Skip to main content
Log in

Coordinated Multicell Beamforming Based on Power Minimization in an Uplink–Downlink Configured Massive MIMO Network

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

In this paper, the coordinated beamforming problem is investigated to minimize the sum transmit power of the system in a two-cell network, downlink transmission in one cell and uplink transmission in the other cell. It is assumed that the base stations (BSs) and the users are equipped with multiple input multiple output (MIMO) antennas, and the coordinated beamforming vectors are designed for the BS in the downlink cell and the users in the uplink cell under the signal-to-interference plus noise ratio (SINR) constraints. Then, the problem is extended for a scenario where the BSs and users have massive MIMO antennas, and using the random matrix theory, an algorithm is proposed to design the coordinated beamforming vectors. Simulation results show that this coordinated beamforming algorithm for the massive MIMO scenario accurately tracks the optimal sum transmit power minimization beamforming approach, while it reduces the computational complexity of the coordinated beamforming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Actually, since the power of the receive filter could be removed from the numerator and denominator of the receive SINR, it has no impact on the SINR

  2. The long-term time constant is the time over which the statistics of the channel change. In the urban areas, this time is about 100 times the coherence time of the channel (Viering et al. 2002).

References

  • Aghashahi S, Abouei J, Tadaion AA (2018) SLNR based coordinated multicell beamforming in an uplink-downlink configuration of cellular networks. In: Iranian conference on, electrical engineering (ICEE), pp 458–463. IEEE

  • Aghashahi S, Aghashahi S, Tadaion A (2019) Energy efficient coordinated multicell power allocation in dynamic TDD MIMO systems. In: Proceedings of the 2019 27th Iranian conference on electrical engineering (ICEE), pp 1523–1528. IEEE

  • Agustin A, Lagen S, Vidal J, Munoz O, Pascual-Iserte A, Guo Z, Wen R (2017) Efficient use of paired spectrum bands through TDD small cell deployments. IEEE Commun Mag 55(9):210–211

    Article  Google Scholar 

  • Asgharimoghaddam H, Tölli A, Sanguinetti L, Debbah M (2019) Decentralizing multicell beamforming via deterministic equivalents. IEEE Trans Commun 67(3):1894–1909

    Article  Google Scholar 

  • Bai ZD, Silverstein JW (1998) No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices. Ann Prob 26(1):316–345

    Article  MathSciNet  Google Scholar 

  • Bai J, Dong T, Zhang Q, Wang S, Li N (2020) Coordinated beamforming and artificial noise in the downlink secure multi-cell MIMO systems under imperfect CSI. IEEE Wireless Commun Lett

  • Barman Roy S, Madhukumar AS, Chin F (2019) Resource allocation in multicell systems with coordinated beamforming and partial data cooperation: a study on the effect of cooperation on achievable performance. Wireless Netw 25(4):1749–1762

    Article  Google Scholar 

  • Belschner J, Rakocevic V, Habermann J (2019) Complexity of coordinated beamforming and scheduling for OFDMA based heterogeneous networks. Wireless Netw 25(5):2233–2248

    Article  Google Scholar 

  • Boukhedimi I, Kammoun A, Alouini MS (2017) Coordinated SLNR based precoding in large-scale heterogeneous networks. IEEE J Select Topics Signal Process 11(3):534–548

    Article  Google Scholar 

  • Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Burden RL, Faires JD (2010) Numerical analysis. Brooks/cole Richard Stratton

  • Cavalcante E, Fodor G, Silva YCB, Freitas WC (2018) Distributed beamforming in dynamic TDD MIMO networks with BS to BS interference constraints. IEEE Wireless Commun Lett 7(5):788–791

    Article  Google Scholar 

  • Cavalcante E, Fodor G, Silva YCB, Freitas WC (2019) Bidirectional sum-power minimization beamforming in dynamic TDD MIMO networks. IEEE Trans Vehic Technol 68(10):9988–10002

    Article  Google Scholar 

  • Chockalingam A, Rajan BS (2014) Large MIMO systems. Cambridge University Press, New York

    Google Scholar 

  • Dahrouj H, Yu W (2010) Coordinated beamforming for the multicell multi-antenna wireless system. IEEE Trans Wireless Commun 9(5)

  • Garzas JJE, Hong M, Garcia A, Garcia-Armada A (2014) Interference pricing mechanism for downlink multicell coordinated beamforming. IEEE Trans Commun 62(6):1871–1883

    Article  Google Scholar 

  • Guimaraes FR, Fodor G, Freitas WC, Silva YC (2018) Pricing-based distributed beamforming for dynamic time division duplexing systems. IEEE Trans Vehic Technol 67(4):3145–3157

    Article  Google Scholar 

  • He S, Huang Y, Yang L, Ottersten B, Hong W (2015) Energy efficient coordinated beamforming for multicell system: duality-based algorithm design and massive MIMO transition. IEEE Trans Commun 63(12):4920–4935

    Article  Google Scholar 

  • Heath RW Jr, Lozano A (2018) Foundations of MIMO communication. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Huang Y, Tan CW, Rao BD (2013) Joint beamforming and power control in coordinated multicell: max–min duality, effective network and large system transition. IEEE Trans Wireless Commun 12(6):2730–2742

    Article  Google Scholar 

  • Huang Y, He S, Jin S, Chen W (2014) Decentralized energy-efficient coordinated beamforming for multicell systems. IEEE Trans Vehic Technol 63(9):4302–4314

    Article  Google Scholar 

  • Jayasinghe P, Tölli A, Kaleva J, Latva-aho M (2015) Bi-directional signaling for dynamic TDD with decentralized beamforming. In: Proceedings of the 2015 IEEE international conference on communication workshop (ICCW), pp 185–190. IEEE

  • Kazi BU, Wainer GA (2019) Next generation wireless cellular networks: ultra-dense multi-tier and multi-cell cooperation perspective. Wireless Netw 25(4):2041–2064

