Skip to main content
Log in

Reduction of concrete permeability using admixtures or surface treatments

  • Research Article
  • Published:
Journal of Building Pathology and Rehabilitation Aims and scope Submit manuscript

Abstract

The durability assurance in reinforced concrete is necessary during the design conception and mix design as a preventive measure. Permeability in cementitious materials is a crucial durability indicator that can be influenced by many factors, from capillary porosity to cracks. Under those circumstances, it might be helpful to have concrete with the ability to reduce permeability. In this paper, the effectiveness of incorporating a crystalline admixture, both as an admixture and surface treatment, through characterisation tests, durability tests, and self-healing analyses. A concrete with silica fume as an admixture was also produced for comparison to the use of crystalline admixture (CA). The silica fume showed more efficiency in all assessed properties relative to both the reference and CA for condition with limited water availability. Crystalline admixture is also beneficial over reference concrete when used as an admixture, increasing the compressive strength and decreasing the ingress of chloride and carbon dioxide. The concrete with surface treatment had similar behaviour of reference concrete. Additionally, healing products from the use of crystalline admixture take the form of a needle shape in concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability statement

All data, models, and code generated or used during the study appear in the submitted article.

References

  1. Diamanti MV, Brenna A, Bolzoni F, Berra M, Pastore T, Ormellese M (2013) Effect of polymer modified cementitious coatings on water and chloride permeability in concrete. Constr Build Mater 49:720–728. https://doi.org/10.1016/j.conbuildmat.2013.08.050

    Article  Google Scholar 

  2. Mehta PK, Monteiro PJM (2014) Concreto: microestrutura, propriedades e materiais, 2da edição, IBRACON, São Paulo

  3. Weisheit S, Unterberger SH, Bader T, Lackner R (2016) Assessment of test methods for characterizing the hydrophobic nature of surface-treated High Performance Concrete. Constr Build Mater 110:145–153. https://doi.org/10.1016/j.conbuildmat.2016.02.010

    Article  Google Scholar 

  4. Drochytka R, Ledl M, Bydzovsky J, Zizkova N, Bester J (2019) Use of secondary crystallization and fly ash in waterproofing materials to increase concrete resistance to aggressive gases and liquids. Adv Civ Eng. https://doi.org/10.1155/2019/7530325

    Article  Google Scholar 

  5. Coppola L, Coffetti D, Crotti E (2018) Innovative carboxylic acid waterproofing admixture for self-sealing watertight concretes. Constr Build Mater 171:817–824. https://doi.org/10.1016/j.conbuildmat.2018.03.201

    Article  Google Scholar 

  6. A. concrete Institute (2010) ACI 212 - Report on chemical admixtures for concrete.

  7. Hou P, Cheng X, Qian J, Shah SP (2014) Effects and mechanisms of surface treatment of hardened cement-based materials with colloidal nanoSiO2 and its precursor. Constr Build Mater 53:66–73. https://doi.org/10.1016/j.conbuildmat.2013.11.062

    Article  Google Scholar 

  8. Chandra Sekhara Reddy T, Ravitheja A (2019) Macro mechanical properties of self healing concrete with crystalline admixture under different environments. Ain Shams Eng J 10:23–32. https://doi.org/10.1016/j.asej.2018.01.005

    Article  Google Scholar 

  9. Azarsa P, Gupta R, Biparva A (2019) Assessment of self-healing and durability parameters of concretes incorporating crystalline admixtures and Portland Limestone Cement. Cem Concr Compos 99:17–31. https://doi.org/10.1016/j.cemconcomp.2019.02.017

    Article  Google Scholar 

  10. Ferrara L, Krelani V, Carsana M (2014) A “fracture testing” based approach to assess crack healing of concrete with and without crystalline admixtures. Constr Build Mater 68:535–551. https://doi.org/10.1016/j.conbuildmat.2014.07.008

    Article  Google Scholar 

  11. Roig-Flores M, Moscato S, Serna P, Ferrara L (2015) Self-healing capability of concrete with crystalline admixtures in different environments. Constr Build Mater 86:1–11. https://doi.org/10.1016/j.conbuildmat.2015.03.091

    Article  Google Scholar 

  12. Li R, Hou P, Xie N, Ye Z, Cheng X, Shah SP (2018) Design of SiO2/PMHS hybrid nanocomposite for surface treatment of cement-based materials. Cem Concr Compos 87:89–97. https://doi.org/10.1016/j.cemconcomp.2017.12.008

