Skip to main content
Log in

Promising Nitrogen-Doped Graphene Derivatives; A Case Study for Preparations, Fabrication Mechanisms, and Applications in Perovskite Solar Cells

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Graphene (G) has been a game-changer for conductive optical devices and has shown promising aspects for its implementation in the power industry due to its diverse structures. Graphene has played an essential role as electrodes, hole transport layers (HTLs), electron transport layers (ETLs), and a chemical modulator for perovskite layers in perovskite solar cells (PSCs) over the past decade. Nitrogen-doped graphene (N-DG) derivatives are frequently evaluated among the existing derivatives of graphene because of their versatility of design, easy synthesis process, and high throughput. This review presents a state-of-the-art overview of N-DG preparation methods, including wet chemical process, bombardment, and high thermal treatment methods. Furthermore, it focuses on different structures of N-DG derivatives and their various applications in PSC applications. Finally, the challenges and opportunities for N-DG derivatives for the continuous performance improvement of PSCs have been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

This work is a review article, readers will need to contact referenced authors to obtain additional information regarding the data presented.

Abbreviations

APTES:

3-Amino-propyl triethoxysilane

AuCl3 :

Gold chloride

BET:

Brunauer-Emmett-Teller

BP:

Black phosphorus

CCl4 :

Tetrachloromethane

CQDs:

Carbon quantum dots

CVD:

Chemical vapor deposition

CNTs:

Carbon nanotubes

CNx-MWCNTs:

Nitrogen-doped multiwalled carbon nanotubes

cPSCs:

Conventional polymer solar cells

DETA:

Diethylenetriamine

DFT:

Density-functional theory

DMF:

Dimethyl formamide

DMSO:

Dimethyl sulfoxide

d.i.:

Deionized water

EBE:

Electron beam evaporation

EDA:

Ethylenediamine

EDS:

Energy down-shift

EQE:

External quantum efficiency

ETLs:

Electron transport layers

FA:

Fumaric acid

FF :

Fill factor

G:

Graphene

GC:

Glassy carbon

GFs:

Graphene frameworks

GICs:

Graphite-intercalation compounds

GN-GQDs:

Graphite–nitrogen doped graphene quantum dots

GO:

Graphene oxide

GR:

Single-layer graphene

HCB:

Hexachlorobenzene

HCl:

Hydrogen chloride

HTLs:

Hole transport layers

HUMO:

Highest occupied molecular orbital

ILs:

Ionic liquids

IPCE:

Incident photon to current conversion efficiency

J-V:

Current density-voltage

JSC :

Short-circuit current density

LI:

Laser irradiation

LUMO:

Lowest unoccupied molecular orbital

Li3N:

Lithium nitride

MAI:

Methylammonium iodide

MAPbI3 :

Methylammonium lead iodide

MOFs:

Metal-organic framework

N:

Nitrogen

N3C3Cl3 :

Cyanuric chloride

N-DG:

Nitrogen-doped graphene

NG-AB:

Nitrogen-doped graphene containing azobenzene

N-GFs:

Nitrogen-doped graphene frameworks

N-GICs:

Nitrogen-doped GICs

N-GNRs:

N-doped graphene nanoribbons

N-GO:

Nitrogen-doped graphene oxide

N-GQDs:

Nitrogen-doped graphene quantum dots

N-GQSs:

N-doped graphene quantum sheets

N-rGO:

Nitrogen-reduced graphene oxide

NRs:

Nanorods

ox-N-GNRs:

Oxidized-NGNRs

ORR:

Oxygen reduction reaction

BCP:

Bathocuproine

PCBM:

[6, 6] Phenyl-C61-butyric acid methyl ester C60 bis adduct

PCE:

Power conversion efficiency

PCP:

Pentachloropyridine

PDs:

Photodetectors

PEDOT:PSS:

Poly(3,4-ethylene-dioxythiophene):poly (styrene sulfonate)

PET:

Polyethylene terephthalate

PL:

Photoluminescence

PLQY:

