Skip to main content
Log in

Oxime Esters: Flexible Building Blocks for Heterocycle Formation

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Oxime esters as the applicable building blocks, internal oxidizing agents, and directing groups in the synthesis of –, S-, and O-containing heterocycle scaffolds have gained great attention in the last decade. This review provides an overview of recent advances in the cyclization of oxime esters with various functional group reagents under transition metal and transition metal-free catalyzed conditions. Moreover, the mechanistic aspects of these protocols are explained in detail.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Fig. 2
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Fig. 3
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Scheme 49
Scheme 50

Similar content being viewed by others

Abbreviations

SET:

Single electron transfer

DMSO:

Dimethyl sulfoxide

DBU:

1,8-Diazabicyclo[5.4.0]undec-7-ene

DMA:

Dimethylacetamide

DCE:

1,2-Dichloroethane

TEMPO:

(2,2,6,6-Tetramethylpiperidin-1-yl)oxyl

DMF:

Dimethylformamide

DCM:

Dichloroethane

EWG:

Electron-withdrawing group

TEA:

Triethylamine

IMPDH:

Inosine-5′-monophosphatase dehydrogenase

Py:

Pyridine

NMP:

N-methyl-2-pyrrolidone

EDC:

1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide

PivOH:

Pivalic acid

THF:

Tetrahydrofuran

TBD:

Triazabicyclodecene

TM:

Transition metal

SCE:

Saturated calomel electrode

References

  1. Kundu SK, Rahman M, Dhara P, Hajra A, Majee A (2012) Efficient and alternative approach for preparation of O-benzoyloximes using benzoyl peroxide. Synth Commun 42:1848–1854. https://doi.org/10.1080/00397911.2010.545165

    Article  CAS  Google Scholar 

  2. Santosh Kumar SC, Vijendra Kumar N, Srinivas P, Bettadaiah BK (2014) A convenient practical synthesis of alkyl and aryl oxime esters. Synthesis 46:1847–1852. https://doi.org/10.1055/s-0034-1378350

    Article  CAS  Google Scholar 

  3. Dikusar EA, Zhukovskaya NA (2008) Preparative synthesis of cyclohexanone oxime esters. Russ J Org Chem 44:1389–1391. https://doi.org/10.1134/S1070428008090248

    Article  CAS  Google Scholar 

  4. Zhukovskaya NA, Dikusar EA, Moiseichuk KL, Vyglazov OG (2006) Preparative synthesis of menthone oxime esters. Russ J Appl Chem 79:634–636. https://doi.org/10.1134/S1070427206040252

    Article  CAS  Google Scholar 

  5. March J (2007) March’s advanced organic chemistry: reactions, mechanisms and structure. Wiley, New York, pp 513–514

    Google Scholar 

  6. Huang H, Cai J, Deng GJ (2016) O-Acyl oximes: versatile building blocks for N-heterocycle formation in recent transition metal catalysis. Org Biomol Chem 14:1519–1530. https://doi.org/10.1039/c5ob02417j

    Article  CAS  PubMed  Google Scholar 

  7. Tang X, Huang L, Qi C, Wu W, Jiang H (2013) An efficient synthesis of polysubstituted pyrroles via copper-catalyzed coupling of oxime acetates with dialkyl acetylenedicarboxylates under aerobic conditions. Chem Commun 49:9597–9599. https://doi.org/10.1039/c3cc44896g

    Article  CAS  Google Scholar 

  8. Senadi GC, Lu TY, Dhandabani GK, Wang JJ (2017) Palladium-catalyzed double-isocyanide insertion via oxidative N–O cleavage of acetyl oximes: syntheses of 2H-pyrrol-2-imines. Org Lett 19:1172–1175. https://doi.org/10.1021/acs.orglett.7b00208