    Article  Google Scholar 

  13. Khanzadeh Moradllo M, Sudbrink B, Ley MT (2016) Determining the effective service life of silane treatments in concrete bridge decks. Constr Build Mater 116:121–127. https://doi.org/10.1016/j.conbuildmat.2016.04.132

    Article  Google Scholar 

  14. Borg RP, Cuenca E, Gastaldo Brac EM, Ferrara L (2018) Crack sealing capacity in chloride-rich environments of mortars containing different cement substitutes and crystalline admixtures. J Sustain Cem Mater 7:141–159. https://doi.org/10.1080/21650373.2017.1411297

    Article  Google Scholar 

  15. Escoffres P, Desmettre C, Charron JP (2018) Effect of a crystalline admixture on the self-healing capability of high-performance fiber reinforced concretes in service conditions. Constr Build Mater 173:763–774. https://doi.org/10.1016/j.conbuildmat.2018.04.003

    Article  Google Scholar 

  16. Huang H, Ye G, Qian C, Schlangen E (2016) Self-healing in cementitious materials: materials, methods and service conditions. Mater Des 92:499–511. https://doi.org/10.1016/j.matdes.2015.12.091

    Article  Google Scholar 

  17. Žižková N, Nevřivová L, Lédl M (2018) Durability of cement based mortars containing crystalline additives. Defect Diffus Forum 382:246–253. https://doi.org/10.4028/www.scientific.net/DDF.382.246

    Article  Google Scholar 

  18. Sudbrink B, Khanzadeh Moradllo M, Hu Q, Ley MT, Davis JM, Materer N, Apblett A (2017) Imaging the presence of silane coatings in concrete with micro X-ray fluorescence. Cem Concr Res 92:121–127. https://doi.org/10.1016/j.cemconres.2016.11.019

    Article  Google Scholar 

  19. Sandrolini F, Franzoni E, Pigino B (2012) Ethyl silicate for surface treatment of concrete—Part I: Pozzolanic effect of ethyl silicate. Cem Concr Compos 34:306–312. https://doi.org/10.1016/j.cemconcomp.2011.12.003

    Article  Google Scholar 

  20. Sisomphon K, Copuroglu O (2011) Self healing mortars by using different cementitious materials. In: Proc. Int. Conf. Adv. Constr. Mater. through Sci. Eng. Hong Kong, China, pp. 5–7. http://rilem.net/gene/main.php?base=05&id_publication=407&id_papier=7585.

  21. Sisomphon K, Copuroglu O, Koenders EAB (2012) Self-healing of surface cracks in mortars with expansive additive and crystalline additive. Cem Concr Compos 34:566–574. https://doi.org/10.1016/j.cemconcomp.2012.01.005

    Article  Google Scholar 

  22. Jiang Z, Li W, Yuan Z, Yang Z (2014) Self-healing of cracks in concrete with various crystalline mineral additives in underground environment. J Wuhan Univ Technol Mater Sci Ed 29:938–944. https://doi.org/10.1007/s11595-014-1024-2

    Article  Google Scholar 

  23. Muhammad NZ, Keyvanfar A, Muhd MZ, Shafaghat A, Mirza J (2015) Waterproof performance of concrete: a critical review on implemented approaches. Constr Build Mater 101:80–90. https://doi.org/10.1016/j.conbuildmat.2015.10.048

    Article  Google Scholar 

  24. Roig-Flores M, Pirritano F, Serna P, Ferrara L (2016) Effect of crystalline admixtures on the self-healing capability of early-age concrete studied by means of permeability and crack closing tests. Constr Build Mater 114:447–457. https://doi.org/10.1016/j.conbuildmat.2016.03.196

    Article  Google Scholar 

  25. Cappellesso VG, dos Santos Petry N, Dal Molin DCC, Masuero AB (2016) Use of crystalline waterproofing to reduce capillary porosity in concrete. J Build Pathol Rehabil 1:1–12. https://doi.org/10.1007/s41024-016-0012-7

    Article  Google Scholar 

  26. Cuenca E, Tejedor A, Ferrara L (2018) A methodology to assess crack-sealing effectiveness of crystalline admixtures under repeated cracking-healing cycles. Constr Build Mater 179:619–632. https://doi.org/10.1016/j.conbuildmat.2018.05.261