Photoluminescence quantum yield

PRGOs:

Pyridinic-rich nitrogen-doped nanoplates

PSCs:

Perovskite solar cells

PV:

Photovoltaics

RGO:

Reduced graphene oxide

SEM:

Scanning electron microscope

Spiro-MeOTAD:

2,2′,7,7′-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene

TCE:

Conductive electrode

TETA:

Triethylenetetramine

TMDs:

2D materials

UV:

Ultraviolet

UV–Vis:

Ultraviolet–visible

V OC :

Open-circuit voltage

γ-CsPbI3 :

Orthorhombic-cesium lead iodide

2D:

Two-dimensional

3D:

Three-dimensional

References

  1. Acik M, Darling SB (2016) Graphene in perovskite solar cells: device design, characterization and implementation. J Mater Chem A 4:6185–6235

    Article  CAS  Google Scholar 

  2. Yang ZY, Jin LJ, Lu GQ et al (2014) Sponge-templated preparation of high surface area graphene with ultrahigh capacitive deionization performance. Adv Funct Mater 24:3917–3925

    Article  CAS  Google Scholar 

  3. Su C-Y, Lu A-Y, Xu Y et al (2011) High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5:2332–2339

    Article  CAS  Google Scholar 

  4. Jauregui LA, Yue Y, Sidorov AN et al (2010) Thermal transport in graphene nanostructures: experiments and simulations. ECS Trans 28:73–83

    Article  CAS  Google Scholar 

  5. Chen F, Mai Y, Xiao Q et al (2019) Three-dimensional graphene nanosheet films towards high performance solid lubricants. Appl Surf Sci 467:30–36

    Google Scholar 

  6. Liu F, Qiu X, Xu J et al (2019) High conductivity and transparency of graphene-based conductive ink: Prepared from a multi-component synergistic stabilization method. Prog Org Coat 133:125–130

    Article  CAS  Google Scholar 

  7. Jang CW, Kim JM, Choi S-H (2019) Lamination-produced semi-transparent/flexible perovskite solar cells with doped-graphene anode and cathode. J Alloy Compd 775:905–911

    Article  CAS  Google Scholar 

  8. Gong K, Hu J, Cui N et al (2021) The roles of graphene and its derivatives in perovskite solar cells: a review. Mater Des 211:110170

    Article  CAS  Google Scholar 

  9. Dai X, Koshy P, Sorrell C et al (2020) Focussed review of utilization of graphene-based materials in electron transport layer in Halide Perovskite solar cells. Materials-Based Issues Energies 13:6335

    CAS  Google Scholar 

  10. Zhang J, Fan J, Cheng B et al (2020) Graphene-based materials in planar perovskite solar cells. Solar RRL 4:2000502

    Article  CAS  Google Scholar 

  11. Cheng J (2019) Drinking water filtration device and filtration method based on graphene technologies, in, Vol Google Patents

  12. Sattar T (2019) Current review on synthesis, composites and multifunctional properties of graphene. Top Curr Chem 377:10

    Article  Google Scholar 

  13. Wang H, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2:781–794

    Article  CAS  Google Scholar 

  14. Tang B, Wang S, Li R et al (2019) Urea treated metal organic frameworks-graphene oxide composites derived N-doped Co-based materials as efficient catalyst for enhanced oxygen reduction. J Power Sources 425:76–86

    Article  CAS  Google Scholar 

  15. Vinayan BP, Nagar R, Rajalakshmi N et al (2012) Novel platinum-cobalt alloy nanoparticles dispersed on nitrogen-doped graphene as a cathode electrocatalyst for PEMFC applications. Adv Func Mater 22:3519–3526

    Article  CAS  Google Scholar 

  16. Duan J, Chen S, Dai S et al (2014) Shape control of Mn3O4 nanoparticles on nitrogen-doped graphene for enhanced oxygen reduction activity. Adv Funct Mater 24:2072–2078

    Article  CAS  Google Scholar 

  17. Hou Y, Wen Z, Cui S et al (2015) An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting. Adv Func Mater 25:872–882