    Article  Google Scholar 

  • Khamidullina L, de Almeida ALF, Haardt M (2020) Multilinear generalized singular value decomposition (ML-GSVD) with application to coordinated beamforming in multi-user MIMO systems. In: ICASSP 2020—2020 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 4587–4591

  • Kim H, Kim J, Hong D (2020) Dynamic TDD systems for 5G and beyond: a survey of cross-link interference mitigation. IEEE Commun Surv Tutor

  • Ko KS, Jung BC, Hoh M (2018) Distributed interference alignment for multi-antenna cellular networks with dynamic time division duplex. IEEE Commun Lett 22(4):792–795

    Article  Google Scholar 

  • Kwon M, Park H (2020) Non-iterative coordinated beamforming for multicell MIMO heterogeneous networks. Wireless Personal Commun pp 1–13

  • Lagen S, Agustin A, Vidal J (2017) Joint user scheduling, precoder design, and transmit direction selection in MIMO TDD small cell networks. IEEE Trans Wireless Commun 16(4):2434–2449

    Article  Google Scholar 

  • Lakshminarayana S, Assaad M, Debbah M (2015) Coordinated multicell beamforming for massive MIMO: a random matrix approach. IEEE Trans Inf Theory 61(6):3387–3412

    Article  MathSciNet  Google Scholar 

  • Lee CH, Chang RY, Lin CT, Cheng SM (2020) Beamforming and power allocation in dynamic TDD networks supporting machine-type communication. In: ICC 2020–2020 IEEE international conference on communications (ICC), pp 1–6. IEEE

  • Li Y, Tian Y, Yang C (2015) Energy-efficient coordinated beamforming under minimal data rate constraint of each user. IEEE Trans Vehic Technol 64(6):2387–2397

    Article  Google Scholar 

  • Ng DWK, Lo ES, Schober R (2012) Energy-efficient resource allocation in multi-cell OFDMA systems with limited backhaul capacity. IEEE Trans Wireless Commun 11(10):3618–3631

    Article  Google Scholar 

  • Patcharamaneepakorn P, Armour S, Doufexi A (2015) Coordinated beamforming schemes based on modified signal-to-leakage-plus-noise ratio precoding designs. IET Commun 9(4):558–567

    Article  Google Scholar 

  • Shen Z, Khoryaev A, Eriksson E, Pan X (2012) Dynamic uplink-downlink configuration and interference management in TD-LTE. IEEE Commun Mag 50(11)

  • Silverstein JW, Bai Z (1995) On the empirical distribution of eigenvalues of a class of large dimensional random matrices. J Multivariate Anal 54(2):175–192

    Article  MathSciNet  Google Scholar 

  • Tervo O, Tran L, Pennanen H, Chatzinotas S, Ottersten B, Juntti M (2018) Energy-efficient multi-cell multigroup multicasting with joint beamforming and antenna selection. IEEE Trans Signal Process 66(18):4904–4919

    Article  MathSciNet  Google Scholar 

  • Utschick W, Brehmer J (2012) Monotonic optimization framework for coordinated beamforming in multicell networks. IEEE Trans Signal Process 60(4):1899–1909

    Article  MathSciNet  Google Scholar 

  • Venturino L, Prasad N, Wang X (2010) Coordinated linear beamforming in downlink multi-cell wireless networks. IEEE Trans Wireless Commun 9(4):1451–1461

    Article  Google Scholar 

  • Viering I, Hofstetter H, Utschick W (2002) Spatial long-term variations in urban, rural and indoor environments. In: Proceedings of the 5th COST, vol 273. Citeseer

  • Wiesel A, Eldar YC, Shamai S (2006) Linear precoding via conic optimization for fixed MIMO receivers. IEEE Trans Signal Process 54(1):161–176

    Article  Google Scholar 

  • Yates RD (1995) A framework for uplink power control in cellular radio systems. IEEE J Select Areas Commun 13(7):1341–1347

    Article  Google Scholar 

  • Yoon C, Cho DH (2015) Energy efficient beamforming and power allocation in dynamic TDD based c-ran system. IEEE Commun Lett 19(10):1806–1809

    Article  Google Scholar 

  • Yoon C, Cho D, Jo O (2019) Mse-based downlink and uplink joint beamforming in dynamic TDD system based on cloud-ran. IEEE Syst J 13(3):2228–2239

    Article  Google Scholar 

  • Zakhour R, Hanly SV (2012) Base station cooperation on the downlink: large system analysis. IEEE Trans Inf Theory 58(4):2079–2106

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamshid Abouei.

Appendix

Appendix

1.1 The proof of Theorem 1

In order to prove Theorem 1, we use the concept of standard function defined in Yates (1995) and Lemma 1.

Definition 1

A function \(f: \mathrm {R}^{n}\rightarrow \mathrm {R}^{n}\), where for \({\mathbf {x}}=[x_1,\dots ,x_n]\), \(f(x_{1},\dots ,x_{n})=[f_1({\mathbf {x}}),\dots ,f_n({\mathbf {x}})]^{T}\) is said to be a standard function if it satisfies the following conditions,

  1. 1.

    Positivity: If \({\mathbf {x}}=[x_{1},\dots ,x_{n}]^{T}\) and \(\forall i\ x_{i}\ge 0\) then \(\forall i\) \(\ f_{i}({\mathbf {x}})\ge 0\).

  2. 2.

    Monotonicity: If \({\mathbf {x}}=[x_{1},\dots ,x_{n}]^{T}\) , \({\mathbf {y}}=[y_{1},\dots ,y_{n}]^{T}\) and for all i, \(x_i \ge y_i\) then \(\forall i \ f_i({\mathbf {x}})\ge f_i({\mathbf {y}})\).

  3. 3.

    Scalability: For all \(\rho \ge 0\), and \({\mathbf {x}}\), \(\forall i\) \(\rho f_i({\mathbf {x}})\ge f_i(\rho {\mathbf {x}})\).

Lemma 1

If f be a standard function, then the fixed point iteration algorithm converges to a unique solution.