    Article  Google Scholar 

  27. Roig-Flores M, Litina C, Al-Tabbaa A, Serna P (2018) Capacidad de autosanación de mortero con aditivos cristalinos mediante absorción capilar.https://doi.org/10.4995/hac2018.2018.5831

  28. Park B, Choi YC (2018) Self-healing capability of cementitious materials with crystalline admixtures and super absorbent polymers (SAPs). Constr Build Mater 189:1054–1066. https://doi.org/10.1016/j.conbuildmat.2018.09.061

    Article  Google Scholar 

  29. Wang L, Zhang G, Wang P, Yu S (2018) Effects of fly ash and crystalline additive on mechanical properties of two-graded roller compacted concrete in a high RCC arch dam. Constr Build Mater 182:682–690. https://doi.org/10.1016/j.conbuildmat.2018.06.101

    Article  Google Scholar 

  30. Al-harahsheh MS, Al K, Al-makhadmeh L, Hararah M, Mahasneh M (2015) Fly ash based geopolymer for heavy metal removal: a case study on copper removal. J Environ Chem Eng 3:1669–1677

    Article  Google Scholar 

  31. Neville A (2016) Propriedades do concreto, 5th ed., Bookman, Porto Alegre.

  32. Murakami T, Ahn TH, Hashimoto T, Ogura N, Kishi T, Shim KB (2015) A study on new repair methods for subway tunnels using crack self-healing technologies. J Ceram Process Res 16:s95–s97

    Google Scholar 

  33. Helene P, Guignone G, Vieira G, Roncetti L, Moroni F (2018) Avaliação da penetração de cloretos e da vida útil de concretos autocicatrizantes ativados por aditivo cristalino. RIEM IBRACON Struct Mater J 11.

  34. Şahmaran M, Keskin SB, Ozerkan G, Yaman IO (2008) Self-healing of mechanically-loaded self consolidating concretes with high volumes of fly ash. Cem Concr Compos 30:872–879. https://doi.org/10.1016/j.cemconcomp.2008.07.001

    Article  Google Scholar 

  35. Ahn TH, Kishi T (2010) Crack self-healing behavior of cementitious composites incorporating various mineral admixtures. J Adv Concr Technol 8:171–186. https://doi.org/10.3151/jact.8.171

    Article  Google Scholar 

  36. Huang H, Ye G (2011) Application of sodium silicate solution as self-healing agent in cementitious materials Outline • Introduction • Materials and experiments • Results and discussion Problems Research objective, pp 1–9.

  37. Huang H, Ye G, Damidot D (2014) Effect of blast furnace slag on self-healing of microcracks in cementitious materials. Cem Concr Res 60:68–82. https://doi.org/10.1016/j.cemconres.2014.03.010

    Article  Google Scholar 

  38. Ma H, Qian S, Zhang Z (2014) Effect of self-healing on water permeability and mechanical property of Medium-Early-Strength Engineered Cementitious Composites. Constr Build Mater 68:92–101. https://doi.org/10.1016/j.conbuildmat.2014.05.065

    Article  Google Scholar 

  39. Maes M, Snoeck D, De Belie N (2016) Chloride penetration in cracked mortar and the influence of autogenous crack healing. Constr Build Mater 115:114–124. https://doi.org/10.1016/j.conbuildmat.2016.03.180

    Article  Google Scholar 

  40. Suleiman AR, Nehdi ML (2018) Effect of environmental exposure on autogenous self-healing of cracked cement-based materials. Cem Concr Res 111:197–208. https://doi.org/10.1016/j.cemconres.2018.05.009

    Article  Google Scholar 

  41. Wang X, Fang C, Li D, Han N, Xing F (2018) A self-healing cementitious composite with mineral admixtures and built-in carbonate. Cem Concr Compos 92:216–229. https://doi.org/10.1016/j.cemconcomp.2018.05.013

    Article  Google Scholar 

  42. Pedro D, de Brito J, Evangelista L (2018) Durability performance of high-performance concrete made with recycled aggregates, fly ash and densified silica fume. Cem Concr Compos 93:63–74. https://doi.org/10.1016/j.cemconcomp.2018.07.002

    Article  Google Scholar 

  43. Lewis RC (2018) Silica Fume BT—properties of fresh and hardened concrete containing supplementary cementitious materials: state-of-the-art report of the rilem technical committee 238-SCM, Working Group 4. https://doi.org/10.1007/978-3-319-70606-1_3.

