Skip to main content
Log in

Palladium N-Heterocyclic Carbene-Catalyzed Aminations: An Outline

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Amination reactions play a pivotal role in synthetic organic chemistry, facilitating the generation of nitrogen-containing scaffolds with broad applications in drug synthesis, material production, polymer formation, and the generation of amino acids and peptides. Amination offers the potential to fine tune the properties of natural products and produce functional materials for various applications. Palladium N-heterocyclic carbene (Pd–NHC) emerges as an innovative and highly effective catalyst in this context. Under favorable reaction conditions, this robust and simple catalyst efficiently facilitates the synthesis of a diverse range of compounds with varying complexity and utility. Pd–NHC complexes exhibit significant σ-electron donating potential, enhancing the ease of the oxidative addition process in their mechanistic pathway. Their steric topography further contributes to a rapid reductive elimination. These complexes demonstrate remarkable stability, a result of the strong Pd–ligand bond. The wide variety of Pd–NHC complexes has proven highly efficient in catalyzing reactions across a spectrum of complexities, from simple to intricate. The domain of aminations catalyzed by Pd–NHC has undergone significant diversification, presenting new opportunities, particularly in the realms of material chemistry and natural product synthesis. This review outlines the advancements in Pd–NHC-catalyzed amination reactions, covering literature up to date.

Graphical Abstract

Palladium (Pd) N-heterocyclic carbenes (NHCs) have amassed high recognition recently. They are efficient complexes with tuneable complexities promoting catalysis significantly. Amination reactions have paved way toward the formation of C–N bonds and, in turn, realizing structurally relevant molecules in organic chemistry. Inspired by these facets, we have tried to encompass in this review, the developments in Pd–NHC-catalyzed amination reactions and carries reports up to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11

(Reproduced with permission from Ref. [31])

Fig. 1
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Fig. 2
Scheme 16
Scheme 17
Fig. 3
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24.
Scheme 25
Fig. 4
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Fig. 5
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Fig. 6
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Fig. 7
Scheme 45

Similar content being viewed by others

Abbreviations

acac:

Acetylacetonate

BIAN:

Acenaphthoimidazolylidene

Br:

Bromide

Cl:

Chloride

2 or 3-ClPy:

2 or 3-Chloropyridine

3-ClTh:

3-Chlorothiophene

Co:

Cobalt

Cs2CO3 :

Cesium carbonate

Cu:

Copper

DME:

Dimethoxyethane

DMF:

Dimethylformamide

equiv.:

Equivalence

Fe:

Iron

h:

Hour

H2O:

Water

K2CO3 :

Potassium carbonate

K3PO4 :

Potassium phosphate

KHMDS:

Potassium hexamethyldisilazide

KOtAm:

Potassium tert-amylate

KOtBu:

Potassium tert-butoxide

LiOtBu:

Lithium tert-butoxide

min.:

Minutes

Mn:

Manganese

Ni:

Nickel

Pd:

Palladium

Pd–NHC:

Palladium N-heterocyclic carbene

Pd–PEPPSI:

Palladium–pyridine, enhanced, precatalyst preparation, stabilization, and initiation

PS-Pd–NHC:

Polymer supported-palladium N-heterocyclic carbene

RT:

Room temperature

THF:

Tetrahydrofuran

THP:

Tetrahydropyran

References

  1. Farzana R, Radhika S, Saranya S, Anilkumar G (2021) Manganese-catalyzed amination reactions: an overview. Appl Organomet Chem 35:e6421

    Article  CAS  Google Scholar 

  2. Ibrahim K, Saranya PV, Anilkumar G (2022) Recent advances and prospects in the amination of benzoxazoles. ChemistrySelect 7:e202200601

    Article  CAS  Google Scholar 

  3. Flahaut A, Roland S, Mangeney P (2007) Allylic alkylation and amination using mixed (NHC) (phosphine) palladium complexes under biphasic conditions. J Organomet Chem 692:5754

    Article  CAS  Google Scholar 

  4. Hazari N, Melvin PR, Beromi MM (2017) Well-defined nickel and palladium pre-catalysts for cross coupling. Nat Rev Chem 1:0017

    Article  Google Scholar 

  5. Bergbreiter DE, Koizumi H-L, Su H, Tian J (2011) Polyisobutylene-supported N-heterocyclic carbene palladium catalysts. J Organomet Chem 696:1272

    Article  CAS  Google Scholar 

  6. Neetha M, Saranya S, Harry NA, Anilkumar G (2020) Recent advances and perspectives in the copper-catalysed amination of aryl and heteroaryl halides. ChemistrySelect 5:736