    Article  CAS  Google Scholar 

  18. Wang H, Zhang C, Liu Z et al (2011) Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J Mater Chem 21:5430–5434

    Article  CAS  Google Scholar 

  19. Jayaramulu K, Masa J, Tomanec O et al (2017) Nanoporous nitrogen-doped graphene oxide/nickel sulfide composite sheets derived from a metal-organic framework as an efficient electrocatalyst for hydrogen and oxygen evolution. Adv Func Mater 27:1700451

    Article  Google Scholar 

  20. Hadadian M, Correa-Baena JP, Goharshadi EK et al (2016) Enhancing efficiency of perovskite solar cells via N-doped graphene: crystal modification and surface passivation. Adv Mater 28:8681–8686

    Article  CAS  Google Scholar 

  21. Lee SJ, Theerthagiri J, Nithyadharseni P et al (2021) Heteroatom-doped graphene-based materials for sustainable energy applications: a review. Renew Sustain Energy Rev 143:110849

    Article  CAS  Google Scholar 

  22. (2021) Solar cells—theory, materials and recent advances. IntechOpen

  23. Elseman AM, Xu C, Yao Y et al (2020) Electron transport materials: evolution and case study for high-efficiency perovskite solar cells. Solar RRL 4:2000136

    Article  CAS  Google Scholar 

  24. Kojima A, Teshima K, Shirai Y et al (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051

    Article  CAS  Google Scholar 

  25. Xu CY, Hu W, Wang G et al (2019) Coordinated optical matching of a texture interface made from demixing blended polymers for high-performance inverted perovskite solar cells. ACS Nano 14:196–203

    Article  Google Scholar 

  26. Elseman AM, Rashad MM (2022) Influence of nitrogen atmosphere one-step heating assisted the solution processing of Kesterite Cu2ZnSnS4 as hole extraction on the efficacy of the inverted perovskite solar cells. Opt Mater 124:111998

    Article  CAS  Google Scholar 

  27. (2022) Best Research-cell Efficiencies NREL, https://www.nrel.gov/pv/cell-efficiency.html.

  28. Wei D, Ma F, Wang R et al (2018) Ion-migration inhibition by the cation–π interaction in perovskite materials for efficient and stable perovskite solar cells. Adv Mater 30:1707583

    Article  Google Scholar 

  29. Raman RK, GurusamyThangavelu SA, Venkataraj S et al (2021) Materials, methods and strategies for encapsulation of perovskite solar cells: from past to present. Renew Sustain Energy Rev 151:111608

    Article  CAS  Google Scholar 

  30. Elseman AM, Luo L, Song QL (2020) Self-doping synthesis of trivalent Ni2O3 as a hole transport layer for high fill factor and efficient inverted perovskite solar cells. Dalton Trans 49:14243–14250

    Article  CAS  Google Scholar 

  31. Liu DB, Wang G, Niu LB et al (2019) Energy level bending of organic-inorganic halide perovskite by interfacial dipole physica status solidi (RRL)–rapid. Res Lett 13:1900103

    Google Scholar 

  32. Elseman AM, Radwan AS, Makhlouf MM et al (2022) Molecular modelling, optical and electrochemical properties of novel 3-arylazo-thieno [3, 2-b] pyranone for photovoltaic application. Russ J Gen Chem 92:1121–1128

    Article  CAS  Google Scholar 

  33. Wang G, Liao LP, Elseman AM et al (2020) An internally photoemitted hot carrier solar cell based on organic-inorganic perovskite. Nano Energy 68:104383

    Article  CAS  Google Scholar 

  34. Huang P, Wang Z, Liu Y et al (2017) Water-Soluble 2D transition metal dichalcogenides as the hole-transport layer for highly efficient and stable p–i–n perovskite solar cells. ACS Appl Mater Interfaces 9:25323–25331