  44. Bissonnete B, Pigeon M (1995) Tensile creep at early ages of ordinary, silica fume and fiber reinforced concretes. Cem Concr Res 25:1075–1085

    Article  Google Scholar 

  45. Bhanja S, Sengupta B (2005) Influence of silica fume on the tensile strength of concrete. Cem Concr Res 35:743–747. https://doi.org/10.1016/j.cemconres.2004.05.024

    Article  Google Scholar 

  46. Rashad AM (2015) A brief on high-volume class F fly ash as cement replacement—a guide for civil engineer. Int J Sustain Built Environ Cl. https://doi.org/10.1016/j.ijsbe.2015.10.002

    Article  Google Scholar 

  47. Enfedaque Díaz A, Sánchez Paradela L, Sánchez-Gálvez V (2010) El efecto del humo de sílice y el metacaolín en el proceso de envejecimiento de los morteros de cemento reforzados con fibras de vidrio (GRC). Mate. Constr 60:67–82. https://doi.org/10.3989/mc.2010.52009

    Article  Google Scholar 

  48. Inan Sezer G (2012) Compressive strength and sulfate resistance of limestone and/or silica fume mortars. Constr Build Mater 26:613–618. https://doi.org/10.1016/j.conbuildmat.2011.06.064

    Article  Google Scholar 

  49. Van den Heede P, Maes M, De Belie N (2014) Influence of active crack width control on the chloride penetration resistance and global warming potential of slabs made with fly ash+silica fume concrete. Constr Build Mater 67:74–80. https://doi.org/10.1016/j.conbuildmat.2013.10.032

    Article  Google Scholar 

  50. Haruehansapong S, Pulngern T, Chucheepsakul S (2014) Effect of the particle size of nanosilica on the compressive strength and the optimum replacement content of cement mortar containing nano-SiO2. Constr Build Mater 50:471–477. https://doi.org/10.1016/j.conbuildmat.2013.10.002

    Article  Google Scholar 

  51. Biricik H, Sarier N (2014) Comparative study of the characteristics of nano silica-, silica fume- and fly ash-incorporated cement mortars. Mater Res 17:570–582. https://doi.org/10.1590/S1516-14392014005000054

    Article  Google Scholar 

  52. Çakır Ö, Sofyanlı ÖÖ (2015) Influence of silica fume on mechanical and physical properties of recycled aggregate concrete. HBRC J 11:157–166. https://doi.org/10.1016/j.hbrcj.2014.06.002

    Article  Google Scholar 

  53. Bhalla N, Sharma S, Sharma S, Siddique R (2018) Monitoring early-age setting of silica fume concrete using wave propagation techniques. Constr Build Mater 162:802–815. https://doi.org/10.1016/j.conbuildmat.2017.12.032

    Article  Google Scholar 

  54. American Society for Testing and Materials (2013) ASTM C595/595M-13: Standard Specification for Blended Hydraulic Cements

  55. ANBT (2019) NBR 16697: Portland cement - Requirements

  56. Associaçao_Brasileira_de_Normas_Técnicas (2018) NBR 16607: Portland cement—Determination of setting times

  57. A.B. de N.T. ABNT (2019) NBR 7215—Portland cement—Determination of compressive strength of cylindrical test specimens

  58. Guo Z, Jiang T, Zhang J, Kong X, Chen C, Lehman DE (2020) Mechanical and durability properties of sustainable self-compacting concrete with recycled concrete aggregate and fly ash, slag and silica fume. Constr Build Mater 231:117115. https://doi.org/10.1016/j.conbuildmat.2019.117115

    Article  Google Scholar 

  59. Falmata AM, Sulaiman A, Mohamed RN, Shettima AU (2020) Mechanical properties of self-compacting high-performance concrete with fly ash and silica fume. SN Appl Sci 2:1–11. https://doi.org/10.1007/s42452-019-1746-z

    Article  Google Scholar 

  60. Wang D, Zhang Y, Hong Z (2014) Novel fast-setting chitosan/β-dicalcium silicate bone cements with high compressive strength and bioactivity 40:9799–9808

  61. Jozwiak-Niedzwiedzka D (2015) Microscopic observations of self-healing products in calcareous fly ash mortars. Microsc Res Tech 78:22–29. https://doi.org/10.1002/jemt.22440