    Article  CAS  Google Scholar 

  7. Nandhu CT, Aneeja T, Anilkumar G (2021) Gold-catalyzed amination reactions: progress and prospects. Eur J Org Chem 2021:5799

    Article  CAS  Google Scholar 

  8. Seifinoferest B, Tanbakouchian A, Larijani B, Mahdavi M (2021) Ullman–Goldberg and Buchwald–Hartwig C–N cross couplings: synthetic methods to pharmaceutically potential N-heterocycles. Asian J Org Chem 10:1319

    Article  CAS  Google Scholar 

  9. Chan C-M, Chow Y-C, Yu W-Y (2020) Recent advances in photocatalytic C–N bond coupling reactions. Synthesis 52:2899

    CAS  Google Scholar 

  10. Bariwal J, Van der Eycken E (2013) C–N bond forming cross-coupling reactions: an overview. Chem Soc Rev 42:9283

    Article  CAS  PubMed  Google Scholar 

  11. Guram AS, Buchwald SL (1994) Palladium-catalyzed aromatic aminations with in situ generated aminostannanes. J Am Chem Soc 116:7901

    Article  CAS  Google Scholar 

  12. Guram AS, Rennels RA, Buchwald SL (1995) A Simple catalytic method for the conversion of aryl bromides to arylamines. Angew Chem Int Ed 34:1348

    Article  CAS  Google Scholar 

  13. Louie J, Hartwig JF (1995) Palladium-catalyzed synthesis of aryl amines from aryl halides. Mechanistic studies lead to coupling in the absence of tin reagents. Tetrahedron Lett 36:3609

    Article  CAS  Google Scholar 

  14. Dorel R, Grugel CP, Haydi AM (2019) The Buchwald–Hartwig amination after 25 years. Angew Chem 131:17276

    Article  Google Scholar 

  15. Shen Q, Ogata T, Hartwig JF (2008) Highly reactive, general and long-lived catalysts for palladium-catalyzed amination of heteroaryl and aryl chlorides, bromides and iodides: scope and structure–activity relationships. J Am Chem Soc 130:6586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Caddick S, Cloke FGN, Hitchcock PB, Leonard J, Lewis AKDK, McKerrecher D, Titcomb LR (2002) The first example of simple oxidative addition of an aryl chloride to a discrete palladium N-heterocyclic carbene amination precatalyst. Organometallics 21:4318

    Article  CAS  Google Scholar 

  17. Mannepalli LK, Gadipelly C, Deshmukh G, Likhar P, Pottabathula S (2019) Transition metal exchanged hydroxyapatite/fluorapatite catalysts for C–C and C–N bond forming reactions. Bull Chem Soc Jpn 93:355

    Article  Google Scholar 

  18. Gafurov ZN, Kantyukov AO, Kagilev AA, Balabayev AA, Sinyashin OG, Yakhvarov DG (2017) Nickel and palladium N-heterocyclic carbene complexes: synthesis and application in cross-coupling reactions. Russ Chem Bull 66:1529

    Article  CAS  Google Scholar 

  19. Mai BK, Neris NM, Yang Y, Liu P (2022) Enzymatic nitrogen insertion into unactivated C–H bonds. J Am Chem Soc 144:11215

    Article  CAS  PubMed  Google Scholar 

  20. Gildner PG, Colacot TJ (2015) Reactions of the 21st century: two decades of innovative catalyst design for palladium-catalyzed cross-couplings. Organometallics 34:5497

    Article  CAS  Google Scholar 

  21. Jiang Y, Ma D (2013) Amination and formation of sp2 C–N bonds. Top Organomet Chem 46:87

    CAS  Google Scholar 

  22. Kantchev EAB, O’Brien CJ, Organ MG (2007) Palladium complexes of N-heterocyclic carbene as catalysts for cross-coupling reactions—a synthetic chemist’s perspective. Angew Chem Int Ed 46:2768

    Article  CAS  Google Scholar 

  23. Normand AT, Cavell KJ (2011) N-Heterocyclic carbenes. RSC catalysis series. Royal Society of Chemistry, Cambridge, p 252

    Google Scholar 

  24. Anju PJ, Neetha M, Anilkumar G (2022) Recent advances on N-heterocyclic carbene-palladium-catalyzed heck reaction. ChemistrySelect 7:e202103564

    Article  CAS  Google Scholar 

  25. Nasr IA, Touj N, Koko W, Khan T, Özdemir I, Yasar S, Hamdi N (2020) Biological activities of NHC-Pd(II) complexes based on benzimidazolylidine N-heterocyclic carbene (NHC) ligands bearing aryl substituents. Catalysts 10:1190