    Article  CAS  Google Scholar 

  35. Mahmoudi T, Wang Y, Hahn Y-B (2018) Graphene and its derivatives for solar cells application. Nano Energy 47:51–65

    Article  CAS  Google Scholar 

  36. Sajid S, Elseman AM, Wei D et al (2019) NiO@ carbon spheres: a promising composite electrode for scalable fabrication of planar perovskite solar cells at low cost. Nano Energy 55:470–476

    Article  CAS  Google Scholar 

  37. Litvin AP, Zhang X, Berwick K et al (2020) Carbon-based interlayers in perovskite solar cells. Renew Sustain Energy Rev 124:109774

    Article  CAS  Google Scholar 

  38. Chen W, Li K, Wang Y et al (2017) Black phosphorus quantum dots for hole extraction of typical planar hybrid perovskite solar cells. J Phys Chem Lett 8:591–598

    Article  CAS  Google Scholar 

  39. Feng S, Yang Y, Li M et al (2016) High-performance perovskite solar cells engineered by an ammonia modified graphene oxide interfacial layer. ACS Appl Mater Interfaces 8:14503–14512

    Article  CAS  Google Scholar 

  40. Barrejón M, Arellano LM, Gobeze HB et al (2018) N-Doped graphene/C60 covalent hybrid as a new material for energy harvesting applications. Chem Sci 9:8221–8227

    Article  PubMed Central  Google Scholar 

  41. Zhu Z, Ma J, Wang Z et al (2014) Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. J Am Chem Soc 136:3760–3763

    Article  CAS  Google Scholar 

  42. Bon SB, Valentini L, Kenny J (2010) Preparation of extended alkylated graphene oxide conducting layers and effect study on the electrical properties of PEDOT:PSS polymer composites. Chem Phys Lett 494:264–268

    Article  Google Scholar 

  43. Wen X, Wu J, Gao D et al (2016) Interfacial engineering with amino-functionalized graphene for efficient perovskite solar cells. J Mater Chem A 4:13482–13487

    Article  CAS  Google Scholar 

  44. Tetsuka H, Nagoya A, Fukusumi T et al (2016) Molecularly designed, nitrogen-functionalized graphene quantum dots for optoelectronic devices. Adv Mater 28:4632–4638

    Article  CAS  Google Scholar 

  45. Kim J, Teridi MAM, Bin MohdYusoff AR et al (2016) Stable and null current hysteresis perovskite solar cells based nitrogen doped graphene oxide nanoribbons hole transport layer. Sci Rep 6:27773

    Article  CAS  PubMed Central  Google Scholar 

  46. Bi E, Chen H, Xie F et al (2017) Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells. Nat Commun 8:15330

    Article  CAS  PubMed Central  Google Scholar 

  47. Heo JH, Shin DH, Jang MH et al (2017) Highly flexible, high-performance perovskite solar cells with adhesion promoted AuCl 3-doped graphene electrodes. J Mater Chem A 5:21146–21152

    Article  CAS  Google Scholar 

  48. Zhu Y, Jia S, Zheng J et al (2018) Facile synthesis of nitrogen-doped graphene frameworks for enhanced performance of hole transport material-free perovskite solar cells. J Mater Chem C 6:3097–3103

    Article  CAS  Google Scholar 

  49. Wang Y, Zhou Y, Zhang T et al (2018) Integration of a functionalized graphene nano-network into a planar perovskite absorber for high-efficiency large-area solar cells. Mater Horizons 5:868–873

    Article  CAS  Google Scholar 

  50. Kim JM, Kim S, Choi S-H (2018) High-performance nip-type perovskite photodetectors employing graphene-transparent conductive electrodes N-type doped with amine group molecules. ACS Sustain Chem Eng 7:734–739

    Article  Google Scholar 

  51. Bian H, Wang Q, Yang S et al (2019) Nitrogen-doped graphene quantum dots for 80% photoluminescence quantum yield for inorganic γ-CsPbI3 perovskite solar cells with efficiency beyond 16%. J Mater Chem A 7:5740–5747