    Article  CAS  PubMed  Google Scholar 

  9. Miao CB, Zheng AQ, Zhou LJ, Lyu X, Yang HT (2020) Copper-catalyzed annulation of oxime acetates with α-amino acid ester derivatives: synthesis of 3-sulfonamido/imino 4-pyrrolin-2-ones. Org Lett 22:3381–3385. https://doi.org/10.1021/acs.orglett.0c00870

    Article  CAS  PubMed  Google Scholar 

  10. Wang ZH et al (2022) Copper-catalyzed ring-opening (3+2) annulation of cyclopropenones with ketoxime acetates: access to 1,2-dihydro-pyrrol-3-ones bearing a quaternary carbon center. Eur J Org Chem. https://doi.org/10.1002/ejoc.202200110

    Article  Google Scholar 

  11. Jones DG et al (2005) Discovery of non-steroidal mifepristone mimetics: pyrazoline-based PR antagonists. Bioorg Med Chem Lett 15:3203–3206. https://doi.org/10.1016/j.bmcl.2005.05.001

    Article  CAS  PubMed  Google Scholar 

  12. Minu M, Thangadurai A, Wakode SR, Agrawal SS, Narasimhan B (2009) Synthesis, antimicrobial activity and QSAR studies of new 2,3-disubstituted-3,3a,4,5,6,7-hexahydro-2H-indazoles. Bioorg Med Chem Lett 19:2960–2964. https://doi.org/10.1016/j.bmcl.2009.04.052

    Article  CAS  PubMed  Google Scholar 

  13. Sahoo A, Yabanoglu S, Sinha BN, Ucar G, Basu A, Jayaprakash V (2010) Towards development of selective and reversible pyrazoline based MAO-inhibitors: synthesis, biological evaluation and docking studies. Bioorg Med Chem Lett 20:132–136. https://doi.org/10.1016/j.bmcl.2009.11.015

    Article  CAS  PubMed  Google Scholar 

  14. Wu Q, Zhang Y, Cui S (2014) Divergent syntheses of 2-aminonicotinonitriles and pyrazolines by copper-catalyzed cyclization of oxime ester. Org Lett 16:1350–1353. https://doi.org/10.1021/ol500094w

    Article  CAS  PubMed  Google Scholar 

  15. DeWald A, Lobbestael S, Poschel BP (1981) Pyrazolodiazepines. 3.4-Aryl- 1,6,7,8- tetrahydro-1,3-dialkylpyrazolo[3,4-e ] [1,4]diazepines as antidepressant agents. J Med Chem 24:982–987

    Article  CAS  PubMed  Google Scholar 

  16. Penning TD et al (1997) Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4-methylphenyl)- 3(trifluoromethyl)-1h-pyrazol-1-yl]benzenesulfonamide (sc-58635, celecoxib). J Med Chem 40:1347–1365. https://doi.org/10.1021/jm960803q

    Article  CAS  PubMed  Google Scholar 

  17. Terrett NK, Bell AS, Brown D, Ellis P (1996) Sildenafil (Viagra(TM)), a potent and selective inhibitor of type 5 CGMP phosphodiesterase with utility for the treatment of male erectile dysfunction. Bioorg Med Chem Lett 6:1819–1824. https://doi.org/10.1016/0960-894X(96)00323-X

    Article  Google Scholar 

  18. Xiaodong Tang HJ, Huang L, Yang J, Xu Y, Wu W (2014) Practical synthesis of pyrazoles via copper-catalyzed relay oxidation strategy. Chem Commun 50:14793–14796. https://doi.org/10.1039/b000000x

    Article  Google Scholar 

  19. Yadav A et al (2022) Copper-catalyzed oxidative [3+2]-annulation of quinoxalin-2 (1 H )-one with oxime esters toward functionalized pyrazolo [1, 5-a] quinoxalin-4 (5 H)-ones as opioid receptor modulators. J Org Chem 87:7350–7364. https://doi.org/10.1021/acs.joc.2c00563