Proof

The proof could be found in Yates (1995). \(\square\)

Now, we prove that the function defined in Theorem 1 is standard and then its fixed point could be found using the fixed point iteration algorithm. Accordingly, we investigate the conditions of the standard function,

  1. 1.

    Positivity: It must be shown that for \(i=1,2\), \(\forall k\), \(f_{i,k}( {\varvec{\lambda }}_{i},{\varvec{\lambda }}_{2})>0\)

    $$\begin{aligned}&\forall k \lambda _{1,k}, \lambda _{2,k}>0\Longrightarrow {\varvec{\Sigma }}_{1}\succ 0\Longrightarrow \big ({\varvec{\Sigma }}_{1}+\mathbf{I}_{N}\big )\succ 0 \Longrightarrow \big ({\varvec{\Sigma }}_{1}+\mathbf{I}_{N}\big )^{-1}\succ 0 \Longrightarrow \\&\quad \forall k \ f_{1,k}( {\varvec{\lambda }}_{1},{\varvec{\lambda }}_{2})>0. \\&\quad \forall k \lambda _{1,k}, \lambda _{2,k}>0\Longrightarrow {\varvec{\Sigma }}_{2,k}\succ 0\Longrightarrow \big ({\varvec{\Sigma }}_{2,k}+\mathbf{I}_{M}\big )\succ 0 \Longrightarrow \\&\quad \big ({\varvec{\Sigma }}_{2,k}+\mathbf{I}_{M}\big )^{-1}\succ 0 \Longrightarrow \forall k\ f_{2,k}( {\varvec{\lambda }}_{1},{\varvec{\lambda }}_{2})>0. \end{aligned}$$
  2. 2.

    Monotonicity: It must be confirmed that,

    $$\begin{aligned}&\forall i,k \ \lambda _{i,k}>\lambda _{i,k}^{\prime } \Longrightarrow f_{i,k}( {\varvec{\lambda }}_{1},{\varvec{\lambda }}_{2}) >f_{i,k}( {\varvec{\lambda }}_{1}^{\prime },{\varvec{\lambda }}_{2}^{\prime }). \\&\quad {\varvec{\Sigma }}_{1}={\varvec{\Sigma }}_{1}^{\prime }+\big ({\varvec{\Sigma }}_{1}-{\varvec{\Sigma }}_{1}^{\prime }\big ) \Longrightarrow {\varvec{\Sigma }}_{1}=\\&\quad \sum _{m=1}^{K}\bigg (\frac{\lambda _{\mathrm{1},m}^{\prime }}{N}{\mathbf {H}} _{\mathrm{{1,1}},m} {\mathbf {v}}_{\mathrm{{1}},m} ^{DL,H} {\mathbf {v}}_{\mathrm{{1}},m} ^{DL} {\mathbf {H}} _{\mathrm{{1,1}},m} ^{H}+\frac{\lambda _{\mathrm{2},m}^{\prime }}{M} {\mathbf {H}} _{\mathrm{{1,2}}}^{H} {\mathbf {w}}_{\mathrm{{2}},m} ^{UL,H} {\mathbf {w}}_{\mathrm{{2}},m} ^{UL} {\mathbf {H}} _{\mathrm{{1,2}}}\bigg )+\\&\quad \sum _{m=1}^{K}\bigg (\frac{(\lambda _{\mathrm{1},m}-\lambda _{\mathrm{1},m}^{\prime })}{N}{\mathbf {H}} _{\mathrm{{1,1}},m} {\mathbf {v}}_{\mathrm{{1}},m} ^{DL,H} {\mathbf {v}}_{\mathrm{{1}},m} ^{DL} {\mathbf {H}} _{\mathrm{{1,1}},m} ^{H}+\frac{(\lambda _{\mathrm{2},m}-\lambda _{\mathrm{2},m}^{\prime })}{M} {\mathbf {H}} _{\mathrm{{1,2}}}^{H} {\mathbf {w}}_{\mathrm{{2}},m} ^{UL,H} {\mathbf {w}}_{\mathrm{{2}},m} ^{UL} {\mathbf {H}} _{\mathrm{{1,2}}}\bigg ). \end{aligned}$$

    As mentioned, \(\lambda _{i,k}>\lambda _{i,k}^{\prime }\) and then \({\varvec{\Sigma }}_{1}-{\varvec{\Sigma }}_{1}^{\prime }\succ 0\); on the other hand, based on the Proposition 4 in Wiesel et al. (2006), for nonnegative matrices \(\mathbf{C}\) and \(\mathbf{D}\) and vector \(\mathbf{x}\) in the range of \(\mathbf{C}\), the following equation is satisfied,

    $$\begin{aligned} \dfrac{1}{{\mathbf {x}}^{H} \big ({\mathbf {C}}+{\mathbf {D}}\big )^{-1}{\mathbf {x}}}\ge \dfrac{1}{{\mathbf {x}}^{H} {\mathbf {C}}^{-1}{\mathbf {x}}}, \end{aligned}$$
    (41)

    then with defining \({\mathbf {x}}={\mathbf {H}}_{1,1,k} {\mathbf {v}}_{1,k}^{DL,H}\), \({\mathbf {C}}=\mathbf{I}_{N}+{\varvec{\Sigma }}_{1}^{\prime }\) and \({\mathbf {D}}={\varvec{\Sigma }}_{1}-{\varvec{\Sigma }}_{1}^{\prime }\), the result would be,

    $$\begin{aligned}&\dfrac{1}{\frac{1}{N}\big (1+\frac{1}{\gamma _{1,k}}\big ){\mathbf {v}}_{1,k} ^{DL} {\mathbf {H}} _{1,1,k}^{H}\big (\mathbf{I}_{N}+{\varvec{\Sigma }}_{1}\big )^{-1} {\mathbf {H}} _{1,1,k} {\mathbf {v}}_{1,k} ^{DL,H}} \ge \\&\quad \dfrac{1}{\frac{1}{N}\big (1+\frac{1}{\gamma _{1,k}}\big ){\mathbf {v}}_{1,k} ^{DL} {\mathbf {H}} _{1,1,k}^{H}\big (\mathbf{I}_{N}+{\varvec{\Sigma }}_{1}^{\prime }\big )^{-1} {\mathbf {H}} _{1,1,k} {\mathbf {v}}_{1,k} ^{DL,H}}; \end{aligned}$$

    then, \(f_{1,k}( {\varvec{\lambda }}_{1},{\varvec{\lambda }}_{2}) >f_{1,k}( {\varvec{\lambda }}_{1}^{\prime },{\varvec{\lambda }}_{2}^{\prime })\). This equation could be similarly proved for \(f_{2,k}\).