    Article  CAS  Google Scholar 

  52. Long D, Li W, Ling L et al (2010) Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide. Langmuir 26:16096–16102

    Article  CAS  Google Scholar 

  53. Wang R, Wang Y, Xu C et al (2013) Facile one-step hydrazine-assisted solvothermal synthesis of nitrogen-doped reduced graphene oxide: reduction effect and mechanisms Rsc. Advances 3:1194–1200

    Google Scholar 

  54. Cruz-Silva R, Morelos-Gómez A, Vega-Díaz S et al (2013) Formation of nitrogen-doped graphene nanoribbons via chemical unzipping. ACS Nano 7:2192–2204

    Article  CAS  Google Scholar 

  55. Villalpando-Paez F, Zamudio A, Elias A et al (2006) Synthesis and characterization of long strands of nitrogen-doped single-walled carbon nanotubes. Chem Phys Lett 424:345–352

    Article  CAS  Google Scholar 

  56. Lee KH, Oh J, Son JG et al (2014) Nitrogen-doped graphene nanosheets from bulk graphite using microwave irradiation. ACS Appl Mater Interfaces 6:6361–6368

    Article  CAS  Google Scholar 

  57. Jeong HM, Lee JW, Shin WH et al (2011) Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett 11:2472–2477

    Article  CAS  Google Scholar 

  58. Kumar NA, Nolan H, McEvoy N et al (2013) Plasma-assisted simultaneous reduction and nitrogen doping of graphene oxide nanosheets. J Mater Chem A 1:4431–4435

    Article  CAS  Google Scholar 

  59. Li X, Tang T, Li M et al (2015) Nitrogen-doped graphene films from simple photochemical doping for n-type field-effect transistors. Appl Phys Lett 106:013110

    Article  Google Scholar 

  60. Zhang C, Fu L, Liu N et al (2011) Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources. Adv Mater 23:1020–1024

    Article  CAS  Google Scholar 

  61. Primo A, Atienzar P, Sanchez E et al (2012) From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chem Commun 48:9254–9256

    Article  CAS  Google Scholar 

  62. Li X, Wang H, Robinson JT et al (2009) Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc 131:15939–15944

    Article  CAS  Google Scholar 

  63. Elseman AM, Shalan AE, Rashad MM et al (2017) Easily attainable new approach to mass yield ferrocenyl Schiff base and different metal complexes of ferrocenyl Schiff base through convenient ultrasonication-solvothermal method. J Phys Organic Chem 30:e3639

    Article  Google Scholar 

  64. Deng D, Pan X, Yu L et al (2011) Toward N-doped graphene via solvothermal synthesis. Chem Mater 23:1188–1193

    Article  CAS  Google Scholar 

  65. Lai L, Chen L, Zhan D et al (2011) One-step synthesis of NH2-graphene from in situ graphene-oxide reduction and its improved electrochemical properties. Carbon 49:3250–3257

    Article  CAS  Google Scholar 

  66. Daems N, Sheng X, Vankelecom I, et al (2014) Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction. J Mater Chem A 2

  67. Zhang C, Hao R, Liao H et al (2013) Synthesis of amino-functionalized graphene as metal-free catalyst and exploration of the roles of various nitrogen states in oxygen reduction reaction. Nano Energy 2:88–97

    Article  CAS  Google Scholar 

  68. Stankovich S, Dikin DA, Piner RD et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  69. Lee MS, Choi H-J, Baek J-B et al (2017) Simple solution-based synthesis of pyridinic-rich nitrogen-doped graphene nanoplatelets for supercapacitors. Appl Energy 195:1071–1078

    Article  CAS  Google Scholar 

  70. Lee MS, Chang DW (2017) Facile synthesis of nitrogen-doped graphene containing azobenzene moieties for the oxygen reduction reaction. Mol Cryst Liq Cryst 653:33–38

    Article  CAS  Google Scholar 

  71. Moon J, An J, Sim U et al (2014) One-step synthesis of N-doped graphene quantum sheets from monolayer graphene by nitrogen plasma. Adv Mater 26:3501–3505