    Article  Google Scholar 

  62. Associaçao_Brasileira_de_Normas_Técnicas (2003) NBR NM 248: Aggregates—Sieve analysis of fine and coarse aggregates

  63. Associaçao_Brasileira_de_Normas_Técnicas (2009) NBR NM 52 Fine aggregate—Determination of the bulk specific gravity and apparent specific gravity

  64. Associaçao_Brasileira_de_Normas_Técnicas (2017) NBR 16605: Portland cement and other powdered material—Determination of the specific gravity

  65. American Society for Testing and Materials (2017) ASTM C494/C494M: standard specification for chemical admixtures for concrete

  66. Liu Z, Hansen W (2016) Effect of hydrophobic surface treatment on freeze-thaw durability of concrete. Cem Concr Compos 69:49–60. https://doi.org/10.1016/j.cemconcomp.2016.03.001

    Article  Google Scholar 

  67. Nishiwaki T, Sasaki H, Kwon SM (2015) Experimental study on self-healing effect of FRCC with PVA fibers and additives. J Ceram Process Res 16:89s–94s

    Google Scholar 

  68. Associaçao_Brasileira_de_Normas_Técnicas, NBR NM 67 (1998) Concrete—Slump test for determination of the consistency

  69. Associaçao_Brasileira_de_Normas_Técnicas, BNR 5739 - Concrete - Compression test of cylindrical specimes, 2018.

  70. Associaçao_Brasileira_de_Normas_Técnicas (2005) NBR 9778—Hardened mortar and concrete - Determination of absorption, voids and specific gravity..

  71. American Society for Testing & Materials C 1202 (2019) Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration

  72. American Society for Testing and Materials (2016) ASTM C597: standard test method for pulse velocity through concrete.

  73. Van Tittelboom K, De Belie N, De Muynck W, Verstraete W (2010) Use of bacteria to repair cracks in concrete. Cem Concr Res 40:157–166. https://doi.org/10.1016/j.cemconres.2009.08.025

    Article  Google Scholar 

  74. Xu J, Yao W (2014) Multiscale mechanical quantification of self-healing concrete incorporating non-ureolytic bacteria-based healing agent. Cem Concr Res 64:1–10. https://doi.org/10.1016/j.cemconres.2014.06.003

    Article  Google Scholar 

  75. Mostavi E, Asadi S, Hassan MM, Alansari M (2015) Evaluation of self-healing mechanisms in concrete with double-walled sodium silicate microcapsules. J Mater Civ Eng 27:04015035. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001314

    Article  Google Scholar 

  76. Krelani V, Krelani V, Moretti F (2016) Autogenous healing on the recovery of mechanical performance of high performance fibre reinforced cementitious composites (HPFRCCs): Part 2—correlation between healing of mechanical performance and crack sealing. Cem Concr Compos 73:299–315. https://doi.org/10.1016/j.cemconcomp.2016.08.003

    Article  Google Scholar 

  77. Williams RP, van Riessen A (2016) The first 20 hours of geopolymerization: an in situ WAXS study of flyash-based geopolymers. Mater (Basel) 9:1–13. https://doi.org/10.3390/MA9070552

    Article  Google Scholar 

  78. Ferrara L, Krelani V, Moretti F (2016) On the use of crystalline admixtures in cement based construction materials : from porosity reducers to promoters of self healing. Smart Mater Struct 25:17. https://doi.org/10.1088/0964-1726/25/8/084002

    Article  Google Scholar 

  79. Ferrara L, Krelani V, Moretti F, Roig Flores M, Serna Ros P (2017) Effects of autogenous healing on the recovery of mechanical performance of High Performance Fibre Reinforced Cementitious Composites (HPFRCCs): Part 1. Cem Concr Compos 83:76–100. https://doi.org/10.1016/j.cemconcomp.2017.07.010

    Article  Google Scholar 

  80. Yang K, Song J, Ashour A, . Lee E (2008) Properties of cementless mortars activated by sodium silicate. Constr Build Mater 22:1981–1989. https://doi.org/10.1016/j.conbuildmat.2007.07.003

    Article  Google Scholar 

  81. Sherir MAA, Hossain KMA, Lachemi M (2016) Self-healing and expansion characteristics of cementitious composites with high volume fly ash and MgO-type expansive agent. Constr Build Mater 127:80–92. https://doi.org/10.1016/j.conbuildmat.2016.09.125

    Article  Google Scholar 

  82. Al-Kheetan MJ, Rahman MM, Chamberlain DA (2017) Influence of early water exposure on modified cementitious coating. Constr Build Mater 141:64–71. https://doi.org/10.1016/j.conbuildmat.2017.02.159