    Article  Google Scholar 

  26. Bagal DB, Watile RA, Khedkar MV, Dhake KP, Bhanage BM (2012) PS-Pd–NHC: an efficient and heterogeneous recyclable catalyst for direct reductive amination of carbonyl compounds with primary/secondary amines in aqueous medium. Catal Sci Technol 2:354

    Article  CAS  Google Scholar 

  27. Organ MG, Abdel-Hadi M, Avola S, Dubovyk I, Hadei N, Kantchev EAB, O’Brien CJ, Sayah M, Valente C (2008) Pd-catalyzed aryl amination mediated by well defined N-heterocyclic carbene (NHC)-Pd precatalysts. PEPPSI Chem Eur J 14:2443

    Article  CAS  PubMed  Google Scholar 

  28. Zhu L, Gao T-T, Shao L-X (2011) Well-defined NHC-Pd(II)-Im (NHC:N-heterocyclic carbene; Im:1-methylimidazole) complexes catalyzed amination of aryl chlorides. Tetrahedron 67:5150

    Article  CAS  Google Scholar 

  29. Hoi KH, Çalimsiz S, Froese RDJ, Hopkinson AC, Organ MG (2011) Amination with Pd–NHC complexes: rate and computational studies on the effects of the oxidative addition partner. Chem Eur J 17:3086

    Article  CAS  PubMed  Google Scholar 

  30. Chartoire A, Frogneux X, Nolan SP (2012) An efficient palladium-NHC (NHC=N-heterocyclic carbene) aryl amination pre-catalyst:[Pd(IPr*)(cinnamyl)Cl]. Adv Synth Catal 354:1897

    Article  CAS  Google Scholar 

  31. Chen W-X, Shao L-X (2012) N-Heterocyclic carbene−palladium(II)-1-methylimidazole complex catalyzed amination between aryl chlorides and amides. J Org Chem 77:9236

    Article  CAS  PubMed  Google Scholar 

  32. Meiries S, Speck K, Cordes DB, Slawin AMZ, Nolan SP (2013) [Pd(IPr*OMe)(acac)Cl]: tuning the N-heterocyclic carbene in catalytic C−N bond formation. Organometallics 32:330

    Article  CAS  Google Scholar 

  33. Chartoire A, Boreux A, Martin AR, Nolan SP (2013) Solvent-free aryl amination catalysed by [Pd(NHC)] complexes. RSC Adv 3:3840

    Article  CAS  Google Scholar 

  34. Zhang Y, César V, Storch G, Lugan N, Lavigne G (2014) Skeleton decoration of NHCs by amino groups and its sequential booster effect on the palladium-catalyzed Buchwald–Hartwig amination. Angew Chem Int Ed 53:6482

    Article  CAS  Google Scholar 

  35. Huang P, Wang Y-X, Yu H-F, Lu J-M (2014) N-Heterocyclic carbene−palladium(II)−4,5-dihydrooxazole complexes: synthesis and catalytic activity toward amination of aryl chlorides. Organometallics 33:1587

    Article  CAS  Google Scholar 

  36. Krinsky JL, Martínez A, Godard A, Castillón S, Claver C (2014) Modular synthesis of functionalisable alkoxy-tethered N-heterocyclic carbene ligands and an active catalyst for Buchwald–Hartwig aminations. Adv Synth Catal 356:460

    Article  CAS  Google Scholar 

  37. Sugahara T, Murakami K, Yorimitsu H, Osuka A (2014) Palladium-catalyzed amination of aryl sulfides with anilines. Angew Chem Int Ed 53:9329

    Article  CAS  Google Scholar 

  38. Gao K, Yorimitsu H, Osuka A (2015) Palladium-catalyzed amination of aryl sulfides with aliphatic amines. Eur J Org Chem 2015:2678

    Article  CAS  Google Scholar 

  39. Rühling A, Rakers L, Glorius F (2017) Long alkyl chain NHC palladium complexes for the amination and hydrodehalogenation of aryl chlorides in lipophilic media. ChemCatChem 9:547

    Article  Google Scholar 

  40. Zhang Y, Lavigne G, Lugan N, César V (2017) Buttressing effect as key design principle towards highly efficient palladium/N-heterocyclic carbene Buchwald–Hartwig amination catalysts. Chem Eur J 23:13792

    Article  CAS  PubMed  Google Scholar 

  41. Duan W, Sun Z, Huo Y, Liu Y, Wu G, Wang R, Wu S, Yao Q, Gong S (2018) NHC-Pd complex based on 1,3-bis (4-ethoxycarbonylphenyl) imidazolium chloride: synthesis, structure and catalytic activity in the synthesis of axially chiral benzophenone hydrazone. Appl Organomet Chem 32:e4444