    Article  CAS  PubMed  Google Scholar 

  20. Zhu Z et al (2017) Iron-catalyzed synthesis of 2H-imidazoles from oxime acetates and vinyl azides under redox-neutral conditions. Org Lett 19:1370–1373. https://doi.org/10.1021/acs.orglett.7b00203

    Article  CAS  PubMed  Google Scholar 

  21. Sun S, Huang J, Yuan C, Wang G, Guo D, Wang J (2022) Switchable assembly of substituted pyrimidines and 2H-imidazoles via Cu(I)-catalysed ring expansion of 2-meoxyl-2H-azirines. Org Chem Front. https://doi.org/10.1039/d2qo00341d

    Article  Google Scholar 

  22. Zhu C et al (2018) Copper-catalyzed coupling of oxime acetates and aryldiazonium salts: an azide-free strategy toward: N-2-aryl-1,2,3-triazoles. Org Chem Front 5:571–576. https://doi.org/10.1039/c7qo00874k

    Article  CAS  Google Scholar 

  23. Huang H, Cai J, Ji X, Xiao F, Chen Y, Deng GJ (2016) Internal oxidant-triggered aerobic oxygenation and cyclization of indoles under copper catalysis. Angew Chem Int Ed 55:307–311. https://doi.org/10.1002/anie.201508076

    Article  CAS  Google Scholar 

  24. Qu Z, Zhang F, Deng GJ, Huang H (2019) Regioselectivity control in the oxidative formal [3 + 2] annulations of ketoxime acetates and tetrohydroisoquinolines. Org Lett 21:8239–8243. https://doi.org/10.1021/acs.orglett.9b02978

    Article  CAS  PubMed  Google Scholar 

  25. Upare A, Chouhan NK, Ramaraju A, Sridhar B, Bathula SR (2020) Access to pyrrolo[2,1-: A] isoindolediones from oxime acetates and ninhydrin via Cu(I)-mediated domino annulations. Org Biomol Chem 18:1743–1746. https://doi.org/10.1039/d0ob00058b

    Article  CAS  PubMed  Google Scholar 

  26. Huang H, Ji X, Tang X, Zhang M, Li X, Jiang H (2013) Conversion of pyridine to imidazo[1,2-a]pyridines by copper-catalyzed aerobic dehydrogenative cyclization with oxime esters. Org Lett 15:6254–6257. https://doi.org/10.1021/ol403105p

    Article  CAS  PubMed  Google Scholar 

  27. Duan J, Cheng Y, Li R, Li P (2016) Synthesis of spiro[indane-1,3-dione-1-pyrrolines]: via copper-catalyzed heteroannulation of ketoxime acetates with 2-arylideneindane-1,3-diones. Org Chem Front 3:1614–1618. https://doi.org/10.1039/c6qo00454g

    Article  CAS  Google Scholar 

  28. Zhao B, Liang HW, Yang J, Yang Z, Wei Y (2017) Copper-catalyzed intermolecular cyclization between oximes and alkenes: a facile access to spiropyrrolines. ACS Catal 7:5612–5617. https://doi.org/10.1021/acscatal.7b01876

    Article  CAS  Google Scholar 

  29. Gulati U, Rajesh UC, Rawat DS (2020) Magnetically recoverable Ni@CuI hybrid nanocatalysts affording spiropyrroline heterocycles from ketoximes and alkenes. Asian J Org Chem 9:1059–1064. https://doi.org/10.1002/ajoc.202000145

    Article  CAS  Google Scholar 

  30. Ahmad G et al (2006) Synthesis of novel benzofuran isoxazolines as protein tyrosine phosphatase 1B inhibitors. Bioorg Med Chem Lett 16:2139–2143. https://doi.org/10.1016/j.bmcl.2006.01.062

    Article  CAS  PubMed  Google Scholar 

  31. Huang H, Li F, Xu Z, Cai J, Ji X, Deng GJ (2017) Base-promoted [3+2]-annulation of oxime esters and aldehydes for rapid isoxazoline formation. Adv Synth Catal 359:3102–3107. https://doi.org/10.1002/adsc.201700730