    Article  CAS  PubMed Central  Google Scholar 

  72. Shao Y, Zhang S, Engelhard MH et al (2010) Nitrogen-doped graphene and its electrochemical applications. J Mater Chem 20:7491–7496

    Article  CAS  Google Scholar 

  73. Rybin M, Pereyaslavtsev A, Vasilieva T et al (2016) Efficient nitrogen doping of graphene by plasma treatment. Carbon 96:196–202

    Article  CAS  Google Scholar 

  74. Qu D, Zheng M, Zhang L et al (2014) Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci Rep 4:5294

    Article  CAS  PubMed Central  Google Scholar 

  75. Susi T, Kotakoski J, Arenal R et al (2013) Atomistic description of electron beam damage in nitrogen-doped graphene and single-walled carbon nanotubes (vol 6, pg 8837, 2012). ACS Nano 7:7436–7436

    Article  CAS  Google Scholar 

  76. Rummeli MH, Ta HQ, Mendes RG et al (2019) New frontiers in electron beam-driven chemistry in and around graphene. Adv Mater 31:1800715

    Article  Google Scholar 

  77. Xin Y, Liu J-G, Jie X et al (2012) Preparation and electrochemical characterization of nitrogen doped graphene by microwave as supporting materials for fuel cell catalysts. Electrochim Acta 60:354–358

    Article  CAS  Google Scholar 

  78. Khan A, Khuda F, Elseman AM et al (2018) Innovations in graphene-based nanomaterials in the preconcentration of pharmaceuticals waste. Environ Technol Rev 7:73–94

    Article  Google Scholar 

  79. Cabrero-Vilatela A, Weatherup RS, Braeuninger-Weimer P et al (2016) Towards a general growth model for graphene CVD on transition metal catalysts. Nanoscale 8:2149–2158

    Article  CAS  PubMed Central  Google Scholar 

  80. Hoecker C, Smail F, Bajada M et al (2016) Catalyst nanoparticle growth dynamics and their influence on product morphology in a CVD process for continuous carbon nanotube synthesis. Carbon 96:116–124

    Article  CAS  Google Scholar 

  81. Ito Y, Christodoulou C, Nardi MV et al (2014) Chemical vapor deposition of N-doped graphene and carbon films: the role of precursors and gas phase. ACS Nano 8:3337–3346

    Article  CAS  Google Scholar 

  82. Feng X, Zhang Y, Zhou J et al (2015) Three-dimensional nitrogen-doped graphene as an ultrasensitive electrochemical sensor for the detection of dopamine. Nanoscale 7:2427–2432

    Article  CAS  Google Scholar 

  83. Ullah S, Hasan M, Ta HQ et al (2019) Synthesis of doped porous 3D graphene structures by chemical vapor deposition and its applications. Adv Funct Mater 29:1904457

    Article  CAS  Google Scholar 

  84. Losurdo M, Giangregorio MM, Capezzuto P et al (2011) Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Phys Chem Chem Phys 13:20836–20843

    Article  CAS  Google Scholar 

  85. Dadkhah AA, Rabiee Faradonbeh M, Rashidi A et al (2018) One step synthesis of nitrogen-doped graphene from naphthalene and urea by atmospheric chemical vapor deposition. J Inorganic Organometal Polym Mater 28:1609–1615

    Article  CAS  Google Scholar 

  86. Liu J-Y, Chang H-Y, Truong QD et al (2013) Synthesis of nitrogen-doped graphene by pyrolysis of ionic-liquid-functionalized graphene. J Mater Chem C 1:1713–1716

    Article  CAS  Google Scholar 

  87. Zhu Y, Cao T, Cao C et al (2018) One-pot pyrolysis to N-doped graphene with high-density Pt single atomic sites as heterogeneous catalyst for alkene hydrosilylation. ACS Catal 8:10004–10011

    Article  CAS  Google Scholar 

  88. Mondal T, Bhowmick AK, Krishnamoorti R (2015) Controlled synthesis of nitrogen-doped graphene from a heteroatom polymer and its mechanism of formation. Chem Mater 27:716–725

