Skip to main content
Log in

Semi-automatic scan-to-BIM procedure applied to architectural ornaments of Nossa Senhora do Rosário Church, Aracati-CE

  • Research Article
  • Published:
Journal of Building Pathology and Rehabilitation Aims and scope Submit manuscript

Abstract

Heritage constructions in general presents a complex geometry and shapes. The work of generating an accurate digital model of a historical building still a challenge. Heritage Building Information Modelling (HBIM) from point cloud data is a usual methodology to cultural heritage documentation. Scan-to-BIM summarize a workflow from point cloud survey to parametric BIM elements. This paper aims to develop a semi-automatic scan-to-BIM procedure for architectural ornaments of Nossa Senhora do Rosario Church, enhancing the geometrical accuracy of the model and reducing the time-consuming process. The workflow handles with point cloud capture of existing historical building, point cloud segmentation, initial mesh generation from point cloud, mesh improvement, HBIM parametric object creation in BIM environment, and validation of the procedure. The results from applications in three ornaments of the church and then from the validation of the methodology indicates that the scan-to-BIM procedure is useful for HBIM modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Arayici Y (2008) Towards building information modelling for existing structures. Struct Surv 26:210–222. https://doi.org/10.1108/02630800810887108

    Article  Google Scholar 

  2. Arias P, Armesto J, Di-Capua D, González-Drigo R, Lorenzo H, Pérez-Gracia V (2007) Digital photogrammetry, GPR and computational analysis of structural damages in a mediaeval bridge. Eng Fail Anal 14:1444–1457. https://doi.org/10.1016/j.engfailanal.2007.02.001

    Article  Google Scholar 

  3. Cotella VA (2023) From 3D point clouds to HBIM: application of artificial intelligence in cultural heritage. Autom Constr 152:104936. https://doi.org/10.1016/j.autcon.2023.104936

    Article  Google Scholar 

  4. Apollonio FI, Gaiani M, Bertacchi S (2019) Managing cultural heritage with integrated services platform. ISPRS 42:91–98. https://doi.org/10.5194/isprs-Archives-XLII-2-W11-91-2019

    Article  Google Scholar 

  5. Paupério E, Coelho AJ, Arêde D (n.d.) ALCONPAT-Boletim técnico 11-Caracterização, avaliação e recuperação estrutural de construções históricas Structural characterization and monitoring of heritage constructions View project International Symposium on Degradation and Conservation of Ancient (Historical) Materials and Structures. https://doi.org/10.13140/RG.2.1.1445.1606

  6. Cursi S, Simeone D, Toldo I (2015) A semantic web approach for built heritage representation. In: Computer-aided architectural design futures. The next city-new technologies and the future of the built environment: 16th International Conference, CAAD Futures 2015, São Paulo, Brazil, July 8-10, 2015. Selected Papers 16. Springer, Berlin Heidelberg, pp 383–401. https://doi.org/10.1007/978-3-662-47386-3_21

  7. Moyano J, Carreno E, Nieto-Julián JE, Gil-Arizón I, Bruno S (2022) Systematic approach to generate Historical Building Information Modelling (HBIM) in architectural restoration project. Autom Constr 43:104551. https://doi.org/10.1016/j.autcon.2022.104551

    Article  Google Scholar 

  8. Succar B, Saleeb N, Sher W (2016) Model uses: foundations for a modular requirements clarification language. Australasian Universities Building Education (AUBEA2016) 1–12

  9. Lee G, Sacks R, Eastman CM (2006) Specifying parametric building object behavior (BOB) for a building information modeling system. Autom Constr 15:758–776. https://doi.org/10.1016/j.autcon.2005.09.009

    Article  Google Scholar 

  10. Ursini A, Grazzini A, Matrone F, Zerbinatti M (2022) From scan-to-BIM to a structural finite elements model of built heritage for dynamic simulation. Autom Constr 142:104518. https://doi.org/10.1016/j.autcon.2022.104518

    Article  Google Scholar 

  11. Santoni A, Martín-Talaverano R, Quattrini R, Murillo-Fragero JI (2021) Hbim approach to implement the historical and constructive knowledge The case of the Real Colegiata of San Isidoro (León, Spain). Virtual Archaeol Rev 12:49–65. https://doi.org/10.4995/VAR.2021.13661

    Article  Google Scholar 

  12. Faltýnová M, Matoušková E, Šedina J, Pavelka K (2016) Building facade documentation using laser scanning and photogrammetry and data implementation into BIM. ISPRS 41:215–220. https://doi.org/10.5194/isprsarchives-XLI-B3-215-2016