    Article  CAS  Google Scholar 

  32. Tang X, Zhu Z, Qi C, Wu W, Jiang H (2016) Copper-catalyzed coupling of oxime acetates with isothiocyanates: a strategy for 2-aminothiazoles. Org Lett 18:180–183. https://doi.org/10.1021/acs.orglett.5b03188

    Article  CAS  PubMed  Google Scholar 

  33. Zhu Z, Tang X, Cen J, Li J, Wu W, Jiang H (2018) Copper-catalyzed synthesis of thiazol-2-yl ethers from oxime acetates and xanthates under redox-neutral conditions. Chem Commun 54:3767–3770. https://doi.org/10.1039/c8cc00445e

    Article  CAS  Google Scholar 

  34. Zhao L, Brinton RD (2005) Structure-based virtual screening for plant-based ER-selective ligands as potential preventative therapy against age-related neurodegenerative diseases. J Med Chem 48:3463–3466

    Article  CAS  PubMed  Google Scholar 

  35. Wang X, Nakagawa-goto K, Kozuka M, Tokuda H, Nishino H (2006) Cancer preventive agents. Part 6: chemopreventive potential of furanocoumarins and related compounds. Pharm Biol 44:116–120. https://doi.org/10.1080/13880200600592178

    Article  CAS  Google Scholar 

  36. Bansal Y, Sethi P, Bansal G (2012) Coumarin: a potential nucleus for anti-inflammatory molecules. Med Chem Res 22:3049–3060. https://doi.org/10.1007/s00044-012-0321-6

    Article  CAS  Google Scholar 

  37. Medina FG, Marrero G, Mac M, Garc AGT (2015) Coumarin heterocyclic derivatives: chemical synthesis and biological activity. Nat Prod Rep. https://doi.org/10.1039/C4NP00162A

    Article  PubMed  Google Scholar 

  38. He M, Yan Z, Wang W, Zhu F, Lin S (2018) Copper-catalyzed radical/radical cross-coupling of ketoxime carboxylates with 4-hydroxycoumarins: a novel synthesis of furo[3,2-c]-coumarins. Tetrahedron Lett 59:3706–3712. https://doi.org/10.1016/j.tetlet.2018.09.007

    Article  CAS  Google Scholar 

  39. Pham QT et al (2020) Iodine-mediated formal [3 + 2] annulation for synthesis of furocoumarin from oxime esters. RSC Adv 10:44332–44338. https://doi.org/10.1039/d0ra07566c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jiang H, Yang J, Tang X, Li J, Wu W (2015) Cu-catalyzed three-component cascade annulation reaction: an entry to functionalized pyridines. J Org Chem 80:8763–8771. https://doi.org/10.1021/acs.joc.5b01621

    Article  CAS  PubMed  Google Scholar 

  41. Zhao MN, Ren ZH, Yu L, Wang YY, Guan ZH (2016) Iron-catalyzed cyclization of ketoxime carboxylates and tertiary anilines for the synthesis of pyridines. Org Lett 18:1194–1197. https://doi.org/10.1021/acs.orglett.6b00326

    Article  CAS  PubMed  Google Scholar 

  42. Gao Q, Yan H, Wu M, Sun J, Yan X, Wu A (2018) Direct synthesis of 2-methylpyridines via I2-triggered [3 + 2 + 1] annulation of aryl methyl ketoxime acetates with triethylamine as the carbon source. Org Biomol Chem 16:2342–2348. https://doi.org/10.1039/c8ob00349a

    Article  CAS  PubMed  Google Scholar 

  43. Yi Y, Zhao MN, Ren ZH, Wang YY, Guan ZH (2017) Synthesis of symmetrical pyridines by iron-catalyzed cyclization of ketoxime acetates and aldehydes. Green Chem 19:1023–1027. https://doi.org/10.1039/c6gc03137d