    Article  CAS  Google Scholar 

  89. Cui H, Zheng J, Zhu Y et al (2015) Graphene frameworks synthetized with Na2CO3 as a renewable water-soluble substrate and their high rate capability for supercapacitors. J Power Sources 293:143–150

    Article  CAS  Google Scholar 

  90. Xiong B, Zhou Y, Zhao Y et al (2013) The use of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for methanol electrocatalytic oxidation. Carbon 52:181–192

    Article  CAS  Google Scholar 

  91. Lin Z, Waller G, Liu Y et al (2012) Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction. Adv Energy Mater 2:884–888

    Article  CAS  Google Scholar 

  92. Zhang H, Kuila T, Kim NH et al (2014) Simultaneous reduction, exfoliation, and nitrogen doping of graphene oxide via a hydrothermal reaction for energy storage electrode materials. Carbon 69:66–78

    Article  Google Scholar 

  93. Chi Y-W, Hu C-C, Huang K-P et al (2016) Manipulation of defect density and nitrogen doping on few-layer graphene sheets using the plasma methodology for electrochemical applications. Electrochim Acta 221:144–153

    Article  CAS  Google Scholar 

  94. Liu C-L, Chang K-H, Hu C-C et al (2012) Microwave-assisted hydrothermal synthesis of Mn3O4/reduced graphene oxide composites for high power supercapacitors. J Power Sources 217:184–192

    Article  CAS  Google Scholar 

  95. Elseman AM, Rashad MM, Hassan AM (2016) Easily attainable, efficient solar cell with mass yield of nanorod single-crystalline organo-metal halide perovskite based on a ball milling technique. ACS Sustain Chem Eng 4:4875–4886

    Article  CAS  Google Scholar 

  96. Sajid S, Elseman AM, Huang H et al (2018) Breakthroughs in NiOx-HTMs towards stable, low-cost and efficient perovskite solar cells. Nano Energy 51:408–424

    Article  CAS  Google Scholar 

  97. Vahidhabanu S, Karuppasamy D, Adeogun AI et al (2017) Impregnation of zinc oxide modified clay over alginate beads: a novel material for the effective removal of congo red from wastewater RSC. Advances 7:5669–5678

    CAS  Google Scholar 

  98. Kim Y, Ryu J, Park M et al (2014) Vapor-phase molecular doping of graphene for high-performance transparent electrodes. ACS Nano 8:868–874

    Article  CAS  Google Scholar 

  99. Yue X, Yi S, Wang R et al (2016) Cadmium sulfide and nickel synergetic co-catalysts supported on graphitic carbon nitride for visible-light-driven photocatalytic hydrogen evolution. Sci Rep 6:22268

    Article  CAS  PubMed Central  Google Scholar 

  100. Wang Y, Shao Y, Matson DW et al (2010) Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4:1790–1798

    Article  CAS  Google Scholar 

  101. Yang WS, Noh JH, Jeon NJ et al (2015) High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348:1234–1237

    Article  CAS  Google Scholar 

  102. Ju MJ, Kim JC, Choi H-J et al (2013) N-doped graphene nanoplatelets as superior metal-free counter electrodes for organic dye-sensitized solar cells. ACS Nano 7:5243–5250

    Article  CAS  Google Scholar 

  103. Peng W, Li S, Li M et al (2022) Enhancement of the electron transportation in the perovskite solar cells via optimizing the photoelectric properties of electron transport layer with nitrogen-doped graphene quantum dots. J Mater Sci Mater Electron 33:14443–14456

    Article  CAS  Google Scholar 

  104. Yang S, Sun J, Li X et al (2014) Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection. J Mater Chem A 2:8660–8667

    Article  CAS  Google Scholar 

  105. Gatti T, Casaluci S, Prato M et al (2016) Boosting perovskite solar cells performance and stability through doping a poly-3 (hexylthiophene) hole transporting material with organic functionalized carbon nanostructures. Adv Funct Mater 26:7443–7453