  3. 3.

    Scalability: It should be proved that for \(\rho > 1\),

    $$\begin{aligned} \forall i,k \ \rho f_{i,k}( {\varvec{\lambda }}_{1},{\varvec{\lambda }}_{2}) > f_{i,k}(\rho {\varvec{\lambda }}_{1},\rho {\varvec{\lambda }}_{2}). \end{aligned}$$

Assume that \(\rho > 1\) be arbitrary, then,

$$\begin{aligned} \rho f_{1,k}( {\varvec{\lambda }}_{1},{\varvec{\lambda }}_{2})=\dfrac{1}{\frac{1}{N}\big (1+\frac{1}{\gamma _{1,k}}\big ){\mathbf {v}}_{1,k} ^{DL} {\mathbf {H}} _{1,1,k}^{H}\big (\rho \mathbf{I}_{N}+\rho {\varvec{\Sigma }}_{1}\big )^{-1} {\mathbf {H}} _{1,1,k} {\mathbf {v}}_{1,k} ^{DL,H}}, \end{aligned}$$

where

$$\begin{aligned}&\rho \mathbf{I}_{N}+\rho {\varvec{\Sigma }}_{1}=\rho \mathbf{I}_{N}+\rho \sum _{m=1}^{K}\bigg (\frac{\lambda _{\mathrm{1},m}}{N}{\mathbf {H}} _{1,1,m} {\mathbf {v}}_{1,m} ^{DL,H} {\mathbf {v}}_{1,m} ^{DL} {\mathbf {H}} _{1,1,m} ^{H}+\\&\quad \frac{\lambda _{\mathrm{2},m}}{M} {\mathbf {H}} _{1,2}^{H} {\mathbf {w}}_{2,m} ^{UL,H} {\mathbf {w}}_{2,m} ^{UL} {\mathbf {H}} _{1,2}\bigg )=(\rho -1)\mathbf{I}_{N}+\mathbf{I}_{N} \\&\quad +\rho \sum _{m=1}^{K}\bigg (\frac{\lambda _{\mathrm{1},m}}{N}{\mathbf {H}} _{1,1,m} {\mathbf {v}}_{1,m} ^{DL,H} {\mathbf {v}}_{1,m} ^{DL} {\mathbf {H}} _{1,1,m} ^{H}\\&\quad +\frac{\lambda _{\mathrm{2},m}}{M} {\mathbf {H}} _{1,2}^{H} {\mathbf {w}}_{2,m} ^{UL,H} {\mathbf {w}}_{2,m} ^{UL} {\mathbf {H}} _{1,2}\bigg ). \end{aligned}$$

As mentioned, \(\rho >1\) and then, \((\rho -1)\mathbf{I}_{N}\succeq 0\); hence, defining \({\mathbf {C}}=\mathbf{I}_{N}+\rho {\varvec{\Sigma }}_{1}\) and \({\mathbf {D}}=(\rho -1)\mathbf{I}_{N}\), based on (41), the following equation is resulted,

$$\begin{aligned}&\rho f_{1,k}( {\varvec{\lambda }}_{1},{\varvec{\lambda }}_{2}) = \dfrac{1}{\frac{1}{N}\big (1+\frac{1}{\gamma _{1,k}}\big ){\mathbf {v}}_{1,k} ^{DL} {\mathbf {H}} _{1,1,k}^{H}\big (\rho \mathbf{I}_{N}+\rho {\varvec{\Sigma }}_{1}\big )^{-1} {\mathbf {H}} _{1,1,k} {\mathbf {v}}_{1,k} ^{DL,H}}\ge \\&\quad \dfrac{1}{\frac{1}{N}\big (1+\frac{1}{\gamma _{1,k}}\big ){\mathbf {v}}_{1,k} ^{DL} {\mathbf {H}} _{1,1,k}^{H}\big (\mathbf{I}_{N}+\rho {\varvec{\Sigma }}_{1}\big )^{-1} {\mathbf {H}} _{1,1,k} {\mathbf {v}}_{1,k} ^{DL,H}}\\&\quad = f_{1,k}(\rho {\varvec{\lambda }}_{1},\rho {\varvec{\lambda }}_{2}). \end{aligned}$$

This equation could be similarly confirmed for \(f_{2,k}\).

Accordingly, f is a standard function, and based on Lemma 1, the fixed point of this function could be found using the fixed point iteration algorithm.

1.2 The Proof of Theorem 2

In order to prove Theorem 2, we first state the following Lemmas.

Lemma 2

(Silverstein and Bai (1995)) Assume that \({\mathbf {A}} \in {\mathbb {C}}^{N\times N}\) be a hermity and invertible matrix. Then, for any vector \({\mathbf {x}} \in {\mathbb {C}}^{N\times 1}\) and \(\tau \in {\mathbb {C}}\), if \({\mathbf {A}}+\tau {\mathbf {x}}{\mathbf {x}}^{H}\) is an invertible matrix, then the following equations are held

$$\begin{aligned} ({\mathbf {A}}+\tau {\mathbf {x}}{\mathbf {x}}^{H})^{-1}&={\mathbf {A}}^{-1}-\dfrac{{\mathbf {A}}^{-1}\tau {\mathbf {x}}{\mathbf {x}}^{H}{\mathbf {A}}^{-1}}{1+\tau {\mathbf {x}}^{H}{\mathbf {A}}^{-1} {\mathbf {x}}}, \end{aligned}$$
(42)
$$\begin{aligned} {\mathbf {x}}^{H}({\mathbf {A}}+\tau {\mathbf {x}}{\mathbf {x}}^{H})^{-1}&=\dfrac{{\mathbf {x}}^{H}{\mathbf {A}}^{-1}}{1+\tau {\mathbf {x}}^{H}{\mathbf {A}}^{-1} {\mathbf {x}}}. \end{aligned}$$
(43)