    Article  Google Scholar 

  13. Acierno M, Cursi S, Simeone D, Fiorani D (2017) Architectural heritage knowledge modelling: An ontology-based framework for conservation process. J Cult Herit 24:124–133. https://doi.org/10.1016/j.culher.2016.09.010

    Article  Google Scholar 

  14. Quattrini R, Pierdicca R, Morbidoni C (2017) Knowledge-based data enrichment for HBIM: Exploring high-quality models using the semantic-web. J Cult Herit 28:129–139. https://doi.org/10.1016/j.culher.2017.05.004

    Article  Google Scholar 

  15. Ertürk N (2020) Preservation of digitized intangible cultural heritage in museum storage. Milli Folklor 16(128):100–101

  16. Conti A, Fiorini L, Massaro R, Santoni C, Tucci G (2022) HBIM for the preservation of a historic infrastructure: the Carlo III bridge of the Carolino Aqueduct. Appl Geomatics 14:41–51. https://doi.org/10.1007/s12518-020-00335-2

    Article  Google Scholar 

  17. Biagini C, Capone P, Donato V, Facchini N (2016) Towards the BIM implementation for historical building restoration sites. Autom Constr 71:74–86. https://doi.org/10.1016/j.autcon.2016.03.003

    Article  Google Scholar 

  18. Aryan A, Bosché F, Tang P (2021) Planning for terrestrial laser scanning in construction: a review. Autom Constr 125:103551. https://doi.org/10.1016/j.autcon.2021.103551

    Article  Google Scholar 

  19. Oliver S, Seyedzadeh S, Pour Rahimian F, Dawood N, Rodriguez S (2020) Cost-effective as-built BIM modelling using 3D point clouds and photogrammetry. Curr Trends Civ Struct Eng 4(5). https://doi.org/10.33552/ctcse.2020.04.000599

  20. Jofré-briceño C, Muñoz-La Rivera F, Atencio E, Herrera RF (2021) Implementation of facility management for port infrastructure through the use of uavs, photogrammetry and bim. Sensors 21(19):6686. https://doi.org/10.3390/s21196686

    Article  Google Scholar 

  21. Khodeir LM, Aly D, Tarek S (2016) Integrating HBIM (Heritage Building Information Modeling) tools in the application of sustainable retrofitting of heritage buildings in Egypt. Procedia Environ Sci 34:258–270. https://doi.org/10.1016/j.proenv.2016.04.024

    Article  Google Scholar 

  22. Machete R, Silva JR, Bento R, Falcão AP, Gonçalves AB, Lobo de Carvalho JM, Silva DV (2021) Information transfer between two heritage BIMs for reconstruction support and facility management: the case study of the Chalet of the Countess of Edla, Sintra, Portugal. J Cult Herit 49:94–105. https://doi.org/10.1016/j.culher.2021.02.010

    Article  Google Scholar 

  23. Pocobelli DP, Boehm J, Bryan P, Still J, Grau-Bové J (2018) BIM for heritage science: a review. Herit Sci 6(1):1–15. https://doi.org/10.1186/s40494-018-0191-4

    Article  Google Scholar 

  24. Barazzetti L, Banfi F, Brumana R, Gusmeroli G, Previtali M, Schiantarelli G (2015) Cloud-to-BIM-to-FEM: Structural simulation with accurate historic BIM from laser scans. Simul Model Pract Theory 57:71–87. https://doi.org/10.1016/j.simpat.2015.06.004

    Article  Google Scholar 

  25. Capone M, Lanzara E (2019) Scan-to-BIM vs 3D ideal model HBIM: Parametric tools to study domes geometry. ISPRS 42:219–226. https://doi.org/10.5194/isprs-archives-XLII-2-W9-219-2019

    Article  Google Scholar 

  26. Moyano J, Nieto-Julián JE, Lenin LM, Bruno S (2022) Operability of point cloud data in an architectural heritage information model. Int J Archit Herit 16:1588–1607. https://doi.org/10.1080/15583058.2021.1900951

    Article  Google Scholar 

  27. Murphy M, Mcgovern E, Pavia S (2009) Historic building information modelling (HBIM). Struct Surv 27:311–327. https://doi.org/10.1108/02630800910985108

    Article  Google Scholar 

  28. Quattrini R, Malinverni ES, Clini P, Nespeca R, Orlietti E (2015) From tls to hbim. High quality semantically-aware 3d modeling of complex architecture. ISPRS 40:367–374. https://doi.org/10.5194/isprsarchives-XL-5-W4-367-2015