    Article  CAS  Google Scholar 

  106. Shariatinia Z (2020) Recent progress in development of diverse kinds of hole transport materials for the perovskite solar cells: a review. Renew Sustain Energy Rev 119:109608

    Article  CAS  Google Scholar 

  107. Al-Gamal AG, Chowdhury TH, Kabel KI et al (2021) N-functionalized graphene derivatives as hole transport layers for stable perovskite solar cell. Sol Energy 228:670–677

    Article  CAS  Google Scholar 

  108. Hong JA, Jung ED, Yu JC et al (2020) Improved efficiency of perovskite solar cells using a nitrogen-doped graphene-oxide-treated tin oxide layer. ACS Appl Mater Interfaces 12:2417–2423

    Article  CAS  Google Scholar 

  109. Zhao X, Tao L, Li H et al (2018) Efficient planar perovskite solar cells with improved fill factor via interface engineering with graphene. Nano Lett 18:2442–2449

    Article  CAS  Google Scholar 

  110. Jun GH, Jin SH, Lee B et al (2013) Enhanced conduction and charge-selectivity by N-doped graphene flakes in the active layer of bulk-heterojunction organic solar cells. Energy Environ Sci 6:3000–3006

    Article  CAS  Google Scholar 

  111. Chandrasekhar PS, Dubey A, Qiao Q (2020) High efficiency perovskite solar cells using nitrogen-doped graphene/ZnO nanorod composite as an electron transport layer. Sol Energy 197:78–83

    Article  CAS  Google Scholar 

  112. Nie W, Tsai H, Asadpour R et al (2015) High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347:522–525

    Article  CAS  Google Scholar 

  113. Jeon I, Matsuo Y, Maruyama S (2018) Single-walled carbon nanotubes in solar cells. Top Curr Chem 376:4

    Article  Google Scholar 

  114. Gan X, Yang S, Zhang J et al (2019) Graphite-N doped graphene quantum dots as semiconductor additive in perovskite solar cells. ACS Appl Mater Interfaces 11:37796–37803

    Article  CAS  Google Scholar 

  115. Abate A, Hollman DJ, Teuscher J et al (2013) Protic ionic liquids as p-dopant for organic hole transporting materials and their application in high efficiency hybrid solar cells. J Am Chem Soci 135:13538–13548

    Article  CAS  Google Scholar 

  116. Peng W, Anand B, Liu L et al (2016) Influence of growth temperature on bulk and surface defects in hybrid lead halide perovskite films. Nanoscale 8:1627–1634

    Article  CAS  Google Scholar 

  117. Abate A, Saliba M, Hollman DJ et al (2014) Supramolecular halogen bond passivation of organic-inorganic halide perovskite solar cells. Nano Lett 14:3247–3254

    Article  CAS  Google Scholar 

  118. Zhang M, Bai L, Shang W et al (2012) Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J Mater Chem 22:7461–7467

    Article  CAS  Google Scholar 

  119. Moon BJ, Jang D, Yi Y et al (2017) Multi-functional nitrogen self-doped graphene quantum dots for boosting the photovoltaic performance of BHJ solar cells. Nano Energy 34:36–46

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science, Technology & Innovation Funding Authority (STDF), (25250), Egypt, JSPS KAKENHI grant no. 18H02079.

Funding

Open access funding is provided by Science, Technology & Innovation Funding Authority (STDF) in cooperation with the Egyptian Knowledge Bank (EKB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Mourtada Elseman.

Ethics declarations

Conflict of interest

The authors do not have any conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Gamal, A.G., Elseman, A.M., Chowdhury, T.H. et al. Promising Nitrogen-Doped Graphene Derivatives; A Case Study for Preparations, Fabrication Mechanisms, and Applications in Perovskite Solar Cells. Top Curr Chem (Z) 381, 6 (2023). https://doi.org/10.1007/s41061-022-00416-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-022-00416-3

Keywords

Navigation