Lemma 3

(Bai and Silverstein (1998)) Assume that \({\mathbf {x}},{\mathbf {y}}\sim {{\mathcal {C}}}{{\mathcal {N}}}(\mathrm{0},\frac{1}{N} \mathbf{I}_{N}) \in {\mathbb {C}}^{N }\) be independent and \(\mathbf{A}\) be a hermity matrix independent of \({\mathbf {x}}\) and \({\mathbf {y}}\), then \({\mathbf {x}}^{H}{\mathbf {A}}{\mathbf {x}} \mathop {\longrightarrow }\limits _{N\rightarrow \infty }^{a.s.} \frac{1}{N} tr\{{\mathbf {A}}\}\) and \({\mathbf {x}}^{H}{\mathbf {A}}{\mathbf {y}}\mathop {\longrightarrow }\limits _{N\rightarrow \infty }^{a.s.} 0.\)

Lemma 4

For \(k=1,\dots ,K\),

$$\begin{aligned} {\mathbf {H}}_{1,1,k}{\mathbf {v}}_{1,k}^{DL,H}&\sim {{\mathcal {C}}}{{\mathcal {N}}}(0,\Vert {\mathbf {v}}_{1,k}^{DL}\Vert ^{2}\sigma _{1,1,k}^{2}\mathbf{I}_{N}),\\ {\mathbf {H}}_{2,2,k}^{H}{\mathbf {w}}_{2,k}^{UL,H}&\sim {{\mathcal {C}}}{{\mathcal {N}}}(0,\Vert {\mathbf {w}}_{2,k}^{UL}\Vert ^{2}\sigma _{2,2,k}^{2}\mathbf{I}_{M}). \end{aligned}$$

Proof

The proof is straightforward. \(\square\)

Now, considering (24) we have,

$$\begin{aligned} \lambda _{1,k}=\dfrac{1}{\frac{1}{N}\big (1+\frac{1}{\gamma _{1,k}}\big ){\mathbf {v}}_{1,k} ^{DL} {\mathbf {H}} _{1,1,k}^{H}\big (\mathbf{I}_{N}+{\varvec{\Sigma }}_{1}\big )^{-1} {\mathbf {H}} _{1,1,k} {\mathbf {v}}_{1,k} ^{DL,H}} , \end{aligned}$$

and on the other hand based on Lemma 2,

$$\begin{aligned} \begin{aligned}&{\mathbf {v}}_{1,k} ^{DL} {\mathbf {H}} _{1,1,k}^{H}\big (\mathbf{I}_{N}+{\varvec{\Sigma }}_{1}\big )^{-1} {\mathbf {H}} _{1,1,k} {\mathbf {v}}_{1,k} ^{DL,H}\\&\quad =\dfrac{{\mathbf {v}}_{1,k} ^{DL} {\mathbf {H}} _{1,1,k}^{H}\big (\mathbf{I}_{N}+{\varvec{\Sigma }}_{1}^{\prime }\big )^{-1} {\mathbf {H}} _{1,1,k} {\mathbf {v}}_{1,k} ^{DL,H}}{1+\frac{\lambda _{1,k}}{N}{\mathbf {v}}_{1,k} ^{DL} {\mathbf {H}} _{1,1,k}^{H}\big (\mathbf{I}_{N}+{\varvec{\Sigma }}_{1}^{\prime }\big )^{-1} {\mathbf {H}} _{1,1,k} {\mathbf {v}}_{1,k} ^{DL,H}} , \end{aligned} \end{aligned}$$

then,

$$\begin{aligned} \lambda _{1,k}=\dfrac{1+\frac{\lambda _{1,k}}{N}{\mathbf {v}}_{1,k} ^{DL} {\mathbf {H}} _{1,1,k}^{H}\big (\mathbf{I}_{N}+{\varvec{\Sigma }}_{1}^{\prime }\big )^{-1} {\mathbf {H}} _{1,1,k} {\mathbf {v}}_{1,k} ^{DL,H}}{\frac{1}{N}\big (1+\frac{1}{\gamma _{1,k}}\big ){\mathbf {v}}_{1,k} ^{DL} {\mathbf {H}} _{1,1,k}^{H}\big (\mathbf{I}_{N}+{\varvec{\Sigma }}_{1}^{\prime }\big )^{-1} {\mathbf {H}} _{1,1,k} {\mathbf {v}}_{1,k} ^{DL,H}}, \end{aligned}$$

hence,

$$\begin{aligned} \lambda _{1,k}=\dfrac{\gamma _{1,k}}{\frac{1}{N}{\mathbf {v}}_{1,k} ^{DL} {\mathbf {H}} _{1,1,k}^{H}\big (\mathbf{I}_{N}+{\varvec{\Sigma }}_{1}^{\prime }\big )^{-1} {\mathbf {H}} _{1,1,k} {\mathbf {v}}_{1,k} ^{DL,H}}. \end{aligned}$$
(44)

Also, based on Lemma 4, \({\mathbf {H}}_{1,1,k}{\mathbf {v}}_{1,k}^{DL,H}\sim {{\mathcal {C}}}{{\mathcal {N}}}(0,\Vert {\mathbf {v}}_{1,k}^{DL}\Vert ^{2}\sigma _{1,1,k}^{2}\mathbf{I}_{N})\) and it is clear that the matrix \({\varvec{\Sigma }}_{1,k}^{\prime }\) and vector \({\mathbf {H}} _{1,1,k} {\mathbf {v}}_{1,k} ^{DL,H}\) are independent, then based on Lemma 3,

$$\begin{aligned} \begin{aligned}&\frac{1}{N}{\mathbf {v}}_{1,k} ^{DL} {\mathbf {H}} _{1,1,k}^{H}\big (\mathbf{I}_{N}+{\varvec{\Sigma }}_{1}^{\prime }\big )^{-1} {\mathbf {H}} _{1,1,k} {\mathbf {v}}_{1,k} ^{DL,H}\\&\quad \mathop {\longrightarrow }\limits _{N\rightarrow \infty }^{a.s.} \frac{1}{N} \Vert {\mathbf {v}}_{1,k}^{DL}\Vert ^{2}\sigma _{1,1,k}^{2} tr\{\big (\mathbf{I}_{N}+{\varvec{\Sigma }}_{1}^{\prime }\big )^{-1}\}. \end{aligned} \end{aligned}$$

