4613074

    Article  Google Scholar 

  45. Luo S, Yang X, Zhong K, Yin J (2020) Open-graded asphalt concrete grouted by latex modified cement mortar. Road Mater Pavement Des 21:61–77. https://doi.org/10.1080/14680629.2018.1479290

    Article  CAS  Google Scholar 

  46. Wang D, Liang X, Li D et al (2018) Study on mechanics-based cracking resistance of semiflexible pavement materials. Adv Mater Sci Eng 2018:1–10

    Article  Google Scholar 

  47. Karami M (2017) Application of the cementitious grouts on stability and durability of semi flexible bituminous mixtures. AIP Conf Proc. https://doi.org/10.1063/1.5011492

    Article  Google Scholar 

  48. Khan MI, Huat HY, Dun MHBM et al (2019) Effect of irradiated and non-irradiated waste PET based cementitious grouts on flexural strength of semi-flexible pavement. Materials (Basel) 12:4133. https://doi.org/10.3390/MA12244133

    Article  CAS  Google Scholar 

  49. Khan MI, Sutanto MH, Bin NM et al (2022) Irradiated polyethylene terephthalate and fly ash based grouts for semi-flexible pavement: design and optimisation using response surface methodology. Int J Pavement Eng 23:2515–2530. https://doi.org/10.1080/10298436.2020.1861446

    Article  CAS  Google Scholar 

  50. Pei J, Cai J, Zou D et al (2016) Design and performance validation of high-performance cement paste as a grouting material for semi-flexible pavement. Constr Build Mater 126:206–217. https://doi.org/10.1016/j.conbuildmat.2016.09.036

    Article  CAS  Google Scholar 

  51. Jia L, Fang Y, Jia Z et al (2023) Optimization of the fresh and hardened properties of cement grouting material for semiflexible pavement using polypropylene fiber. J Sustain Cem Mater. https://doi.org/10.1080/21650373.2023.2289155

    Article  Google Scholar 

  52. Chen Z, Qiao J, Yang X et al (2023) A review of grouting materials for pouring semi-flexible pavement: materials, design and performance. Constr Build Mater 379:131235. https://doi.org/10.1016/j.conbuildmat.2023.131235

    Article  Google Scholar 

  53. Bameri M, Rashidi S, Mohammadhasani M et al (2022) Evaluation of mechanical and durability properties of eco-friendly concrete containing silica fume, waste glass powder, and ground granulated blast furnace slag. Adv Mater Sci Eng. https://doi.org/10.1155/2022/2730391

    Article  Google Scholar 

  54. Joshaghani A, Moeini MA, Balapour M, Moazenian A (2018) Effects of supplementary cementitious materials on mechanical and durability properties of high-performance non-shrinking grout (HPNSG). J Sustain Cem Mater 7:38–56. https://doi.org/10.1080/21650373.2017.1372318

    Article  CAS  Google Scholar 

  55. Yajun J, Cahyadi JH (2003) Effects of densified silica fume on microstructure and compressive strength of blended cement pastes. Cem Concr Res 33:1543–1548. https://doi.org/10.1016/S0008-8846(03)00100-5

    Article  CAS  Google Scholar 

  56. Fang Y, Wang X, Jia L et al (2022) Synergistic effect of polycarboxylate superplasticizer and silica fume on early properties of early high strength grouting material for semi-flexible pavement. Constr Build Mater 319:126065. https://doi.org/10.1016/j.conbuildmat.2021.126065

    Article  CAS  Google Scholar 

  57. Hamzani M, Hasan M, Sugiarto S (2019) The influence of the using waste tire rubber and natural ziolite as asphalt and cement replacements to compressive strength of semi-flexible pavement. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/523/1/012037

    Article  Google Scholar 

  58. Zhang S, He Y, Zhang H et al (2022) Effect of fine sand powder on the rheological properties of one-part alkali-activated slag semi-flexible pavement grouting materials. Constr Build Mater 333:127328. https://doi.org/10.1016/j.conbuildmat.2022.127328