    Article  Google Scholar 

  42. Kim M, Shin T, Lee A, Kim H (2018) Synergistic ligand effect between N-heterocyclic carbene (NHC) and Bicyclic phosphoramidite (briphos) ligands in Pd-catalyzed amination. Organometallics 37:3253

    Article  CAS  Google Scholar 

  43. Fukaya N, Mizusaki T, Hatakeyama K, Seo Y, Inaba Y, Matsumoto K, Lee VY, Takagi Y, Kuwabara J, Kanbara T, Choe Y-K, Choi J-C (2019) [Pd(4–R3Si-IPr)(allyl)Cl], a family of silyl-substituted Pd−NHC complexes: catalytic systems for the Buchwald−Hartwig amination. Organometallics 38:375

    Article  CAS  Google Scholar 

  44. Mizusaki T, Matsumoto K, Takeuchi K, Fukaya N, Takagi Y, Choi J-C (2019) Direct installation of a silyl linker on ready-made NHC ligands: immobilized NHC-Pd complex for Buchwald−Hartwig amination. Organometallics 38:1872

    Article  CAS  Google Scholar 

  45. Fayssal SA, Naret T, Huc T, Buendia J, Martini C, Schulz E (2021) Benzyloxycalix[8]arene supported Pd–NHC cinnamyl complexes for Buchwald–Hartwig C–N cross-couplings. Catal Sci Technol 11:5223

    Article  Google Scholar 

  46. Zheng D-Z, Xiong H-G, Song A-X, Yao H-G, Xu C (2022) Buchwald–Hartwig amination of aryl esters and chlorides catalyzed by the dianisole-decorated Pd–NHC complex. Org Biomol Chem 20:2096

    Article  CAS  PubMed  Google Scholar 

  47. Liu Y, Scattolin T, Gobbo A, Beliš M, Hecke KV, Nolan SP, Cazin CSJ (2022) A Simple synthetic route to well-defined [Pd(NHC)Cl(1-tBuindenyl)] pre-catalysts for cross-coupling reactions. Eur J Inorg Chem 2022:e202100840

    Article  CAS  Google Scholar 

  48. Demir S, Ӧzdemir İ, Çetinkaya B, Arslan H, VanDerVeer D (2011) Synthesis and characterization of bidentate NHC–Pd complexes and their role in amination reactions. Polyhedron 30:195

    Article  CAS  Google Scholar 

  49. Doğan Ӧ, Demir S, Ӧzdemir İ, Çetinkaya B (2011) Palladium(II)–NHC complexes containing benzimidazole ligand as a catalyst for C–N bond formation. Appl Organomet Chem 25:163

    Article  Google Scholar 

  50. Tu T, Fang W, Jiang J (2011) A highly efficient precatalyst for amination of aryl chlorides: synthesis, structure and application of a robust acenaphthoimidazolylidene palladium complex. Chem Commun 47:12358

    Article  CAS  Google Scholar 

  51. Zhang F-Y, Lan X-B, Xu C, Yao H-G, Li T, Liu F-S (2019) Rigid hindered N-heterocyclic carbene palladium precatalysts: synthesis, characterization and catalytic amination. Org Chem Front 6:3292

    Article  CAS  Google Scholar 

  52. Ishigooka J, Iwashita S, Tadori Y (2018) Efficacy and safety of brexpiprazole for the treatment of schizophrenia in Japan: a 6-week, randomized, double-blind, placebo-controlled study. Psychiatry Clin Neurosci 72:692

    Article  CAS  PubMed  Google Scholar 

  53. Mittur A (2011) Piribedil: antiparkinsonian properties and potential clinical utility in dopaminergic disorders. Curr Drug Ther 6:17

    Article  CAS  Google Scholar 

  54. Li D-H, Lan X-B, Song A-X, Rahman MdM, Xu C, Huang F-D, Szostak R, Szostak M, Liu F-S (2022) Buchwald–Hartwig amination of coordinating heterocycles enabled by large-but-flexible Pd–BIAN–NHC catalysts. Chem Eur J 28:e202103341

    Article  CAS  PubMed  Google Scholar 

  55. Fang W, Jiang J, Xu Y, Zhou J, Tu T (2013) Novel robust benzimidazolylidine palladium complexes: synthesis, structure and catalytic applications in amination of chloroarenes. Tetrahedron 69:673

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.N. thanks the University Grants Commission (UGC-New Delhi) for the award of a senior research fellowship

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopinathan Anilkumar.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umabharathi, S.B., Neetha, M. & Anilkumar, G. Palladium N-Heterocyclic Carbene-Catalyzed Aminations: An Outline. Top Curr Chem (Z) 382, 3 (2024). https://doi.org/10.1007/s41061-024-00449-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-024-00449-w

Keywords

Navigation