On the other hand, according to the assumption of the theorem, \(m_{{\varvec{\Sigma }}_{1,k}^{\prime }}(-1)=\frac{1}{N}tr\{\big (\Sigma _{1,k}^{\prime }+\mathbf{I}_{N}\big )^{-1}\}\), hence,

$$\begin{aligned} \begin{aligned}&\frac{1}{N}{\mathbf {v}}_{1,k} ^{DL} {\mathbf {H}} _{1,1,k}^{H}\big (\mathbf{I}_{N}+{\varvec{\Sigma }}_{1}^{\prime }\big )^{-1} {\mathbf {H}} _{1,1,k} {\mathbf {v}}_{1,k} ^{DL,H}\\&\quad \mathop {\longrightarrow }\limits _{N\rightarrow \infty }^{a.s.} \Vert {\mathbf {v}}_{1,k}^{DL}\Vert ^{2}\sigma _{1,1,k}^{2} m_{{\varvec{\Sigma }}_{1,k}^{\prime }}(-1), \end{aligned} \end{aligned}$$
(45)

then considering (44), we result the following equation for the Lagrangian multipliers,

$$\begin{aligned} \lambda _{1,k}=\dfrac{\gamma _{1,k}}{ \Vert {\mathbf {v}}_{1,k}^{DL}\Vert ^{2}\sigma _{1,1,k}^{2} m_{{\varvec{\Sigma }}_{1,k}^{\prime }}(-1)}. \end{aligned}$$

Now, we prove the second equation of Theorem 2; considering (24), we have,

$$\begin{aligned} \lambda _{2,k}=\dfrac{1}{\frac{1}{M}\big (1+\frac{1}{ \gamma _{2,k}}\big ){\mathbf {w}}_{2,k} ^{UL}{\mathbf {H}} _{2,2,k}\big (\mathbf{I}_{M}+{\varvec{\Sigma }}_{2,k}\big )^{-1}{\mathbf {H}} _{2,2,k}^{H} {\mathbf {w}}_{2,k} ^{UL,H}}, \end{aligned}$$

also based on Lemma 2,

$$\begin{aligned} \begin{aligned}&{\mathbf {w}}_{2,k} ^{UL}{\mathbf {H}} _{2,2,k}\big (\mathbf{I}_{M}+{\varvec{\Sigma }}_{2,k}\big )^{-1}{\mathbf {H}} _{2,2,k}^{H} {\mathbf {w}}_{2,k} ^{UL,H}=\\ &\quad =\dfrac{{\mathbf {w}}_{2,k} ^{UL}{\mathbf {H}} _{2,2,k}\big (\mathbf{I}_{M}+{\varvec{\Sigma }}_{2,k}^{\prime }\big )^{-1}{\mathbf {H}} _{2,2,k}^{H} {\mathbf {w}}_{2,k} ^{UL,H}}{1+\frac{\lambda _{2,k}}{M}{\mathbf {w}}_{2,k} ^{UL}{\mathbf {H}} _{2,2,k}\big (\mathbf{I}_{M}+{\varvec{\Sigma }}_{2,k}^{\prime }\big )^{-1}{\mathbf {H}} _{2,2,k}^{H} {\mathbf {w}}_{2,k} ^{UL,H}}, \end{aligned} \end{aligned}$$

then,

$$\begin{aligned} \lambda _{2,k}=\dfrac{1+\frac{\lambda _{2,k}}{M}{\mathbf {w}}_{2,k} ^{UL}{\mathbf {H}} _{2,2,k}\big (\mathbf{I}_{M}+{\varvec{\Sigma }}_{2,k}^{\prime }\big )^{-1}{\mathbf {H}} _{2,2,k}^{H} {\mathbf {w}}_{2,k} ^{UL,H}}{\frac{1}{M}\big (1+\frac{1}{ \gamma _{2,k}}\big ){\mathbf {w}}_{2,k} ^{UL}{\mathbf {H}} _{2,2,k}\big (\mathbf{I}_{M}+{\varvec{\Sigma }}_{2,k}^{\prime }\big )^{-1}{\mathbf {H}} _{2,2,k}^{H} {\mathbf {w}}_{2,k} ^{UL,H}}, \end{aligned}$$

hence,

$$\begin{aligned} \lambda _{2,k}=\dfrac{\gamma _{2,k}}{\frac{1}{M}{\mathbf {w}}_{2,k} ^{UL}{\mathbf {H}} _{2,2,k}\big (\mathbf{I}_{M}+{\varvec{\Sigma }}_{2,k}^{\prime }\big )^{-1}{\mathbf {H}} _{2,2,k}^{H} {\mathbf {w}}_{2,k} ^{UL,H}}. \end{aligned}$$
(46)