    Article  CAS  Google Scholar 

  59. REAM (2007) Road Engineering Association of Malaysia,“Speciication of Semi-Rigid Wearing Course”

  60. Lumpur DBK, Awam JK (2003) Description of workmanship and materials (semi-rigid pavement)(Section E). Dewan Bandaraya Kuala Lumpur, Kuala Lumpur

  61. Radeef HR, Abdul Hassan N, Zainal Abidin AR et al (2021) Determining fracture energy in asphalt mixture: a review. In: IOP conference series: earth and environmental science

  62. Yang Q, Zhao W (2022) Research on the crack resistance of semi-flexible pavement based on bonding and rheological properties of asphalt. Constr Build Mater 356:129093. https://doi.org/10.1016/j.conbuildmat.2022.129093

    Article  Google Scholar 

  63. Zhang W, Shen S, Goodwin RD et al (2020) Performance characterization of semi-flexible composite mixture. Materials (Basel) 13:342. https://doi.org/10.3390/ma13020342

    Article  CAS  Google Scholar 

  64. Yang Q, Li Y, Zou H et al (2022) Study of the effect of grouting material strength on semiflexible pavement material. Adv Mater Sci Eng. https://doi.org/10.1155/2022/5958896

    Article  Google Scholar 

  65. Wang S, Zhou H, Chen X et al (2021) Fatigue resistance and cracking mechanism of semi-flexible pavement mixture. Materials (Basel) 14:5277. https://doi.org/10.3390/ma14185277

    Article  CAS  Google Scholar 

  66. Sunil S, Varuna M, Nagakumar MS (2021) Performance evaluation of semi rigid pavement mix. Mater Today Proc 46:4771–4775. https://doi.org/10.1016/j.matpr.2020.10.311

    Article  Google Scholar 

  67. Zhong K, Sun M, Zhang M et al (2020) Interfacial and mechanical performance of grouted open-graded asphalt concrete with latex modified cement mortar. Constr Build Mater 234:117394. https://doi.org/10.1016/j.conbuildmat.2019.117394

    Article  CAS  Google Scholar 

  68. Ren J, Xu Y, Zhao Z et al (2022) Fatigue prediction of semi-flexible composite mixture based on damage evolution. Constr Build Mater 318:126004. https://doi.org/10.1016/j.conbuildmat.2021.126004

    Article  Google Scholar 

  69. Zarei S, Ouyang J, Zhao Y (2022) Evaluation of fatigue life of semi-flexible pavement with cement asphalt emulsion pastes. Constr Build Mater 349:128797. https://doi.org/10.1016/j.conbuildmat.2022.128797

    Article  Google Scholar 

  70. Ding Q, Zhao M, Shen F, Zhang X (2015) Mechanical behavior and failure mechanism of recycled semi-flexible pavement material. J Wuhan Univ Technol Mater Sci Ed 30:981–988. https://doi.org/10.1007/s11595-015-1261-z

    Article  CAS  Google Scholar 

  71. Wang Y, Guo R, Pan T et al (2023) Particle size effect of pre-wet zeolites on autogenous shrinkage and mechanical properties of LECC. Dev Built Environ 16:100290. https://doi.org/10.1016/j.dibe.2023.100290

    Article  Google Scholar 

  72. Mushtaq SM, Siddique R, Goyal S, Kaur K (2021) Experimental studies and drying shrinkage prediction model for concrete containing waste foundry sand. Clean Eng Technol 2:100071. https://doi.org/10.1016/j.clet.2021.100071

    Article  Google Scholar 

  73. Zhang J, Cai J, Pei J et al (2016) Formulation and performance comparison of grouting materials for semi-flexible pavement. Constr Build Mater 115:582–592. https://doi.org/10.1016/j.conbuildmat.2016.04.062