    Article  CAS  Google Scholar 

  44. Beevers RE et al (2006) Novel indole inhibitors of IMPDH from fragments: synthesis and initial structure–activity relationships. Bioorg Med Chem Lett 16:2539–2542. https://doi.org/10.1016/j.bmcl.2006.01.090

    Article  CAS  PubMed  Google Scholar 

  45. Gao Q, Wang Y, Wang Q, Zhu Y, Liu Z, Zhang J (2018) I2-Triggered N–O cleavage of ketoxime acetates for the synthesis of 3-(4-pyridyl)indoles. Org Biomol Chem 16:9030–9037. https://doi.org/10.1039/c8ob02230e

    Article  CAS  PubMed  Google Scholar 

  46. Guo X, Yang X, Qin M, Liu Y, Yang Y, Chen B (2018) Copper-catalyzed cyclization of ketoxime carboxylates and N-aryl glycine esters for the synthesis of pyridines. Asian J Org Chem 7:692–696. https://doi.org/10.1002/ajoc.201700703

    Article  CAS  Google Scholar 

  47. Upare A, Sathyanarayana P, Kore R, Sharma K, Bathula SR (2018) Catalyst free synthesis of mono- and disubstituted pyrimidines from O-acyl oximes. Tetrahedron Lett 59:2430–2433. https://doi.org/10.1016/j.tetlet.2018.05.023

    Article  CAS  Google Scholar 

  48. Wang Z, Shen L, Yang P, You Y, Zhao J, Yuan W (2022) Access to 4-tri fluoromethyl quinolines via Cu-catalyzed annulation reaction of ketone oxime acetates with ortho-tri fluoroacetyl anilines under redox-neutral conditions. J Org Chem 87:5804–5816. https://doi.org/10.1021/acs.joc.2c00128

    Article  CAS  PubMed  Google Scholar 

  49. Wang Q, Lou J, Huang Z, Yu Z (2019) Rhodium(III)-catalyzed annulation of acetophenone O-acetyl oximes with allenoates through arene C–H activation: an access to isoquinolines. J Org Chem 84:2083–2092. https://doi.org/10.1021/acs.joc.8b03092

    Article  CAS  PubMed  Google Scholar 

  50. Yang X, Liu S, Yu S, Kong L, Lan Y, Li X (2018) Redox-neutral access to isoquinolinones via rhodium(III)-catalyzed annulations of O-pivaloyl oximes with ketenes. Org Lett 20:2698–2701. https://doi.org/10.1021/acs.orglett.8b00906

    Article  CAS  PubMed  Google Scholar 

  51. Jiang H, Yang J, Tang X, Wu W (2016) Divergent syntheses of isoquinolines and indolo[1,2-a]quinazolines by copper-catalyzed cascade annulation from 2-haloaryloxime acetates with active methylene compounds and indoles. J Org Chem 81:2053–2061. https://doi.org/10.1021/acs.joc.5b02914

    Article  CAS  PubMed  Google Scholar 

  52. Zhang ZW, Lin A, Yang J (2014) Methyl ketone oxime esters as nucleophilic coupling partners in Pd-catalyzed C–H alkylation and application in the synthesis of isoquinolines. J Org Chem 79:7041–7050. https://doi.org/10.1021/jo5010586

    Article  CAS  PubMed  Google Scholar 

  53. Yang J et al (2018) Construction of benzene rings by copper-catalyzed cycloaddition reactions of oximes and maleimides: an access to fused phthalimides. Org Lett 20:1216–1219. https://doi.org/10.1021/acs.orglett.8b00141

    Article  CAS  PubMed  Google Scholar 

  54. Yang W et al (2018) Rhodium(III)-catalyzed three-component cascade synthesis of 6H-benzo[c]chromenes through C–H activation. Org Biomol Chem 16:6865–6869. https://doi.org/10.1039/C8OB01938J