But based on (22), the matrix \({\varvec{\Sigma }}_{2,k}^{\prime }\) is not independent of the vector \({\mathbf {H}} _{2,2,k}^{H} {\mathbf {w}}_{2,k} ^{UL,H}\) then the term \(\frac{1}{M}{\mathbf {w}}_{2,k} ^{UL}{\mathbf {H}} _{2,2,k}\big (\mathbf{I}_{M}+{\varvec{\Sigma }}_{2,k}^{\prime }\big )^{-1}{\mathbf {H}} _{2,2,k}^{H} {\mathbf {w}}_{2,k} ^{UL,H}\) could not be accurately approximated. However, if it be assumed that the eliminated term of matrix \({\varvec{\Sigma }}_{2,k}\), \(\frac{\lambda _{2,k}}{M}{\mathbf {H}} _{2,2,k}^{H} {\mathbf {w}}_{2,k} ^{UL,H} {\mathbf {w}}_{2,k} ^{UL} {\mathbf {H}} _{2,2,k}\) is the dominant term among the terms containing the random matrix \({\mathbf {H}} _{2,2,k}^{H}\),

then \({\varvec{\Sigma }}_{2,k}^{\prime }\) and \({\mathbf {H}} _{2,2,k}^{H} {\mathbf {w}}_{2,k} ^{UL,H}\) could be considered independent, then based on Lemma 3 and Lemma 4,

$$\begin{aligned} \begin{aligned}&\frac{1}{M}{\mathbf {w}}_{2,k} ^{UL}{\mathbf {H}} _{2,2,k}\big (\mathbf{I}_{M}+{\varvec{\Sigma }}_{2,k}^{\prime }\big )^{-1}{\mathbf {H}} _{2,2,k}^{H} {\mathbf {w}}_{2,k} ^{UL,H} \\&\quad \mathop {\longrightarrow }\limits _{M\rightarrow \infty }^{a.s.}\frac{1}{M}\Vert {\mathbf {w}}_{2,k}^{UL}\Vert ^{2}\sigma _{2,2,k}^{2}tr\{\big (\mathbf{I}_{M}+{\varvec{\Sigma }}_{2,k}^{\prime }\big )^{-1} \}, \end{aligned} \end{aligned}$$

hence, based on the assumption of the theorem we have,

$$\begin{aligned}&\frac{1}{M}{\mathbf {w}}_{2,k} ^{UL}{\mathbf {H}} _{2,2,k}\big (\mathbf{I}_{M}+{\varvec{\Sigma }}_{2,k}^{\prime }\big )^{-1}{\mathbf {H}} _{2,2,k}^{H} {\mathbf {w}}_{2,k} ^{UL,H} \\&\quad \mathop {\longrightarrow }\limits _{M\rightarrow \infty }^{a.s.} \Vert {\mathbf {w}}_{2,k}^{UL}\Vert ^{2}\sigma _{2,2,k}^{2}m_{{\varvec{\Sigma }}_{2,k}^{\prime }}(-1), \end{aligned}$$

then based on (45), the result would be,

$$\begin{aligned} \lambda _{2,k}\simeq \dfrac{\gamma _{2,k}}{m_{{\varvec{\Sigma }}_{2,k}^{\prime }}(-1)\Vert {\mathbf {w}}_{2,k}^{UL}\Vert ^{2}\sigma _{2,2,k}^{2}}, \end{aligned}$$

where using \(\simeq\) is because of that it was connived to consider \({\varvec{\Sigma }}_{2,k}^{\prime }\) and \({\mathbf {H}} _{2,2,k}^{H} {\mathbf {w}}_{2,k} ^{UL,H}\) independent.

1.3 The proof of Theorem 3

In order to prove Theorem 3, we first state the following theorem from the random matrix theory,

Theorem 4

(See Theorem 5 in Lakshminarayana et al. (2015)) Consider matrix \(\mathbf{B}=XTX^{ H}\), where \(\mathbf{X}=\frac{ 1}{\sqrt{ N}}\mathbf{Y}\in {\mathbb {C}}^{ N\times LK}\) with components \(Y(p,q)\sim {{\mathcal {C}}}{{\mathcal {N}}}(0,1)\) and \({\mathbf {T}}=\mathrm {diag}\big (t_{1},\dots ,t_{LK}\big )\in {\mathbb {R}}^{LK\times LK}\) be a non-random diagonal matrix. Assume that \(m_{{\mathbf {B}}}(z)=\frac{1}{N}tr\{\big ({\mathbf {B}}-z\mathbf{I}_{N}\big )^{-1}\}\), \(z \in {\mathbb {R}}\) then,

$$\begin{aligned} m_{{\mathbf {B}}}(z)\mathop {\longrightarrow }\limits _{N,K\rightarrow \infty }^{a.s.}{\bar{m}}_{{\mathbf {B}}}(z), \end{aligned}$$

where \({\bar{m}}_{{\mathbf {B}}}(z)\) is the unique solution of following fixed point equation,

$$\begin{aligned} {\bar{m}}_{{\mathbf {B}}}(z)=\bigg (\frac{1}{N}\sum \limits _{i=1}^{LK}\dfrac{t_{i}}{1+t_{i}{\bar{m}}_{{\mathbf {B}}}(z)}-z\bigg )^{-1}. \end{aligned}$$
(47)