    Article  Google Scholar 

  74. Hamzani M, Hasan M, Sugiarto S (2021) Determining the properties of semi-flexible pavement using waste tire rubber powder and natural zeolite. Constr Build Mater 266:121199. https://doi.org/10.1016/j.conbuildmat.2020.121199

    Article  CAS  Google Scholar 

  75. Xiang J, Liu L, Cui X et al (2019) Effect of Fuller-fine sand on rheological, drying shrinkage, and microstructural properties of metakaolin-based geopolymer grouting materials. Cem Concr Compos 104:103381. https://doi.org/10.1016/j.cemconcomp.2019.103381

    Article  CAS  Google Scholar 

  76. Xiang J, Liu L, Cui X et al (2018) Effect of limestone on rheological, shrinkage and mechanical properties of alkali—activated slag/fly ash grouting materials. Constr Build Mater 191:1285–1292. https://doi.org/10.1016/j.conbuildmat.2018.09.209

    Article  CAS  Google Scholar 

  77. Zhang Z, Li J, Ni F (2022) Material innovation preparation and performance study of semi-flexible pavement materials. Case Stud Constr Mater 17:e01355. https://doi.org/10.1016/j.cscm.2022.e01355

    Article  Google Scholar 

  78. Thao A, Magee B, Woodward D (2020) A preliminary characterisation of innovative semi-flexible composite pavement comprising geopolymer grout and reclaimed asphalt planings. Materials (Basel) 13:3644. https://doi.org/10.3390/MA13163644

    Article  Google Scholar 

  79. Zarei S, Ouyang J, Yang W, Zhao Y (2020) Experimental analysis of semi-flexible pavement by using an appropriate cement asphalt emulsion paste. Constr Build Mater 230:116994. https://doi.org/10.1016/j.conbuildmat.2019.116994

    Article  Google Scholar 

  80. Bai T, Liang Y, Li C et al (2022) Application and validation of fly ash based geopolymer mortar as grouting material in porous asphalt concrete. Constr Build Mater 332:127154. https://doi.org/10.1016/j.conbuildmat.2022.127154

    Article  Google Scholar 

  81. Solouki A, Tataranni P, Sangiorgi C (2022) Thermally treated waste silt as geopolymer grouting material and filler for semiflexible pavements. Infrastructures 7:1–14. https://doi.org/10.3390/infrastructures7080099

    Article  Google Scholar 

  82. Kumar DH, Chinnabhandar RK, Chiranjeevi K, Shankar AUR (2023) Effect of aggregate gradation and bitumen type on mechanical properties of semi-flexible asphalt mixtures. Case Stud Constr Mater 18:e02025. https://doi.org/10.1016/j.cscm.2023.e02025

    Article  Google Scholar 

  83. Li C (2003) Design method of semiflexible pavem ent mixture. J Chongqing Jiaotong Univ (Nat Sci) 22:42

    Google Scholar 

  84. Pan B, Zhang H, Liu S et al (2023) Dynamic responses of semi-flexible pavements used for the autonomous rail rapid transit. Appl Sci 13:3673. https://doi.org/10.3390/app13063673

    Article  CAS  Google Scholar 

  85. Gong Z, Zhang L, Wu J et al (2022) Review of regulation techniques of asphalt pavement high temperature for climate change adaptation. J Infrastruct Preserv Resil 3:9. https://doi.org/10.1186/s43065-022-00054-5

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

This work was carried out in collaboration between all authors. MSR: conceptualization, data collection, preparing the methodology and manuscript. SKS: Did the reading, correction, and Supervision.

Corresponding author

Correspondence to Mohammad Shahid Raza.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This research was performed in accordance with the ethical standards of the institutional and/or research committee and with the 1964 Helsinki declaration and its later amendments or comparable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, M.S., Sharma, S.K. A review of mechanical and durability properties and microstructure of semi-flexible pavement. Innov. Infrastruct. Solut. 9, 83 (2024). https://doi.org/10.1007/s41062-024-01393-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-024-01393-w

Keywords

Navigation