    Article  CAS  PubMed  Google Scholar 

  55. Yang W, Zhang H et al (2022) Rh(III)-catalyzed synthesis of dibenzo[b, d]pyran-6-ones from aryl ketone O-acetyl oximes and quinones via C–H activation and C–C bond cleavage. RSC Adv 12:14435–14448. https://doi.org/10.1039/d2ra02074b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huang H, Xu Z, Ji X, Li B, Deng GJ (2018) Thiophene-fused heteroaromatic systems enabled by internal oxidant-induced cascade Bis-heteroannulation. Org Lett 20:4917–4920. https://doi.org/10.1021/acs.orglett.8b02049

    Article  CAS  PubMed  Google Scholar 

  57. Huang H, Wang Q, Xu Z, Deng GJ (2019) Tri-Functional elemental sulfur enabling bis-heteroannulation of methyl ketoximes with methyl N-heteroarenes. Adv Synth Catal 361:591–596. https://doi.org/10.1002/adsc.201801324

    Article  CAS  Google Scholar 

  58. Pham PH, Nguyen KX, Nguyen NP, Pham HTB, Nguyen TT, Phan NTS (2020) 2-Benzoyl thienothiazoles from annulation of C−H bonds in acetophenone oximes. Asian J Org Chem 9:622–625. https://doi.org/10.1002/ajoc.202000046

    Article  CAS  Google Scholar 

  59. Zhou P et al (2019) Direct access to bis-S-heterocycles via copper-catalyzed three component tandem cyclization using S 8 as a sulfur source. Org Biomol Chem 17:3424–3432. https://doi.org/10.1039/c9ob00377k

    Article  CAS  PubMed  Google Scholar 

  60. Huang H, Qu Z, Ji X, Deng GJ (2019) Three-component bis-heterocycliation for synthesis of 2-aminobenzo[4,5]thieno[3,2-: D] thiazoles. Org Chem Front 6:1146–1150. https://doi.org/10.1039/c8qo01365a

    Article  CAS  Google Scholar 

  61. Zhao J, Bao Y, Wang Y et al (2019) Copper-catalyzed group transfer radical cyclization of γ,δ-unsaturated oxime esters: synthesis of ester functionalized pyrrolines. Asian J Org Chem 8:1317–1320. https://doi.org/10.1002/ajoc.201900399

    Article  CAS  Google Scholar 

  62. Wang Y, Ding J, Zhao J, Sun W, Lian C, Chen C (2019) Iminyl radical-promoted imino sulfonylation, imino cyanogenation and imino thiocyanation of γ,δ-unsaturated oxime esters: synthesis of versatile functionalized pyrrolines. Org Chem Front 6:2240–2244. https://doi.org/10.1039/c9qo00421a

    Article  CAS  Google Scholar 

  63. Wang L, Wang C (2019) Copper-catalyzed diamination of oxime ester-tethered unactivated alkenes with unprotected amines. J Org Chem 84:6547–6556. https://doi.org/10.1021/acs.joc.9b00936

    Article  CAS  PubMed  Google Scholar 

  64. Chen B et al (2021) Transition-metal-free visible light-induced imino-trifluoromethylation of unsaturated oxime esters: a facile access to CF3-tethered pyrrolines. Asian J Org Chem 10:2360–2364. https://doi.org/10.1002/ajoc.202100429

    Article  CAS  Google Scholar 

  65. Cai SH, Xie JH, Song S, Ye L, Feng C, Loh TP (2016) Visible-light-promoted carboimination of unactivated alkenes for the synthesis of densely functionalized pyrroline derivatives. ACS Catal 6:5571–5574. https://doi.org/10.1021/acscatal.6b01230

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mahdavi.

Ethics declarations

Conflict of Interest

The authors do not have any conflicts of interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefnejad, F., Gholami, F., Larijani, B. et al. Oxime Esters: Flexible Building Blocks for Heterocycle Formation. Top Curr Chem (Z) 381, 17 (2023). https://doi.org/10.1007/s41061-023-00431-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-023-00431-y

Keywords

Navigation