    Article  Google Scholar 

  29. Thomson C, Boehm J (2015) Automatic geometry generation from point clouds for BIM. Remote Sens (Basel) 7:11753–11775. https://doi.org/10.3390/rs70911753

    Article  Google Scholar 

  30. Bonduel M, Bassier M, Vergauwen M, Pauwels P, Klein R (2017) Scan-to-bim output validation: Towards a standardized geometric quality assessment of building information models based on point clouds. Int Arch Photogramm Remote Sens Spatial Inf Sci 42(2W8):45–52. https://doi.org/10.5194/isprs-archives-XLII-2-W8-45-2017

    Article  Google Scholar 

  31. Rajala M, Penttilä H (2006) Testing 3D building modelling framework in building renovation. Proceedings of the 24th eCAADe Conference, Volos, Greece

  32. Tang P, Huber D, Akinci B, Lipman R, Lytle A (2010) Automatic reconstruction of as-built building information models from laser-scanned point clouds: A review of related techniques. Autom Constr 19:829–843. https://doi.org/10.1016/j.autcon.2010.06.007

    Article  Google Scholar 

  33. Brumana R, Della Torre S, Previtali M, Barazzetti L, Cantini L, Oreni D, Banfi F (2018) Generative HBIM modelling to embody complexity (LOD, LOG, LOA, LOI): surveying, preservation, site intervention—the Basilica di Collemaggio (L’Aquila). Appl Geomatics 10:545–567. https://doi.org/10.1007/s12518-018-0233-3

    Article  Google Scholar 

  34. Santoni A, Martín-Talaverano R, Quattini R, Murillo-Fragero JI (2021) View of HBIM approach to implement the historical and constructive knowledge. The case of the Real Colegiata of San Isidoro (León, Spain). Virtual Archaeol Rev 12:49–65

    Article  Google Scholar 

  35. Vieira M, Ribeiro G, Alves K, Barbosa JE, Isidoro H, Martins T, Magalhães BK, Almeida FE, Moreira E, Mesquita E (2023) Updating the documentation of a historic building: a case study of the José de Alencar theatre. J Build Pathol Rehabil 8(1):36. https://doi.org/10.1007/s41024-023-00281-7

  36. Vieira MM, Ribeiro G, Paulo R, Bessa M, Sousa FR, Moreira E, Mesquita E (2023) Strategy for HBIM implementation using high-resolution 3D architectural documentation based on laser scanning and photogrammetry of the José de Alencar theatre. Digit Appl Archaeol Cult Herit 30:e00287. https://doi.org/10.1016/j.daach.2023.e00287

    Article  Google Scholar 

  37. Rubens T, Ribeiro G, Moreira E, Vieira M, Mesquita E (2023) Digitization of historical heritage: Nossa Senhora do Rosário Church, Aracati-CE. J Build Pathol Rehabil 8(2):71. https://doi.org/10.1007/s41024-023-00320-3

    Article  Google Scholar 

  38. Vieira M, Ribeiro G, Bessa M, Paulo R, Mesquita E (2022) Application of high-resolution scanning and HBIM tools for damage assessment of the José de Alencar house

  39. Moyano J, Odriozola CP, Nieto-Julián JE, Vargas JM, Barrera JA, León J (2020) Bringing BIM to archaeological heritage: Interdisciplinary method/strategy and accuracy applied to a megalithic monument of the Copper Age. J Cult Herit 45:303–314. https://doi.org/10.1016/j.culher.2020.03.010

    Article  Google Scholar 

  40. Bruno N (2018) From survey to analysis for Cultural Heritage management: a new proposal for database design in BIM (Doctoral dissertation, University of Parma)

Download references

Acknowledgements

The authors acknowledge the FUNCAP through financial support to the Scientist Chief Program: Culture; Secretary of Culture of Ceará (SECULT).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Mylene Vieira: analysed the data and wrote the main manuscript.

Ermerson Gonçalves: developed the scan-to-be workflow and results.

Dárcio Matheus Silva: developed the scan-to-be workflow and results.

Esequiel Mesquita: analysed the data and wrote the main manuscript.

Jerfson Lima: developed the scan-to-BIM workflow, analysed the data, and wrote the methodology of the manuscript.

Corresponding author

Correspondence to Mylene M. Vieira.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, M.M., Gonçalves, J.E., de O. Silva, D.M. et al. Semi-automatic scan-to-BIM procedure applied to architectural ornaments of Nossa Senhora do Rosário Church, Aracati-CE. J Build Rehabil 9, 75 (2024). https://doi.org/10.1007/s41024-024-00436-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41024-024-00436-0

Keywords

Navigation