Now, we rewrite matrix \({\varvec{\Sigma }}_{1,k}^{\prime }\) as,

$$\begin{aligned} {\varvec{\Sigma }}_{1}^{\prime }&=\sum _{m\ne k}^{K}\frac{\lambda _{\mathrm{1},m}}{N}{\mathbf {H}} _{1,1,m} {\mathbf {v}}_{1,m} ^{DL,H} {\mathbf {v}}_{1,m} ^{DL} {\mathbf {H}} _{1,1,m} ^{H}\\&\qquad +\sum _{m=1}^{K}\frac{\lambda _{\mathrm{2},m}}{M} {\mathbf {H}} _{1,2}^{H} {\mathbf {w}}_{2,m} ^{UL,H} {\mathbf {w}}_{2,m} ^{UL} {\mathbf {H}} _{1,2}\\ &\quad =\bigg [\frac{{\mathbf {H}} _{1,1,1} {\mathbf {v}}_{1,1} ^{DL,H} }{\sqrt{N}\sigma _{1,1,1}},\dots ,\frac{{\mathbf {H}} _{1,1,k-1} {\mathbf {v}}_{1,k-1} ^{DL,H} }{\sqrt{N}\sigma _{1,1,k-1}},\frac{{\mathbf {H}} _{1,1,k+1} {\mathbf {v}}_{1,k+1} ^{DL,H} }{\sqrt{N}\sigma _{1,1,k+1}},\\&\qquad \dots ,\frac{{\mathbf {H}} _{1,1,K} {\mathbf {v}}_{1,K} ^{DL,H} }{\sqrt{N}\sigma _{1,1,K}},\frac{{\mathbf {H}}_{1,2}^{H} {\mathbf {w}}_{2,1} ^{UL,H}}{\sqrt{M}\sigma _{1,2}},\dots ,\frac{{\mathbf {H}} _{1,2}^{H} {\mathbf {w}}_{2,K} ^{UL,H}}{\sqrt{M}\sigma _{1,2}}\bigg ] \\&\quad \mathrm {diag}\bigg (\lambda _{1,1}\sigma _{1,1,1}^{2}\Vert {\mathbf {v}}_{1,1}^{DL}\Vert ^{2},\dots ,\lambda _{1,k-1}\sigma _{1,1,k-1}^{2}\Vert {\mathbf {v}}_{1,k-1}^{DL}\Vert ^{2},\\&\lambda _{1,k+1}\sigma _{1,1,k+1}^{2}\Vert {\mathbf {v}}_{1,k+1}^{DL}\Vert ^{2},\dots ,\lambda _{1,K}\sigma _{1,1,K}^{2}\Vert {\mathbf {v}}_{1,K}^{DL}\Vert ^{2}\bigg )\\&\bigg [\frac{{\mathbf {H}} _{1,1,1} {\mathbf {v}}_{1,1} ^{DL,H} }{\sqrt{N}\sigma _{1,1,1}},\dots ,\frac{{\mathbf {H}}_{1,1,k-1} {\mathbf {v}}_{1,k-1} ^{DL,H} }{\sqrt{N}\sigma _{1,1,k-1}},\frac{{\mathbf {H}}_{1,1,k+1} {\mathbf {v}}_{1,k+1} ^{DL,H} }{\sqrt{N}\sigma _{1,1,k+1}},\\&\dots ,\frac{{\mathbf {H}} _{1,1,K} {\mathbf {v}}_{1,K} ^{DL,H} }{\sqrt{N}\sigma _{1,1,K}},\frac{{\mathbf {H}}_{1,2}^{H} {\mathbf {w}}_{2,1} ^{UL,H}}{\sqrt{M}\sigma _{1,2}},\dots ,\frac{{\mathbf {H}}_{1,2}^{H} {\mathbf {w}}_{2,K} ^{UL,H}}{\sqrt{M}\sigma _{1,2}}\bigg ]^{H}\\&={\mathbf {X}}_{1}{\mathbf {T}}_{1}{\mathbf {X}}_{1}^{H}, \end{aligned}$$

where

$$\begin{aligned}&{\mathbf {X}}_{1}=\bigg [\frac{{\mathbf {H}} _{1,1,1} {\mathbf {v}}_{1,1} ^{DL,H} }{\sqrt{N}\sigma _{1,1,1}},\dots ,\frac{{\mathbf {H}} _{1,1,k-1} {\mathbf {v}}_{1,k-1} ^{DL,H} }{\sqrt{N}\sigma _{1,1,k-1}},\frac{{\mathbf {H}} _{1,1,k+1} {\mathbf {v}}_{1,k+1} ^{DL,H} }{\sqrt{N}\sigma _{1,1,k+1}},\\&\quad \dots ,\frac{{\mathbf {H}} _{1,1,K} {\mathbf {v}}_{1,K} ^{DL,H} }{\sqrt{N}\sigma _{1,1,K}},\frac{{\mathbf {H}}_{1,2}^{H} {\mathbf {w}}_{2,1} ^{UL,H}}{\sqrt{M}\sigma _{1,2}},\dots ,\frac{{\mathbf {H}} _{1,2}^{H} {\mathbf {w}}_{2,K} ^{UL,H}}{\sqrt{M}\sigma _{1,2}}\bigg ], \end{aligned}$$

and matrix \(\mathbf{T}\) is,

$$\begin{aligned}&\mathrm {diag}\bigg (\lambda _{1,1}\sigma _{1,1,1}^{2}\Vert {\mathbf {v}}_{1,1}^{DL}\Vert ^{2},\dots ,\lambda _{1,k-1}\sigma _{1,1,k-1}^{2}\Vert {\mathbf {v}}_{1,k-1}^{DL}\Vert ^{2},\\&\quad \lambda _{1,k+1}\sigma _{1,1,k+1}^{2}\Vert {\mathbf {v}}_{1,k+1}^{DL}\Vert ^{2},\dots ,\lambda _{1,K}\sigma _{1,1,K}^{2}\Vert {\mathbf {v}}_{1,K}^{DL}\Vert ^{2}\bigg ). \end{aligned}$$

The vector \({\mathbf {Y}}_{1}=\sqrt{ N}{\mathbf {X}}_{1}\) is a zero mean normal random vector with variance one, then based on Theorem 4 when N and K limit to infinity, the following would be resulted,

$$\begin{aligned}m_{{\varvec{\Sigma }}_{1,k}^{\prime }}(-1)=\frac{1}{N}tr\{\big (\Sigma _{1,k}^{\prime }+\mathbf{I}_{N}\big )^{-1}\}\mathop {\longrightarrow }\limits _{N,K\longrightarrow \infty }^{a.s.}{\bar{m}}_{{\varvec{\Sigma }}_{1,k}^{\prime }}(-1),\end{aligned}$$

where \({\bar{m}}_{{\varvec{\Sigma }}_{1,k}^{\prime }}(-1)\) is the unique solution of Eq. (37).

Equation (38) could be similarly proved by rewriting matrix \({\varvec{\Sigma }}_{2,k}^{\prime }\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghashahi, S., Abouei, J. & Tadaion, A. Coordinated Multicell Beamforming Based on Power Minimization in an Uplink–Downlink Configured Massive MIMO Network. Iran J Sci Technol Trans Electr Eng 45, 1063–1082 (2021). https://doi.org/10.1007/s40998-021-00409-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-021-00409-w

Keywords

Navigation