    Article  Google Scholar 

  83. Byoungsun P, Young CC (2019) Investigating a new method to assess the self-healing performance of hardened cement pastes containing supplementary cementitious materials and crystalline admixtures. J Mater Res Technol 8:6058–6073. https://doi.org/10.1016/j.jmrt.2019.09.080

    Article  Google Scholar 

  84. Li H, Xiao HG, Yuan J, Ou J (2004) Microstructure of cement mortar with nano-particles. Compos Part B Eng 35:185–189. https://doi.org/10.1016/S1359-8368(03)00052-0

    Article  Google Scholar 

  85. Wongkeo W, Thongsanitgarn P, Chindaprasirt P, Chaipanich A (2013) Thermogravimetry of ternary cement blends. J Therm Anal Calorim 113:1079–1090. https://doi.org/10.1007/s10973-013-3017-3

    Article  Google Scholar 

  86. Yamato K, Sasaki A, Ito T, Yoshitake I (2020) Resistance properties to chloride ingress of standard-cured concrete made with an admixture incorporating rich SiO2 and Al2O3. Int J Concr Struct Mater. https://doi.org/10.1186/s40069-020-0391-7

    Article  Google Scholar 

  87. Mazloom M, Ramezanianpour AA, Brooks JJ (2004) Effect of silica fume on mechanical properties of high-strength concrete. Cem Concr Compos 26:347–357. https://doi.org/10.1016/S0958-9465(03)00017-9

    Article  Google Scholar 

  88. Peng MX, Wang ZH, Shen SH, Xiao QG, Li LJ, Tang YC, Hu LL (2017) Alkali fusion of bentonite to synthesize one-part geopolymeric cements cured at elevated temperature by comparison with two-part ones. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2016.11.010

    Article  Google Scholar 

  89. Zhang P, Wittmann FH, Villmann B, Zhao T-J, Slowik V (2008) Moisture diffusion in and capillary suction of integral water repellent cement based materials, Hydrophobe V, pp 273–286.

  90. Bertolini L (2010) Materiais de construção: Patologia, reabilitação e prevenção, oficina de, São Paulo.

  91. Reiterman P, Pazderka J (2016) Crystalline coating and its influence on the water transport in concrete. Adv Civ Eng. https://doi.org/10.1155/2016/2513514

    Article  Google Scholar 

  92. Akhavan A, Shafaatian SMH, Rajabipour F (2012) Quantifying the effects of crack width, tortuosity, and roughness on water permeability of cracked mortars. Cem Concr Res 42:313–320. https://doi.org/10.1016/j.cemconres.2011.10.002

    Article  Google Scholar 

  93. Van Mullem T, Gruyaert E, Debbaut B, Caspeele R, De Belie N (2019) Novel active crack width control technique to reduce the variation on water permeability results for self-healing concrete. Constr Build Mater 203:541–551. https://doi.org/10.1016/j.conbuildmat.2019.01.105

    Article  Google Scholar 

  94. Gagné R, Argouges M (2012) A study of the natural self-healing of mortars using air-flow measurements. Mater Struct Constr 45:1625–1638. https://doi.org/10.1617/s11527-012-9861-y

    Article  Google Scholar 

  95. Krelani V (2015) Self healing capacity of cementitious composites, politecocnico di Milano, pp 102–118.

  96. Teghidet H (2013) Etude de la cristallisation contrôlée de la calcite par voie électrochimique . Effet des ions étrangers au système calcocarbonique sur la nucléation-croissance de la calcite. To cite this version : HAL Id : tel-00788536 Spécialité : Electrochimie Sujet

Download references

Acknowledgements

The authors would like to thank the LNNano for technical support during electron microscopy work (proposal SEM 24390) and the Laboratório Materiais e Tecnologia do Ambiente Construído (LAMTAC/UFRGS) for technical support during all analysis.

Funding

Participation of Brazilian authors was sponsored by CNPq (Brazilian National Council for Scientific and Technological Development) through the research fellowships PQ 310956/2016–1 and PQ 311295/2019–3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Giaretton Cappellesso.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cappellesso, V.G., Petry, N.d., Longhi, M.A. et al. Reduction of concrete permeability using admixtures or surface treatments. J Build Rehabil 7, 38 (2022). https://doi.org/10.1007/s41024-022-00176-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41024-022-00176-z

Keywords

Navigation